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Background: Cholangiocarcinoma (CCA) is a rare disease, but it is amongst the most
lethal cancers with a median survival under 1 year. Variations in DNA methylation
and gene expression have been extensively studied in other cancers for their role
in pathogenesis and disease prognosis, but these studies are very limited in CCA.
This study focusses on the identification of DNA methylation and gene expression
prognostic biomarkers using multi-omics data of CCA tumors from The Cancer Genome
Atlas (TCGA).

Method: We have conducted a genome-wide analysis of differential DNA methylation
and gene/miRNA expression using data from 36 CCA tumor and 9 normal samples from
TCGA. The impact of DNA methylation in promoters and long-range distal enhancers
on the regulation and expression of CCA-associated genes was examined using linear
regression. Next, we conducted network analyses on genes which are regulated
by DNA methylation as well as by miRNA. Finally, we performed Kaplan–Meier and
Cox proportional hazards regression analyses in order to identify the role of selected
methylation sites and specific genes and miRNAs in patient survival. We also performed
real-time quantitative PCR (qPCR) to confirm the change in gene expression in CCA
patients’ tumor and adjacent normal samples.

Results: Altered DNA methylation was observed on 12,259 CpGs across all
chromosomes, of which 78% were hypermethylated. We observed a strong negative
relationship between promoter hypermethylation and corresponding gene expression in
92% of the CpGs. Differential expression analyses revealed altered expression patterns
in 3,305 genes and 101 miRNAs. Finally, we identified 17 differentially methylated
promoter CpGs, 72 differentially expressed genes, and two miRNAs that are likely
associated with patient survival. Pathway analysis suggested that cell division, bile
secretion, amino acid metabolism, PPAR signaling, hippo signaling were highly affected
by gene expression and DNA methylation alterations. The qPCR analysis further
confirmed that MDK, HNF1B, PACS1, and GLUD1 are differentially expressed in CCA.
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Conclusion: Based on the survival analysis, we conclude that DEPDC1, FUT4,
MDK, PACS1, PIWIL4 genes, miR-22, miR-551b microRNAs, and cg27362525 and
cg26597242 CpGs can strongly support their use as prognostic markers of CCA.

Keywords: cholangiocarcinoma, integrative analysis, differential expression, differential methylation, prognostic
biomarker, TCGA, logistic regression

INTRODUCTION

Cholangiocarcinoma (CCA), commonly known as the bile duct
cancer, induces tumors in epithelial cells (cholangiocytes) that
line the bile ducts (Lazaridis and Gores, 2005). The bile ducts
are tubes from the liver and from the gall bladder that carry
a fluid called bile into the small intestine, where it is used for
digesting fat. CCA tumors may originate in the ducts that are
inside (intrahepatic) or outside (extrahepatic) the liver. CCA is
predominantly extrahepatic with only 10% of the cases having an
intrahepatic origin. About 65% of CCA cases are diagnosed in
seniors over the age of 65 with equal prevalence in both males
and females. CCA prevalence has been steadily rising in the
United States (from 0.044 per million in 1973 to 0.118 in 2012)
(Saha et al., 2016) and also in other western countries (Khan et al.,
2012). Because most patients are presented with advanced CCA
at the time of diagnosis, despite chemotherapy, the survival for
CCA patients is under 1 year (Valle et al., 2010).

Cholangiocarcinoma presents unique challenges for
therapy due to its genetic heterogeneity. An earlier report
(Chaisaingmongkol et al., 2017) has identified molecular
subtypes of intrahepatic and extrahepatic cholangiocarcinoma
in Asian populations. A recent classification of CCA in western
populations proposed four possible molecular subtypes that
differ in their DNA methylation, gene expression, copy number
alteration, and mutation profiles (Farshidfar et al., 2017). In
both studies, the most variable genes and DNA methylation sites
were used for molecular subtyping; however, the global patterns
of DNA methylation and gene/miRNA expression and their
association with patient survival were not considered in these
studies. The focus of our study is mainly on the identification of
prognostic markers that are associated with survival using the
western patient population that is represented in TCGA.

We have analyzed the patterns of DNA methylation, and
gene and miRNA expression in CCA and control populations
using TCGA data. Detailed correlative analyses between DNA
methylation and gene expression; and gene expression and
miRNA expression were also performed. Pathway and gene
ontology (GO) enrichment analyses of differentially methylated
genes (DMGs) and differentially expressed genes (DEGs) allowed
us to gain insights into how alterations in DNA methylation
and gene expression affect certain biological pathways to
stimulate CCA progression. CCA-specific hypermethylated and
hypomethylated distal enhancer and promoter probes and the
well-known transcription factor binding motifs were examined
to understand the site-specific transcription factors that are
expected to be involved in carcinogenesis of CCA. We also
carried out a network analysis of differentially expressed
genes that are affected by promoter DNA methylation and

miRNA expression to explore the role of the altered regulatory
network in the CCA. Finally, we carried out an extensive
analysis of CCA patient survival with respect to genetic
markers, including differentially expressed genes, miRNAs, and
differentially methylated promoter CpG sites. We also confirmed
the change in the expression of selected genes in CCA compared
to adjacent normal tissues using real-time qPCR.

MATERIALS AND METHODS

DNA Methylation, RNA-Seq and
miRNA-Seq Data
TCGA Firehose level-3 data on DNA methylation (Illumina
HumanMethylation450 BeadArray), gene expression
(IlluminaHiSeq RNASeqV2), and microRNA expression
(IlluminaHiSeq, miRNAseq) were downloaded using
Bioconductor tool, RTCGAToolbox (Samur, 2014). The DNA
methylation level-3 data includes the β values for 485,577
CpG locations with annotations for chromosomes (UCSC
hg19); HUGO Gene Nomenclature Committee (HGNC) gene
symbols; and CpG coordinates (UCSC hg19). These β values
were calculated as (M/M + U) range from 0 to 1, where M is
the frequency of methylated allele and, U is the unmethylated
allele frequency; higher β values suggested elevated methylation
level. The gene expression data were acquired as single RSEM
(RNA-seq by Expectation-Maximization) values for 20,531
HGNC genes. The miRNA-seq data have a single expression
value for 1,046 miRNAs annotated with miRBase v16.

Methylation Data Processing
To remove gender bias, β values of CpG probes that corresponded
to X and Y chromosomes were discarded. We also discarded
CpGs with missing β values in greater than 20% of the samples
and used k-nearest neighbor-based imputation to assess the
missing values with the imputeKNN module of R tool, impute
data (Troyanskaya et al., 2001). Statistical analyses of DNA
methylation of 45 samples (36 primary tumors and 9 normal
samples) were performed at both the CpG site level and at the
gene level. For distal enhancer analysis, probes that are 2 kb
farther from the Transcription Start Sites (TSS) were used.

CpG probes were mapped to genes in six different sub-regions
- TSS200 (the region from TSS to 200 bp upstream of TSS),
TSS1500 (201–1,500 bp upstream from TSS), 5′UTR, 1st exon,
gene body, and 3′UTR- and analyzed separately for each region
(Supplementary Figure S1a). Similarly, DNA methylation in the
CpG island regions including shore (0–2 kb from CpG islands),
shelf (2–4 kb after CpG islands), and open sea regions (CpG sites
anywhere in the genome without a specific designation) were also
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examined (Supplementary Figure S1b). We created ‘gene region
collapsed data’ for dimensionality reduction of the methylation
data on regions that are most appropriate for gene function. R
version 3.4.2 (R Development Core Team, 2015) was used to
perform the analyses. The β values for every sub-region were
summarized utilizing the median, i.e., if a gene has two or more
CpG sites in the same sub-region then the median of β values (by
using R function ‘aggregate’) was used.

RNA-Seq and miRNA-Seq Data
Processing
The level-3 RNA-seq data contain expression values for each gene
obtained by normalizing the expression values for each gene in
every samples. Briefly, these values were derived by mapping
RNA-seq reads with MapSplice software to the human reference
genome and quantifying transcripts with RSEM (Li and Dewey,
2011). TCGA level-3 has different types of RSEM output data;
the expected read count data was used in this analysis. Level-
3 miRNA-seq data contains raw read count for each miRBase
v16 miRNA, derived from the exact mapping of miRNA-seq
reads with BWA-MEM, and quantified with ShortStack (Axtell,
2013). We purged all samples and genes or miRNAs from the
downstream analysis that have missing expression values (NA)
for over 20% of the samples, genes or miRNAs.

Batch Effect and Unsupervised Analysis
of Data
Using Mbatch (TCGA, 2010), Principal Component Analysis
(PCA) was performed to identify potential batch effects among
the samples for DNA methylation, gene expression, and miRNA
expression data. The unsupervised clustering of epigenome and
transcriptome data were performed by PCA in R using princomp
function. Pearson correlation matrix, Manhattan distance matrix
and heatmaps of the tumor and normal samples were generated
using ggplot2 in R. Three dimensional PCA plot was generated
with R packages, ggplot2, and scatterplot3d (Wickham, 2016).

Genome-Wide Analysis of Differentially
Methylated CpG Probes
Methylation probes which mapped in the repeated regions
of chromosomes and having a known SNP within 10 bp of
interrogated CpG locations were also removed as recommended
by other TCGA studies (Cancer Genome Atlas Network,
2012; Cancer Genome Atlas Research Network, 2014).
Next, we normalized β values by using the Beta Mixed
Integer-quantile normalization (BMIQ) (Teschendorff et al.,
2013) method to correcting the bias of type II probes in
Illumina HumanMethylation450K BeadChip data by utilizing
the Bioconductor tool, ChAMP (Morris et al., 2014). R
package, limma (Ritchie et al., 2015) was used for supervised
differential methylation analysis. For a given CpG site to be
considered differentially methylated, the difference between
the median DNA methylation level in the primary tumor
and normal samples must be at least 0.2 (1β ≥ 0.2) and
the BH adjusted p-value ≤ 0.005. Limma was also used on
summarized methylation data for differential CpG island

analysis. A circular plot of differentially methylated CpGs
(dm-CpGs) with differential methylation frequencies in 10 Mb
sliding window for each chromosome was generated by using
R tool, gtrellis (Gu et al., 2016). Then differential methylation
frequency per mega base pair (Mb) was determined for each
chromosome by computing the overall number of dm-CpGs
for each chromosome and dividing by the length of the
respective chromosome (Mb). Similarly, for each chromosome,
hypermethylation and hypomethylation frequencies were also
calculated. A particular chromosome considered predominantly
hypermethylated if the ratio between hypermethylation to
hypomethylation frequencies is≥1.5. Similarly, if a chromosome
has hypomethylation to hypermethylation frequency ratio is
≥1.5 considered as predominately hypomethylated.

Genome-Wide Analysis of Differentially
Methylated Regions (DMRs)
A genomic region containing at least two dm-CpGs was
considered as a differentially methylated region (DMR).
A Bioconductor tool, DMRcate (TCGA, 2010) was used to
analyze genome-wide DMRs. For regulatory region analysis,
we mapped DMRs in super-enhancers (Pott and Lieb, 2015),
Vista enhancers (Visel et al., 2007), and DNase hypersensitive
sites (Consortium, 2012), which are known regulatory regions.
Super-enhancers are genomic regions containing groups of
transcriptionally active putative enhancers in close proximity.
VISTA enhancers are individual experimentally validated human
or mouse non-coding sequences with gene enhancer activity.
While DNase hypersensitive regions are specific regions of
the genome, where chromatin attains open structure, i.e.,
euchromatin, making it accessible for transcription. We mapped
DMRs against these three types of regulatory regions and DMRs
that show at least a 10% overlap with these regions are considered
as active regulatory regions.

Differential Gene Expression Analysis
For differential gene expression analysis, 36 primary CCA
and 9 normal samples expected counts’ data were used. We
preprocessed the data to remove all genes that have low (≤1
count per million, CPM) or missing values in over 20% of
the samples. After preprocessing, Bioconductor tools, edgeR
(Robinson et al., 2010) and DESeq2 (Love et al., 2014) were used
for differential gene expression analysis using an absolute logFC
cutoff at 1.5 and both the raw p-value and Benjamini–Hochberg
(BH) (Benjamini and Hochberg, 1995) adjusted p-value cutoffs at
0.01. For differential miRNA expression analysis, we used level-3
raw read counts data in edgeR, logFC ≥ 1, and a BH corrected
p-value of 0.01.

Classification of the Tumor and Normal
Samples
We used logistic regression models by applying linear models
(lm) function in R to categorize tumor and normal samples using
gene expression, miRNA expression, and DNA methylation data.
R package ROCR (Sing et al., 2005) was used to evaluate the
performance of lm for each gene, miRNA, and CpGs by using
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the area under the curve (AUC). R tool ROCR was used for the
receiver operating characteristic (ROC) curve plot. We used only
those genes, miRNAs, or CpGs that have an AUC ≥ 0.70 for
further analysis.

Association Between DNA Methylation
and Gene Expression
For association analysis, a total of 36 primary tumor samples
that have both DNA methylation and gene expression data were
examined. R package eMap (Sun, 2010) was used for the linear
regression-based correlation analysis between DNA methylation
and gene expression. Methylation and expression levels of
genes were verified for non-zero association using Pearson’s
correlation, i.e., excluding all those which have a correlation value
of zero. For further analysis, probes within 100 kb from the TSS
of a gene in either direction were used, and an association was
taken into account as significant only if the Bonferroni corrected
p-value was under 0.05. R package quantsmooth (Oosting et al.,
2014) was used to visualize the genome-wide association between
DNA methylation and gene expression.

The median methylation of CpGs in the ‘gene region collapsed’
regions, and gene expression of corresponding genes was
assessed for non-zero correlation using Spearman correlation (R
function cor.test). Correlation between DNA methylation and
gene expression was regarded as noteworthy if the raw p-value
and BH-corrected p-value were both below 0.05.

Enrichment Analysis
Bioconductor package clusterProfiler (Yu et al., 2012) and the
desktop version of GSEA (Subramanian et al., 2005) were used
for enrichment analysis of DEGs in CCA. Entrez gene ids were
used with a BH multiple adjustment threshold of 0.05 with a
minimum and maximum of five and 500 genes, respectively,
for each pathway. KEGG, Reactome, Biocarta, and PID were
utilized for the pathway enrichment analysis. Another tool,
‘camera’ in limma, was used for pathway enrichment analysis
by selecting only overlapping pathways. We used ‘gometh’
module of the Bioconductor tool missMethyl (Phipson et al.,
2016) for the pathway enrichment analysis of dm-CpGs. Genes
associated with dmCpGs in the IlluminaHuman450K BeadChip
with 1β ≥ 0.2 were acquired from the annotation package,
IlluminaHumanMethylation450kanno.ilmn12.hg19. Every GO
and KEGG terms were examined using ‘gometh’, and false
discovery rates (FDR) were calculated by using the BH method.

Regulatory Element Landscape and
Transcription Factor Analysis
For regulatory element analysis, we have used the Bioconductor
tool, Enhancer Linking by Methylation/Expression Relationship
(ELMER) (Yao et al., 2015). ELMER uses ENCODE/REMC,
ChromHMM, and FANTOM5 genomic regions for annotating
enhancer regions. We used level-3 data of tumor specimens that
had both DNA methylation and gene expression values. Using
ELMER, we determined the distal enhancer (>2.0 kb away from
known TSS) and promoter (within 2 Kb from known TSS) probes
and correlated their DNA methylation states with the expression

of genes in close proximity to identify transcriptional targets.
First, we selected distal enhancer and promoter probes and used
one-tailed t-test to identify hypermethylated and hypomethylated
CpG probes. In the second step, Pearson’s correlation among the
differentially methylated distal enhancer probe and 10 nearby
up- and downward genes’ expression values were calculated to
determine the putative target gene and distal enhancer probe
pair. To achieve a high confidence correlation between distal
enhancer probes and gene expression data, we used 10,000
permutations. For promoter analysis, we used the nearest single
gene and calculated correlation to determine the relationship.
Next, FIMO (find individual motif occurrences) tool (Grant et al.,
2011) was used to locate the enriched TF binding motifs for
differentially methylated distal enhancer or promoter probes,
which are significantly correlated with a putative target gene, with
a p-value cutoff of 1e−4. FIMO was used to scan for enriched TF
binding motifs within ±100 bp region in the neighborhood of
the individual probe utilizing position weight matrices (PWMs)
of the human TF motif database, JASPAR-Core (Mathelier et al.,
2014) and Factorbook (Wang et al., 2013). Finally, a list of
upstream master regulator TFs corresponding to each of the
enriched TF binding motifs whose expression has been associated
with the DNA methylation of the TF binding motif region
was determined by using ELMER. For each motif, the average
DNA methylation of all distal enhancer/promoter probes within
±100 bp of a motif occurrence region was computed and
correlated with the 1,982 known human TFs expression (Ravasi
et al., 2010). Then, for each motif-gene pair, we made two separate
groups of samples: M group (20% of the specimens with the
highest average DNA methylation for a motif) and U group
(20% of the specimens with the lowest average DNA methylation
for a motif). We used the Wilcoxon rank-sum test to test the
null hypothesis that M group had greater or equal overall gene
expression than the U group, for each candidate motif-TF pair.
All TFs were ranked by the -log10 (P), and the ones that falls
within the upper 5% of this ranking were considered potential
upstream master regulators.

Network Analysis for Genes Under
Multiple Regulatory Control (GMRCs)
Molecular interaction networks (interactome) were used to
understand the interaction between genomic and epigenomic
loci associated with CCA. Gene expression correlated with both
methylation and miRNA expression were used to build the gene
network of interacting molecules using BisoGenet (Martin et al.,
2010) plugin in Cytoscape (Shannon et al., 2003). The network
was constructed by using the molecular interactions from various
biological interaction databases that included BIND, BioGRID,
DIP, HPRD, INTACT, MINT, ENCODE, and Microcoms.
Topological parameters of the network were calculated using
the CentiScaPe plugin in Cytoscape (Scardoni et al., 2009).
Genes that are part of more than one association study, i.e.,
listed in more than one QTL analysis (DNA methylation,
miRNA) were treated as genes under multiple regulatory controls
(GMRCs). GMRCs and their first interactive neighbors were used
to construct the network and perform a topological analysis
using neighborhood connectivity and node stress parameters
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from CentiScaPe, to estimate the average rank (AR) score for
each node. The AR score was decided by an average rank of
the nodes with respect to both indices, i.e., node stress and
neighborhood connectivity. The nodes with AR score cutoff ≤10
were considered as key regulatory hubs. The significance of
pathways associated with sub-networks of hub nodes was decided
by Fisher’s exact test p-value in Ingenuity Pathways Analysis
(IPA) for a query gene-based search for pathway enrichment
(Kramer et al., 2014).

Survival Analysis
To uncover the role of differentially expressed genes/miRNA in
the survival of patients, CCA patients were segregated into two
groups, namely high and low, using the median expression of
genes as a cut-off value. To evaluate DNA methylation, we used
0.5 and 0.3 as β value cutoff for the high and the low groups. Only
those promoter CpGs which were within 1000 bp downstream or
500 bp upstream of the TSS of the genes were used for survival
analysis (Cooper et al., 2006; Whitfield et al., 2012). The R tool,
survival was used for survival analysis, and the Kaplan–Meier
survival curve plot was generated for all analyses. In addition, a
log-rank or Mantel–Haenszel test was conducted to observe the
difference between survival curves of two groups and to calculate
the p-value.

Sample Procurement and Real-Time
Quantitative PCR (qPCR) Analysis
Twenty-one snap-frozen cholangiocarcinoma (CCA) specimens,
including seven samples with tumor-adjacent normal tissues,
were collected from the University of Alabama at Birmingham
(UAB) Tissue Biorepository, after obtaining approval from the
Institutional Review Board. All samples were stored in the
Invitrogen RNAlater-ICE stabilization solution (Thermo Fisher
Scientific, Waltham, MA, United States) until processed for RNA
extraction and real-time quantitative PCR (qPCR).

Total RNA was isolated from CCA and normal specimens with
TRIzol reagent using the manufacturer’s instructions (Invitrogen,
Carlsbad, CA, United States). Total RNA (2 µg) was reverse
transcribed using high-capacity cDNA reverse transcription
kits with RNase inhibitor (Applied Biosystems, Thermo Fisher
Scientific, Waltham, MA, United States). The cDNA (10-ng)
samples were used for validation and quantification of four genes
(MDK, HNF1B, PACS1, and GLUD1) using PowerUp SYBR
green master mix (Applied Biosystems, Thermo Fisher Scientific,
Waltham, MA, United States) on an ABI real-time PCR machine
and analyzed with Quant-studio real-time PCR software (Applied
Biosystems, Thermo Fisher Scientific, Waltham, MA, United
States). The Student’s t-test with two-tailed distribution was used
to calculate the p-values for the statistical significance.

RESULTS

TCGA level-3 DNA methylation gene expression and miRNA
expression data downloaded by using the Bioconductor tool,
RTCGAToolbox (Samur, 2014), and thoroughly carried out
data cleaning, batch effect testing, global unsupervised analyses
and comprehensive single and integrative analyses on DNA

methylation, mRNA and miRNA expression datasets. To
recognize the functional relevance and consequences of the
differentially expressed genes in CCA, we also completed
downstream analyses using clustering and pathway enrichment
tools and correlated the results using AUC (Area Under the
Curve) and Kaplan–Meyer survival plots.

Testing for Batch Effects in TCGA Data
High throughput data generation are prone to batch effects
as a result of variations in the equipment and/or reagent kits
utilized at different sites or the skill level of the handling
personnel, and other factors. TCGA samples were prepared and
processed in batches at various locations of the consortium;
therefore, the data could be subject to batch effect vulnerability.
However, our Mbatch analysis has not identified any batch effects
in the DNA methylation (Supplementary Figure S2a), gene
expression (Supplementary Figure S2b), or miRNA expression
data (Supplementary Figure S2c).

Pre-filtering of Liver-Specific Gene
Expression Data
A total of 386 liver-specific genes were removed from our analysis
because the expression of these genes would likely result from the
contamination of bile tissue with normal liver cells (Farshidfar
et al., 2017). In addition, 80 other genes that showed at least
five-fold elevated mRNA expression in the liver in comparison
to all other tissues in The Human Protein Atlas (HPA) database
(Uhlen et al., 2015) were also removed. In total, we removed the
methylation and expression data of 466 liver-specific genes from
further analysis.

Unsupervised Analysis of Epigenome
and Transcriptome Data
The unsupervised analysis of epigenome and transcriptome
data using PCA showed excellent separation amongst normal
and tumor samples. The first principal component (PC1) data
alone had the ability to separate normal and CCA samples,
with differences of 19.4, 21.8, and 20.3%, for DNA methylation,
gene expression or miRNA expression respectively (Figure 1).
Similarly, Pearson’s correlation matrix- and Manhattan distance
matrix-based heatmaps showed distinctive patterns in tumor
and in normal samples (Supplementary Figures S3a,b), which
indicates that these individual data types by themselves
can provide the discriminating information between normal
and CCA samples.

Genome-Wide Analysis of CpG Sites
To study the global DNA methylation patterns in CCA, we
used the Illumina annotation file to remove all probes that are
associated with liver-specific genes. A total of 12,259 differentially
methylated CpGs (henceforth mentioned as dm-CpGs) were
detected between tumor and normal samples; out of these
9,534 were hypermethylated and 2,725 were hypomethylated
(Supplementary Figures S4a,b and Supplementary Table S1).
Even at greater thresholds (1β ≥ 0.3), the number of dm-CpGs
only drops to 9,443 showing a strong pattern of differential
methylation across the genome. Figure 2A shows the global
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FIGURE 1 | Three dimensional PCA plot for DNA methylation, gene expression, and miRNA expression data. In this plot, normal samples are in blue color and tumor
samples in red color. For PCA analysis, we used complete DNA methylation, gene expression, and miRNA expression data. 3D PCA plots (A) DNA methylation, (B)
gene expression, and (C) miRNA.

FIGURE 2 | Genome-wide differential DNA methylation pattern in Cholangiocarcinoma. (A) Distribution of differentially methylated CpGs on each chromosome.
Chromosomes are shown in a clockwise direction from 1 to 22 in the outermost circle; sex chromosomes (X or Y) were omitted from the analysis. The two innermost
circles display differential hypermethylation and hypomethylation frequencies in a 10 Mb sliding window throughout the genome. The penultimate outer circle with
red and blue dots correspond to hypermethylated and hypomethylated CpGs, respectively, where the distance of each dot (GpG) from the inner line represents
log10 of the base-pair distance between two nearest CpGs. (B) Differential DNA methylation frequency for each chromosome (per Mb) in CCA. We assessed
hypermethylation and hypomethylation frequency per Mb for each chromosome and sorted chromosomes based on their frequency.

distribution of all the dm-CpGs on 22 human chromosomes.
Chromosome 1 carried the maximum number of dm-CpGs,
while chromosome 18 had the lowest. The two inner circles
represent the density of hyper and hypomethylation in a
10 Mb sliding window throughout the genome. Distribution
of dm-CpGs in ten different sub-regions of the genome is
shown in Table 1 and Supplementary Figures S5a,b. List
of top ten hypermethylated and hypomethylated CpG sites
with corresponding gene, AUC, p-value log2 fold change and
chromosome associations are available in Table 2.

Our results demonstrated that chromosome 17 had the highest
differential methylation frequency (9.61 dm-CpGs/Mb), while
chromosome 18 had the lowest (1.47 dm-CpG/Mb) (Figure 2B
and Supplementary Table S1). Methylation frequency of
differential CpGs were calculated within a 10 MB sliding
window to identify genomic regions with high-level epigenomic
perturbations. Our analysis revealed that chr7:26500001-
28000000 had the highest dm-CpGs frequency, this region
was mostly hypermethylated. But, there is a sub-region in
this region which is hypomethylated, this sub-region contains
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TABLE 1 | Total number of differentially methylated CpG sites in different
genomic sub-regions.

Subregions 1 β ≥ 0.1 1 β ≥ 0.2 1 β ≥ 0.3

3′UTR 723 463 351

5′UTR 1769 1052 823

1st Exon 1046 563 463

Gene Body 6988 4451 3319

TSS200 1565 799 627

TSS1500 2516 1405 1091

Island 7081 3643 2855

Shore 5981 3457 2631

Shelf 1556 1072 825

Open sea 6270 4087 3132

several overexpressed genes, including HOXA3, HOXA9,
HOXA10, HIABDH, LOC441204 and hsa-miR196b, with
the exception of the HIABDH segment. The genomic region
on chromosome 6 (30000001 – 31000000) has the highest
hypomethylation frequency. This genomic region has four
overexpressed genes (DDR1, NRM, RNF39, and SFTA2), and no
underexpressed genes.

In the current analysis, we also performed differential
methylation analysis for CpGs which are within 10Kb up- or
downstream from TSS of lncRNA or within the intron/exon

of lncRNA (Zhi et al., 2014). A total of 484 CpG sites (unique
435 CpGs) associated with 265 lncRNAs were differentially
methylated (Supplementary Table S1); of these, 387 are
hypermethylated and 97 are hypomethylated. Details of
methylation in the sub-regions of lncRNAs are provided in
Supplementary Table S1.

Genome-Wide Analysis of Differentially
Methylated Regions (DMRs)
Methylation patterns of different sub-regions of genes may have
diverse consequences on gene expression. To conduct the DMR
analyses, we removed all CpGs on the sex chromosomes to
remove gender bias. Only those DMRs with two or more CpGs
and at least one of them with a BH-adjusted p-value < 0.01
were considered as significant. We identified a total of 6,419
DMRs across the whole genome; Chromosome 1 showed the
highest (610) and Chromosome 21 showed the fewest (Hu
et al., 2016) of DMRs (Supplementary Table S2). Of the
6,419, we excluded 24 short DMRs (<10 bps) from further
analysis. We observed characteristic DNA methylation patterns
all across the genome that distinguished the tumors from the
normal samples. Examples of DMRs showing contradictory
methylation patterns between normal and tumor samples on
chromosome 19 (Figure 3) and chromosome 2 (Supplementary
Figure S6) are displayed.

TABLE 2 | Top twenty differentially hypermethylated and hypomethylated CpG sites in CCA.

1 β Tumor Normal log2FC Adj P-val AUC Chr Gene

cgl6937168 0.6821 0.82465 0.1426 5.96E-14 1 2 SNED1

cg00033551 0.6781 0.89305 0.21499 2.88E-13 0.985 16 MGRN1

cg07644368 0.677 0.75904 0.082 6.19E-08 0.988 5 CDOl

cg22797031 0.6649 0.78331 0.11841 2.01E-11 1 1 PRRX1

cg22795586 0.6642 0.73519 0.07101 9.28E-09 0.972 1 PRRX1991

cg01305421 0.6617 0.78219 0.12048 1.66E-08 0.978 12 IGF1

cg24887265 0.6528 0.73859 0.08582 4.04E-10 0.985 2 SIX2

cg27260772 0.6498 0.73731 0.08755 3.85E-08 0.978 6 TFAP2B

cg07207982 0.6495 0.87785 0.22834 2.75E-13 0.991 6 ANKS1A

cgl0792302 0.6495 0.75506 0.10557 9.89E-09 0.944 12 HOXC10

cg09933836 −0.695 0.19447 0.88946 3.73E-11 0.997 8 C8orf75

cgl2592365 −0.693 0.23773 0.93057 5.86E-12 1 17 RPTOR

cg26537639 −0.691 0.16614 0.85711 1.42E-09 1 16 CYBA

cg09276315 −0.686 0.04131 0.72761 1.36E-25 1 19 ZC3H4

cgl3309012 −0.678 0.24395 0.9223 4.10E-13 1 21 MIR155HG

cgl6290996 −0.676 0.19308 0.86909 1.31E-12 1 1 GAS5

cg21812277 −0.675 0.1178 0.79318 6.31E-18 1 13 PARP4

cg08105396 −0.67 0.05096 0.72132 2.41E-31 1 1 S100A2

cg23520347 −0.67 0.18661 0.8568 1.30E-12 1 1 RASSF5

cg25731261 −0.669 0.20564 0.87499 2.28E-11 0.997 19 BBC3

Green bar represent hypermethylation and red hypomethylation.
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FIGURE 3 | DMR Plot for one of the DMR. DNA methylation patterns in tumor and normal samples. Tumor and normal samples have distinct DNA methylation
patterns for all CpGs in DMR.
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Analysis of DMRs in the Regulatory
Regions
We mapped 6,395 DMRs against 65,933 known super-enhancer
regions (Khan and Zhang, 2016) and observed that about
half of them (Khan et al., 2012) have at least 10% length
overlap with 16,233 super-enhancers. Next, we mapped these
3,109 DMRs against 1,867,665 DNase hypersensitive site clusters
(Consortium, 2012) and found that about 97% of them also
overlapped with 5,432 DNase hypersensitive site clusters. Out
of these, 59 DMRs also exhibited at least a 10% length overlap
when mapped against 2,311 Vista enhancers (Visel et al., 2007)
(Supplementary Table S2). Thus, our findings suggest that
the DMRs discovered in this study have significant roles in
the overall transcriptional regulation of corresponding genes in
cholangiocarcinoma.

Differential Gene Expression Analysis
We observed 3,453 and 3,401 differentially expressed genes
(DEGs) from DESeq2 and edgeR analyses, respectively, with
3,305 DEGs intersecting between the two sets which were
forwarded for further analysis. The logistic regression analysis
identified 96% of these DEGs with an ROC-AUC value of
≥0.70, which means that a normal tumor classification can
be achieved by using any single gene expression value at 70%
accuracy. Out of these, 2,250 and 914 DEGs were upregulated
and downregulated, respectively (Supplementary Figure S7a and
Supplementary Table S3).

Differential miRNA Expression Analysis
We found 101 differentially expressed miRNAs (DE-miRNAs),
of which 58 were upregulated and 43 downregulated
(Supplementary Figure S7b and Supplementary Table S3).
Logistic regression analysis suggested that 98% of the DE-
miRNAs also have an AUC of at least 0.75. Six miRNAs, i.e.,
miR-139, miR-187, miR-483, miR-598, miR-625, and miR-675
that were previously reported as bile duct cancer biomarkers
(Wang M. et al., 2015) were also identified in our study. Apart
from these, miR-21, miR-92b, miR-125a, miR-135b, miR-141,
miR-196a, miR-200a, miR-200b, miR-200c, and miR-439 were
upregulated, while miR-122, miR-148a, miR-152, miR-378c,
miR-383, miR-483, miR-675, and miR-855 were downregulated
(Supplementary Table S3). All of these miRs were earlier
reported as differentially regulated in cholangiocarcinoma
(Meng et al., 2006; Chen et al., 2009; Kawahigashi et al., 2009;
Braconi et al., 2010; Karakatsanis et al., 2013; Wang S. et al., 2015;
Zhang et al., 2015).

Clustering Analysis
Hierarchical clustering analyses were performed with hclust
function in R on tumors and normal samples using dm-
CpG, DEG and DE-miRNA expression values. Clustering
analysis showed that tumor and normal samples have very
different gene/miRNA expression and DNA methylation patterns
(Figures 4A–C). All the samples were clustered along with their
disease status in the clustering analysis.

Pathway Enrichment Analysis
Pathway enrichment analysis of differentially expressed genes
was carried out using clusterProfiler (Yu et al., 2012) and
GSEA (Subramanian et al., 2005). We used a weighted score
(-log10 of DESeq2 FDR p-value multiplied with the sign of
log2 fold change) for GSEA analysis (Davoli et al., 2017).
KEGG, Biocarta, Reactome and PID pathways from MsigDB-
v.5.2 (with the number of genes in the pathways ranging from
5 to 500) were used for further analyses. We identified that
cell division, DNA replication, and hippo signaling pathways
(Figure 5) were enriched with upregulated genes, while amino
acid metabolism, glucose metabolism, drug metabolism, and
autophagy pathway were enriched with downregulated genes
(Supplementary Table S4 and Supplementary Figures S8a,b).
Further, “camera” module in the limma tool was used for pathway
enrichment analysis. DAVID and camera analyses also indicated
the enrichment of nearly identical pathways as those indicated by
GSEA and clusterProfiler.

Testing for over-representation of genes that are negatively
correlated between miRNA expression and gene expression
using clusterProfiler showed the enrichment of pathways such
as cell division, bile secretion, amino acid metabolism, PPAR
signaling, fatty acid degradation, etc. Enrichment analysis of
genes whose expressions were negatively correlated with miRNA
expression and additionally contained differentially methylated
CpGs in their promoter region also indicated the same pathways.
KEGG pathway analysis of genes with dm-CpGs pointed to
the enrichment of pathways related to cancer, cell division
and differentiation, amino acid metabolism, degradation of
xenobiotics, and immune response (Supplementary Table S4).
Hippo signaling pathway is also affected by DNA methylation
(FDR corrected p-value = 3.70e−18).

Correlation of DNA Methylation and
Gene Expression
Pearson’s correlation was used to discover the relationship
between DNA methylation and gene expression using R function,
cor.test. Any correlation with a rho value of ≥0.25 and a BH
adjusted p-value < 0.05 was considered significant. A significant
correlation between methylated CpG sites within 1.5 kb from TSS
and corresponding gene expression was observed in 5,252 CpGs,
out of which 4,842 CpGs had a negative correlation and only 409
had a positive correlation (Supplementary Table S5).

Next, the correlation between locus-based DNA methylation
for all dm-CpGs and the effect on gene expression within 100 kb
on either side of those dm-CpGs was determined. This is to
estimate the extent of multiple gene expression that is influenced
by local DNA methylation in cholangiocarcinoma. Expression
quantitative trait loci (eQTL) based linear regression (eMap1
function) in an R tool, eMap (Sun, 2010) was used to estimate
non-zero Pearson correlation between DNA methylation and
gene expression for genes that have a TSS within 100 kb of a
dm-CpG. The eQTL analysis enables us to ascertain the locus of
the genome (eQTL) having variation in DNA methylation that
impacts the expression levels of one or more genes given that
locus (within 100 kb in either direction). Finally, we observed
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FIGURE 4 | Clustering analysis of normal and tumor CCA samples using Dm-CpGs and DEGs. (A) Heatmap plot based on the top 50 differentially methylated CpG
sites. (B) The vertical sidebar shows expression fold change in tumor Upper horizontal bars represent sample annotations of on disease status, gender, race,
histology and tumor grade. (C) Heatmap plot based on the top 50 differentially expressed miRNAs.

that a total of 3,097 dm-CpGs were significantly correlated with
the expression of 1,401 unique genes in cholangiocarcinoma
(Supplementary Table S5).

The expression levels of 1,450 genes were positively associated
with the DNA methylation levels, while 1,647 genes showed a
negative correlation. Positively correlated CpG sites were quite
evenly dispersed at both up and downstream of TSS (Figure 6A),
while negatively correlated CpG sites were more abundant close
to the TSS (2,000 bp up and downstream from TSS). The CpG
sites associated with gene expression were dispersed throughout
the entire genome, but chromosomes 1, 6p, 11q, 12, 16, 17, 22 are
highly enriched (Supplementary Table S5).

Pearson’s correlation was assessed using R function, cor.test
to estimate the association between DNA methylation in
‘gene sub-regions’ (3′ UTR, gene body, 5′ UTR, 1st exon,
TSS200 and TSS1500) and the expression of corresponding
genes. The expression of a total of 4,236 genes significantly
correlated with DNA methylation levels in at least one

subregion (Supplementary Table S5), where 3,633 genes were
negatively correlated and 603 genes were positively correlated.
Approximately 56% of the negative correlations were located
in the upstream regulatory regions, i.e., promoter and 5′UTR,
while ∼82% of the positive correlations were noticed outside
of the promoter regions (TSS200 and TSS1500). In brief,
upstream regulatory regions differential methylation lead to
more negative correlations with gene expression as expected,
and the opposite effect was observed in the case of the
downstream methylation (Figure 6B). Similarly, CpG islands
and its adjacent regions exhibited 89% of the negative
correlations, while 63% of the positive correlations were away
from islands (Figure 6B). In summary, methylation of CpG
islands that are in close proximity to the TSS region was
negatively associated with gene expression, while regions that
are far away from islands were positively correlated. Similar
trends were observed when we used Spearman’s correlations
(Supplementary Figure S9).
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FIGURE 5 | Enrichment of the Hippo signaling pathway in CCA. Upregulated/downregulated genes in the Hippo signaling pathway, color gradient shows the log2
fold change in tumor vs. normal analysis.

Correlation of Micro-RNA and mRNA
Expression
We used differentially expressed miRNA and mRNA for
correlation analysis. Associations between miRNA-mRNA were
considered significant if Pearson’s correlation was ≥| 0.8| with a
BH corrected p-value cut off at 0.05, by using the Bioconductor
tool MiRComb (Vila-Casadesus et al., 2016). We observed
1,200 significant miRNA-mRNA associations, which contained
unique sets of 585 genes and 31 miRNAs; as expected, all of
them were negatively associated (Supplementary Figure S10
plot for one correlation example). Out of these 585 genes,
146 genes were differentially methylated with 1β ≥ 0.2
in the promoter region (within 1.5 kb from TSS). Because
these genes are differentially regulated at multiple levels, we
refer to these 146 genes as genes under multiple regulatory
control (GMRCs).

We observed 55 GMRCs in our analysis that were both
miRNA-regulated (negatively correlated with gene expression)
and promoter region methylation-regulated (negatively
correlated with gene expression). We hypothesize that these
genes could play vital roles in cholangiocarcinoma. This is further
described below by our network analysis. When we implemented
the over-representation test for these genes using clusterProfiler,
we observed the enrichment of bile secretion, complement and
coagulation cascades and ABC transporter pathways with a BH
adjusted p-value < 0.025 (Supplementary Table S5).

Network Analysis for GMRCs
Based on available interactome information, a total of 55
GMRCs were used to examine the regulatory network. The top
five sub-networks were selected on the basis of the average
ranking (AR) score from the network of GMRCs. To identify
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FIGURE 6 | Distribution of the CpG sites whose DNA methylation levels were strongly associated with gene expression with BH adjusted P-value < 0.05.
(A) Distribution of CpGs sites significantly correlated with corresponding gene expression. The negative logarithm of BH adjusted P-value of the correlation between
DNA methylation β value and gene expression plotted against distance between CpG sites and transcription start site (TSS). Red dots denote negative correlation
and blue dots denote positive correlation, sex chromosomes were excluded from the analysis. (B) Distribution of CpGs correlated with gene expression in
sub-regions. Percentage stacked plot of the distribution of the negative and positive correlation corresponding to the functional regions of genes. Positive and
negative correlations distribution patterns are quite different for the genomic regions.

the molecular processes affected by these sub-networks, we
performed Fisher’s exact test based overrepresentation analysis
of canonical pathways using IPA software program. Among
the cell cycle-related pathways, estrogen receptor (ER) signaling
pathway is the most enriched. IGF-1 signaling pathway in
signaling, acute phase response signaling in the inflammatory
response, aryl hydrocarbon receptor signaling in development,
coagulation system in immune response, and leucine degradation
in amino acid metabolism stood out as the top enriched
pathways (Table 3). However, enrichment of the hippo signaling
pathway was observed in all the five sub-networks. The
IPA canonical pathway analysis revealed that these GMRC
genes were associated with critical cellular functions associated
to cell cycle, growth and proliferation, cancer, amino acid
metabolism, sulfonation, inflammation, and immune response
(Supplementary Table S4).

Effect of Transcription Factor (TF)
Binding Motif Methylation on Gene
Expression
Coherence between hyper and hypomethylated CpG sites in
the known TF-binding motifs was investigated to identify the
master regulator transcription factors in CCA. The Bioconductor
tool, ELMER was used to identify differentially methylated distal
enhancers (10 kb away up or down from TSS) and promoter
(within 2 kb up or down from TSS) region probes in the TF-
binding motifs and their effect on gene expression in CCA.
For this, we used the JASPAR and Factorbook human TF
binding motif database.

TABLE 3 | IPA canonical pathway analysis for the GMRCs and its first neighbors.

Ingenuity Canonical Pathways −log(p-value) Ratio GMRC

Acute Phase Response Signaling 13.2 0.206 EP300

Estrogen Receptor Signaling 13.2 0.312 POLR2A

Glucocorticoid Receptor Signaling 12.8 0.222 POLR2A

Molecular Mechanisms of Cancer 11.3 0.136 EP300

Aryl Hydrocarbon Receptor Signaling 11.1 0.207 EP300

RAR Activation 11 0.179 EP300

Prolactin Signaling 9.95 0.253 EP300

p53 Signaling 9.73 0.216 EP300

IGF-1 Signaling 8.86 0.226 CTCF

LPS-stimulated MAPK Signaling 8.71 0.23 EP300

Adipogenesis pathway 8.65 0.254 POLR2A

PPAR Signaling 7.5 0.274 POLR2A

FGF Signaling 7.35 0.222 CTCF

TGF-β Signaling 7.05 0.276 POLR2A

EIF2 Signaling 7 0.195 POLR2A

Here we used –log of FDR p-value in the table.

Effect of Enhancer Region Methylation on Gene
Expression
We used both p-value and BH adjusted p-value cutoff of
0.01 for differential methylation analysis of distal enhancer
region, and observed 16,801 and 19,577 probes significantly
hypermethylated and hypomethylated, respectively in CCA. In
the case of the hypermethylated, 8,043 distal enhancer probes
demonstrated a statistically significant correlation with gene
expression (Supplementary Table S6). A total of 91 Factorbook
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and JASPAR TF binding sequence motifs contained a minimum
of 10 hypermethylated probes each. Finally, we associated the
average β value of all distal enhancer probes within± 100 bp of an
enriched motif with the 1,982 known human TF genes’ expression
(Ravasi et al., 2010). Finally, we observed a total of 29 TF binding
motifs whose DNA methylation is significantly associated with
TF gene expression (Supplementary Table S6). All TFs that fall
within the top 5% of known motif-TF pair ranking are considered
potential upstream regulators of TF genes. Similarly, in the case of
hypomethylation, 12,251 probe-gene pairs showed a statistically
significant correlation (Supplementary Table S6) and are also
enriched in 91 Factorbook and JASPAR TF binding sequence
motifs with minimum 10 probes per motif. Similarly, 31 TF
binding motifs having a statistically relevant association with
known TF genes’ expression were observed. Our analyses suggest
that SOX7/10, FOXN3, FOXM1, RXRA, RORA, STAT3, TLX1,
TEAD2, MAF, and HNF4A genes are the top potential upstream
master regulators of distal enhancers (Supplementary Table S6).

Effect of Promoter Region Methylation on Gene
Expression
Promoter regulatory analysis showed that a total of 10,120
hypermethylated probes within 2 Kb from TSS, had statistically
significant correlations with corresponding nearest gene
expression. A total of 91 Factorbook and JASPAR TF binding
sequence motifs were enriched with a minimum 10 significantly
hypermethylated probes for each TF. We found 20 TF binding
motifs whose DNA methylation has significantly associated
with the corresponding TF gene’s expression (Supplementary
Table S6). For hypomethylation, a total of 6,489 probe-gene
pairs showed a statistically significant correlation. These
probes were enriched against 91 Factorbook and JASPAR TF
binding sequence motifs with at least 10 statistically significant
hypomethylated probes in each TF motif region. Finally, a
total of 21 TF-binding motifs showed a strong association with
known TF gene expression regulators. CREB3L3, ETS2, ET4, and
TEAD2 genes are the top potential upstream regulators in CCA
(Supplementary Table S6).

Survival Analysis
Fisher’s exact test and univariate Cox-regression survival analysis
suggest that age, race, gender, tumor stage, tumor grade,
neoplasm stage, and family history of cancer have no role in the
overall survival of CCA patients (Supplementary Figure S11).
Our survival analysis of promoter methylation reveals that a total
of 10 differentially hypermethylated and 5 hypomethylated CpGs
are linked to CCA patients’ overall survival (Supplementary
Table S7). In the case of gene expression, we observed that a total
of 72 DEGs and two DE-miRNAs are also associated with CCA
patients’ survival (Supplementary Table S7). We found that high
and low expression groups have a significant difference in the
overall survival with p-value < 0.05. Even at a rigorous p-value
cutoff of 0.01, we observed twelve DEG, one DE-miRNA, and two
hypermethylated CpG sites associated with survival, while none
of the hypomethylated CpGs qualified by this criterion. Overall,
analysis of the survival-associated genes, miRNA and promoter

methylations resulted in the identification of potential prognostic
biomarkers of CCA.

Real-Time qPCR Based Genes
Expression Validation in CCA Patients
Based on our bioinformatics analysis (Supplementary Table S7),
we expanded our studies to validate the gene expression of four
gene targets, MDK, HNF1B, PACS1, and GLUD1. All of these
genes showed expression patterns similar to those observed in
our bioinformatics analyses. There were significant differences in
the expression of all four genes in CCAs as compared to adjacent
normal (p-value 0.0009, 0.015, 0.001, and 0.03, respectively)
(Figure 10). These results suggest that the expression of these
genes would be useful in evaluating the risk for CCA.

DISCUSSION

Alterations in DNA methylation and miRNA expression are
commonplace in a variety of tumors and these changes have been
perceived as causative factors of oncogenesis in several cancer
types (Merlo et al., 1995; Chu et al., 2016; Ramachandran et al.,
2016). Such alterations significantly affect gene expression and
this information has been effectively used to identify biomarkers
that could discriminate the cancerous cells from normal cells
(deVos et al., 2009; Oh et al., 2013; Li et al., 2014; Wang M.
et al., 2015; Chu et al., 2016; Cheerla and Gevaert, 2017). In this
study, we have conducted an exhaustive analysis of global DNA
methylation, mRNA and miRNA gene expression, and made
correlations among all data types followed by network, pathway
and survival analyses. To our knowledge, this study is the first
comprehensive and integrative analysis of CCA data from TCGA.

As shown in Figure 1, the DNA methylation and
mRNA/miRNA expression patterns observed in the normal
versus tumor samples are sufficient to discriminate the two
classes in PCA analysis (Figure 1). This suggests that the
classification of the tumor and normal samples using multiple
molecular data profiles could help identify accurate and reliable
biomarkers in CCA. The global methylation pattern of CCA
suggests that dm-CpGs were dispersed across the genome.
We found that Engrailed Homeobox 1 (EN1) gene had the
highest number of dm-CpGs (Kramer et al., 2014), where
most of them were hypermethylated in the gene body and
none in the promoter region. Engrailed 1 (EN1), is exclusively
overexpressed in extremely aggressive tumors (Beltran et al.,
2014), we did observe overexpression of EN1 gene in our data.
This is consistent with earlier reports that gene body methylation
is positively associated with expression (Yang X. et al., 2014). Due
to the extensive methylation of gene body CpGs, EN1 could be a
key player in CCA.

Genomic sub-region that harbors HOXA3/A9/A10,
HIABDH, LOC441204, and miR196b is hypomethylated,
and showed overexpression of all of these genes in CCA
except HIABDH (p-value > 0.05, corroborating the fact
that DNA hypomethylation in general positively affects
corresponding gene expression. DMRs are distributed across
the genome (Supplementary Table S2), and they overlapped
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with known super-enhancer regions (Khan and Zhang, 2016)
and ENCODE DNase hypersensitive site clusters (Consortium,
2012). Hence, these overlapping regions of DMRs (with the
DNase hypersensitive, VISTA and super-enhancer regions) could
serve as transcriptional hotspots in CCA.

Differential expression analysis of transcriptome data using
several orthogonal tools (DESeq2, edgeR or limma) showed
a very consistent list of genes. Pathway analysis suggested
the enrichment of several important cancer-related pathways.
Clustering analysis showed separate clusters for the tumor and
normal samples (Figure 4B). Overall, our results demonstrate
that CCA tissues display a unique gene expression profile
compared to their adjacent normal tissues.

Previous CCA gene expression analyses suggest the
overexpression of S100A6, platelet-derived growth factor-
alpha (PDGFA), neutral proliferation differentiation and control
protein 1 (NPDC1), while the cytochrome P450, succinate
dehydrogenase (SDHA), isocitrate dehydrogenase 2 (IDH2) and
glutathione S-transferase-alpha4 (GSTA4) was downregulated
(Wu et al., 2011). We also observed similar expression trends
for these genes (Supplementary Table S3). Similarly, genes that
encode proteins associated with cell growth and metastasis,
e.g., mucin 13 (MUC13), carcinoembryonic antigen-related
cell adhesion molecule 5 (CEACAM5), FXDY3, epithelial cell

adhesion molecule (EPCAM), transmembrane channel-like 5
(TMC5), and ets homolog factor (ETH) are overexpressed, which
corroborate previous reports in CCA (Subrungruanga et al.,
2013). Cell division, DNA replication related pathways, Hippo
signaling pathway were highly represented with upregulated
genes, while amino acid metabolism, glucose metabolism,
drug metabolism, autophagy pathways were represented by
downregulated genes. Similar trends were observed in CCA (Wu
et al., 2011), and more specifically, on the importance of Hippo
signaling (Rizvi et al., 2016) (Figure 5) and amino acid metabolic
(Murakami et al., 2015) pathways in CCA were reported. Overall,
our results suggest that differential gene expression impacts cell
division/differentiation, amino acid metabolism and autophagy
pathways in cholangiocarcinoma (Supplementary Table S4).

From our analysis of miRNA expression data, we observed
a number of differentially expressed miRNAs that include six
previously identified potential biomarkers of CCA (Wang M.
et al., 2015. The pattern of expression of certain of these
miRNAs matches with several known CCA related miRNA (Chen
et al., 2009; Kawahigashi et al., 2009; Karakatsanis et al., 2013;
Wang S. et al., 2015; Zhang et al., 2015). It’s been known
that miR-21 and miR-200b, both oncogenes (Meng et al., 2006;
Wang L. J. et al., 2015), are overexpressed in CCA, while
miR-122 (Wang L. J. et al., 2015), which is a tumor suppressor is

FIGURE 7 | Survival plots of differentially methylated CpGs in CCA patients. (A) Boxplot for cg27362525 tumor and normal samples with t-test p-value. (B) ROC
plot for cg27362525 for logistic regression classifier model. (C) Survival plot for high vs. low methylation group for cg27362525. (D) Boxplot for cg26597242 tumor
and normal samples with t-test p-value. (E) ROC plot for cg27362525 for logistic regression classifier model. (F) Survival plot for high vs. low methylation group for
cg27362525.
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downregulated. Another tumor suppressor, miR-1258, which is
recently identified as a prognostic biomarker for several other
cancers (Zhang et al., 2011; Hu et al., 2016; Shi et al., 2017) is
also downregulated in CCA. Classification AUC of 1 of miR-
122 and miR-1258 suggest their use as potential diagnostic
biomarkers for CCA. Other known miRNAs, miR-148a and
miR-152, which target DNA methyltransferases 1 (DNMT1) are
also downregulated in our analysis corroborating similar reports
(Braconi et al., 2010). We also observed the overexpression
of miR-196b in CCA and a similar trend was observed in
gastric (Shao et al., 2018) and head and neck cancers (Alvarez-
Teijeiro et al., 2017). Overall, the differential expression profiles
of miRNAs in CCA were distinct enough to separate normal
and tumor samples using clustering analysis solely based on the
miRNA expression data (Figure 4C).

Correlation among gene expression and DNA methylation
of CpG sites within 100 kb of TSS showed that negatively
correlated CpG sites (hypermethylated CpGs which lowered
gene expression) are primarily located adjacent to TSS in the
upstream region, while positively correlated ones are located
in the downstream region to the TSS (Figure 6A). This
result substantiates the key regulatory role of promoter DNA
methylation on gene expression compared to non-promoter
regions. Regarding different gene sub-regions, around 56%
of the negative correlations were identified in the promoter
regions (i.e., TSS200, TSS1500, and 5′UTR), and around 61%

of the positive correlations were found in the non-promoter
regions (Figure 6B). This supports that hypermethylation at
the upstream regions of the gene predominantly results in
a vital alternative biological phenomenon for gene silencing.
Similar observations were also found in other cancers, including
pancreatic (Mishra and Guda, 2017; Mishra et al., 2019), chronic
lymphocytic leukemia (Kulis et al., 2012) and breast cancers
(Fleischer et al., 2014).

The previous reports also showed that overexpression of
several TFs, including FOXC1, was associated with CCA
carcinogenesis (Li et al., 2013). FOXC1 is also an important
biomarker of cancer which plays a central role in cell
proliferation, cell differentiation, cell migration, survival and
death and metastasis (Ray et al., 2010; Han et al., 2017). We
also observed hypomethylation of FOXC1 TF binding motif and
overexpression of FOXC1 in our study, which may have a key role
in CCA. TEAD2 and TEAD4 are members of the TEAD family
of transcription factors, both of which target oncogene, YAP1,
which is an important protein of Hippo signaling (Diepenbruck
et al., 2014; Tang et al., 2018). TEAD4 is already a known
biomarker for breast cancer, colorectal cancer and prostate
cancer (Zhou et al., 2016); its TF binding motif regions are
hypomethylated in CCA.

Pathway analysis of the GMRC genes revealed that their
functions are associated with bile secretion, ABC transporters,
and complement and coagulation cascades. IPA canonical

FIGURE 8 | Survival plot for differentially expressed genes that correlate with CCA patients’ survival. (A) MDK gene expression boxplot for tumor and normal
samples with t-test p-value. (B) ROC plot for MDK gene for logistic regression classifier model. (C) Kaplan–Meier plot for MDK-high and MDK-low methylation
patient cohorts. (D) DEPDC1 gene expression boxplot for tumor and normal samples with t-test p-value. (E) ROC plot for the DEPDC1 gene for the logistic
regression classifier model. (F) Kaplan–Meier plot for DEPDC1-high and DEPDC1-low expressing patient cohorts.
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pathway analysis of the top 5 subnetworks of GMRCs and
their first interactive neighbor observed several pathways
related to cancer such as cell cycle and cell division, immune
and inflammatory response, amino acid metabolism, etc.
(Supplementary Table S4). These results suggest that GMRCs
play a very important role in CCA progression.

Survival analysis of promoter methylation identified ten
hypermethylated and five hypomethylated CpGs that are strongly
associated with the survival of CCA patients. The majority of
them are either in CpG-islands or close to CpG-island (shore)
(Supplementary Table S7). Survival associated hypermethylated
CpGs are mapped mostly against the HOX family (HOXA9,
HOXA10, and HOXB8), GABR1, and GALNT13 genes, while
CpGs in CDK18, DDR1, and SFN genes were hypomethylated.
GRBRA1 encodes a gamma-aminobutyric acid (GABA) receptor
and promoter hypermethylation of this gene was already
reported as a biomarker in colorectal cancer (Lee et al., 2012).
As shown in Figure 7, hypermethylated CpG sites in the
promoter and TSS regions of GABRA1 and UPS6 (Ubiquitin
Specific Peptidase 6), respectively, showed very high AUC
values, hence could serve as strong biomarkers of CCA. The
effect of promoter methylation of the HOX family of genes in
patients’ survival has not been reported previously, but promoter
hypermethylation of HOXA9 in non-smokers is associated with

recurrence-free survival (RFS) in non-small cell lung cancer
(Hwang et al., 2015). Our analysis reveals the role of HOXA10
promoter hypermethylation in CCA patients’ survival. Recently,
Shao et al. reported the critical role of HOXA10 promoter
methylation in gastric cancer (Shao et al., 2018). We also observed
hypermethylation of miR-196b and hypomethylation of lncRNA
MIR100HG promoter CpG, which are both associated with
CCA patients’ survival. It needs to be tested how promoter
methylation of HOX family genes and other genes affect CCA
patient survival.

Further survival analysis of DEGs identified several potential
biomarker genes for CCA including MLL11, MDK, DEPDC1,
SLC35E4, PLXDC1, PACS1, PIWIL4, GLUD1, all have AUC
∼1 with very low p-value (Supplementary Table S6). Real-time
qPCR analysis also validated the significantly altered expression
of MDK, PACS1, and GLUD1 in CCA (Figure 10), which
supports their potential use as CCA biomarkers. Phosphofurin
acidic cluster sorting protein 1 (PACS1) is a tumor-suppressor
that regulates intrinsic (mitochondrial) apoptosis with its partner
ADA3. In a recent study, Brasacchio et al. (2018) reported that
patients with lowered expression of PACS1 had significantly
low overall survival in gastric cancer. In our analysis, we also
observed low expression of PACS1 is associated with low survival
in CCA. Similarly, Fucosyltransferase IV (FUT4), associated with

FIGURE 9 | Survival plot of the survival associated differentially expressed miRNAs. (A) Boxplot for miR-22 expression in tumor and normal samples with t-test
p-value. (B) ROC plot for miR-22 miRNA for the logistic regression classifier model. (C) Survival plot for high vs. low methylation group for miR-22 miRNA.
(D) Boxplot for miR-551b expression in tumor and normal samples with t-test p-value. (E) ROC plot for miR-551b miRNA for the logistic regression classifier model.
(F) Kaplan–Meier plot for miR-551b miRNA high vs. low expressing patient cohorts.
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FIGURE 10 | Box plots showing real-time quantitative PCR (qPCR) gene expression in CCA versus adjacent normal tissues with t-test p-values for the following
genes. (A) MDK, (B) HNF1B, (C) PACS1, and (D) GLUD1.

the proliferation and metastasis, is proposed as an effective
biomarker for breast cancer diagnosis (Yan et al., 2015). We
also observed overexpression of FUT4 in CCA (AUC = 0.996);
however, patients with lower expression showed lower overall
survival (p-value 8.7e-04).

Midkine (MDK) is a heparin-binding growth factor that
is overexpressed in various types of human cancers, but its
clinical significance is still unknown in CCA. We also observed
the overexpression of the MDK genes in the real-time qPCR
analysis of CCA patients. It’s been reported that low MDK
expressing patient cohorts have better survival and a similar
trend was observed in our analysis (Figure 8). PIWIL4 belongs
to the Argonaute family of proteins, which are involved in the
development of organisms and maintenance of germline stem
cells and that they are ectopically expressed in multiple forms of
cancer (Hock and Meister, 2008). Wang et al. (2016) reported
overexpression of PIWIL4 in breast cancer with a lowered
overall patient survival. We observed a similar trend for PIWIL4
expression in CCA. DEP domain containing 1 (DEPDC1) plays a
crucial role in tumor growth and metastasis (Huang et al., 2017);
a previous study found that the shRNA knockdown of DEPDC1
in glioma cell lines and in mice have better survival (Kikuchi et al.,
2017). Patients with high DEPDC1 expression have low survival
in CCA (Figure 8).

On the other hand, we observed that patients showing higher
expression of ID2 have better survival in CCA, which was also
observed in acute myeloid leukemia (AML) (Ghisi et al., 2016).
Similarly, expression of MLLT3 and MLLT11 genes that are well
studied in leukemia are also found to be strongly associated with
the survival of CCA patients. Several reports from other cancers
showed that patients with high GLUD1, ANXA4, and PLXDC1
expression have low overall survival, but our findings in CCA
are contrasting. On similar lines, patients having high CD24
expression were shown to have low metastasis-free survival in
extrahepatic CCA (Kim et al., 2013), but we observed an opposite
trend in our findings (Supplementary Table S7).

MicroRNAs are known to play a vital role in cancer
progression, metastasis and survival of the patients. Survival
analysis of differentially expressed miRNAs revealed that miR-
22 and miR-551b have a strong correlation with the survival of
CCA patients. A known tumor suppressor, miR-22 (Yang C. et al.,
2014) is downregulated and its high expression is correlated with
poor survival of patients in CCA (Figure 9), a similar trend was
observed in other types of cancers (Zuo et al., 2015; Zou et al.,
2017). Regarding miR-551b, it is downregulated in most of the
CCA patients, high expression is associated with better prognosis
and a similar trend was observed in gastric cancer (Song et al.,
2017) (Figure 9).
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CONCLUSION

DNA methylation analysis of cholangiocarcinoma data shows
significant changes in tumor methylomes compared to
normal pancreatic tissues. To our understanding, this study
represents the first genome-wide DNA methylation analysis
of TCGA cholangiocarcinoma data. Clustering analyses based
on methylation, gene or miRNA expression data show distinct
clusters of the tumor and normal samples. Differential
methylation of several known CCA biomarkers was observed in
our study, confirming previous observations. DNA methylation
region analysis reveals that several genomic regions have
very high hypermethylation/hypomethylation frequencies, and
expression of genes encoded from these genomic loci correlated
accordingly. Pathway enrichment analysis of differentially
methylated and differentially expressed genes shows that cell
division, DNA replication-related pathways, and Hippo signaling
pathway are the top upregulated pathways, while amino
acid metabolism, glucose metabolism, drug metabolism, and
autophagy pathways are the top downregulated. Our current
analysis showed that Hippo signaling pathway was affected by
promoter DNA methylation, gene expression, and GMRCs. This
result has further confirmed the importance of hippo signaling in
cholangiocarcinoma.

Differential expression of several known marker genes and
miRNAs and differential methylation of promoter regions was
observed in the current analysis. Real-time qPCR analysis further
confirmed the change in gene expression of several genes in
CCA. Most of the survival associated promoter CpGs are in
the CpG-islands or proximal to CpG-islands. Survival associated
promoter CpGs are mapped against genes that are either reported
as a biomarker in other cancers or otherwise associated with
cancers. High AUC and low survival p-value of these CpGs
suggest that they can be further explored as potential biomarkers
in CCA. Survival analysis of differentially expressed genes and
miRNAs also identified several possible biomarkers for CCA,
and a majority of these biomarkers are already identified in
another type of cancers but none for CCA. Our analysis suggests
that expression of DEPDC1, FUT4, MDK, PACS1, PIWIL4,
miR-22, miR-551b, and DNA methylation of cg27362525 and
cg26597242 could be explored further as potential biomarkers of
cholangiocarcinoma.
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