
METHODS
published: 27 October 2020

doi: 10.3389/fgene.2020.538492

Frontiers in Genetics | www.frontiersin.org 1 October 2020 | Volume 11 | Article 538492

Edited by:

Zhongyu Wei,

Fudan University, China

Reviewed by:

Teng Zhixia,

Northeast Forestry University, China

Zhen Tian,

Zhengzhou University, China

*Correspondence:

Yadong Wang

ydwang@hit.edu.cn

Specialty section:

This article was submitted to

Computational Genomics,

a section of the journal

Frontiers in Genetics

Received: 27 February 2020

Accepted: 21 September 2020

Published: 27 October 2020

Citation:

Wang Z, Liu Y and Wang Y (2020)

MGMIN: A Normalization Method for

Correcting Probe Design Bias in

Illumina Infinium

HumanMethylation450 BeadChips.

Front. Genet. 11:538492.

doi: 10.3389/fgene.2020.538492

MGMIN: A Normalization Method for
Correcting Probe Design Bias in
Illumina Infinium
HumanMethylation450 BeadChips
Zhenxing Wang, Yongzhuang Liu and Yadong Wang*

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

The Illumina Infinium HumanMethylation450 Beadchips have been widely utilized in

epigenome-wide association studies (EWAS). However, the existing two types of probes

(type I and type II), with the distribution of measurements of probes and dynamic

range different, may bias downstream analyses. Here, we propose a method, MGMIN

(M-values Gaussian-MIxture Normalization), to correct the probe designs based on

M-values of DNA methylation. Our strategy includes fitting Gaussian mixture distributions

to type I and type II probes separately, a transformation of M-values into quantiles

and finally a dilation transformation based on M-values of DNA methylation to maintain

the continuity of the data. Our method is validated on several public datasets on

reducing probe design bias, reducing the technical variation and improving the ability to

find biologically differential methylation signals. The results show that MGMIN achieves

competitive performances compared to BMIQ which is a well-known normalization

method on β-values of DNA methylation.
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1. INTRODUCTION

DNAmethylation, as a well-known epigenetic marker, plays an essential role in biological processes
and complex genetic diseases like cancer and diabetes (Irizarry et al., 2009; Paul et al., 2016).
The Illumina Infinium HumanMethylation450 (450K) BeadChip (Bibikova et al., 2011) provides
measurements of the level of methylation at over 480K CpG sites and has been widely used in
epigenome-wide association studies (EWAS) and large-scale projects, such as The Cancer Genome
Atlas (TCGA). The probes in the Infinium 450K BeadChip come in two different designs, type I
(n = 135,501) and type II (n = 350,076), in order to increase the genomic coverage of the assay.
However, the methylation values (β-values or M-values) derived from the two types of designs
exhibit different distributions. Particularly, the type I probes possess a larger range of measurement
than the type II probes (Dedeurwaerder et al., 2011). The differences between the two types of probe
designs may impact the downstream analyses.

Several approaches have been published to correct the probe design bias. A peak-based
correction (PBC) method normalizes type II probes to render them comparable with type I probes
(Dedeurwaerder et al., 2011). In fact, PBC gets poor performance when the density distribution of
methylation values does not show well-defined peaks. SQN (Touleimat and Tost, 2012) and SWAN
(Maksimovic et al., 2012) select subset of probes with similar biological category to adjust the probe
design bias. Beta MIxture Quantile dilation (BMIQ) is a model-based normalization approach to
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correct β-values of type II probes according to the beta
distribution of β-values of type I probes, which appears to
outperform PBC, SQN, and SWAN (Teschendorff et al., 2012).

In this work, we propose a method to correct the probe design
bias based on the Gaussian Mixture Model (GMM) of the M-
values of DNA methylation, which is called M-value Gaussian-
MIxture Normalization (MGMIN). The method includes three
steps: (i) fit Gaussian-mixture distributions to type I and type
II probes separately, (ii) utilize a transformation of M-values
into quantiles, (iii) perform a dilation transformation based on
M-values to maintain the continuity of the data. We evaluate
MGMIN using several independent datasets in terms of reducing
the replicate technical variance and correcting the type II bias. By
comparison with BMIQ, the results show that MGMIN improves
the overall performance of normalization.

2. MATERIALS AND METHODS

2.1. Measure DNA Methylation With
M-value
The β-value of DNA methylation for each probe is defined by
the ratio of the methylated intensity (M) and the overall intensity
(sum of methylated intensity and unmethylated intensity:
M+ U):

β − value =
M

M + U + α

where α is a constant offset (by default, α = 100) to regularize
the β-value when the overall intensity is low. The β-value falls
between 0 and 1 which follows a Beta distribution naturally. A
β-value of 0 indicates the CpG site of the measured sample is
fully unmethylated and a value of 1 indicates that the CpG site is
completely methylated.

The M-value is calculated by the log2 ratio of the methylated
intensity (M) vs. the unmethylated intensity (U):

M − value = log2(
M + α

U + α
)

where α here is also an offset (by default, α = 1) to counteract the
big changes caused by small intensity estimation errors. An M-
value close to zero indicates that the measured CpG site is about
hemimethylated. A positive M-value suggests that more copies
of the measured CpG site are methylated than unmethylated
and a negative M-value means more copies of the CpG site are
unmethylated. The M-value has been widely used in two-color
expression microarray analysis (Du et al., 2010).

Due to more than 95% CpG sites have intensities more than
1,000 in Illumina methylation data, the α in β-value andM-value
has an insignificant effect on observed results. So the relationship
between β-value andM-value is shown as (with α ignored):

β =
2M

2M + 1
;M = log2(

β

1− β
)

According to the conclusions in Du et al. (2010), the M-value is
more statistically valid in an analysis bymodeling the distribution

TABLE 1 | Comparison of MGMIN and BMIQ on detecting the differentially

methylated probes (DMPs) associated with HPV status was performed by

counting the number of DMPs (Dataset 2), the number of validated differentially

methylated probes (nTPs) (Dataset 3: GSE38266 and Dataset 4: GSE95036) and

corresponding estimates for the positive predictive value (PPV = nTP/nDMPs).

Metric Raw BMIQ MGMIN

nDMP 51 (51a) 239 (252a) 220

nTP (GSE38266) 16 (13a) 55 (51a) 37

PPV (GSE38266) 0.31 (0.25a) 0.23 (0.20a) 0.17

nTP (GSE95036) 3 13 27

PPV (GSE95036) 0.06 0.05 0.12

aValues reported in Teschendorff et al. (2012).

ofM-values because of it’s homoscedastic. So we choose to adjust
the M-values of type II probes into the distribution property of
type I probes to correct the probe design bias.

2.2. MGMIN: M-value Gaussian-MIxture
Normalization
Gaussian Mixture Model (GMM) has been widely applied as
a clustering method in analyzing gene-expression microarray
data (Yeung et al., 2001; Pan et al., 2002) and used to detect
differential gene expression (McLachlan et al., 2006). In this
paper, we apply GMM to distinguish different methylation
states of CpG sites for further correction. The M-values of
a single 450K microarray can be viewed as a finite Gaussian
mixture model of several methylation states (hypomethylated-
U, hemimethylated-H, hypermethylated-F). The probability
density function of the M-value for a single CpG site (Mi) is
defined as:

p(Mi; θ) =

K∑

k=1

πkN(Mi|µk, σ
2
k ) (1)

where p(Mi, θ) represents the model density for Mi with
unknown parameter vector θ , K is the number of different
methylation states (components),N(Mi|µk, σ

2
k
) is the probability

density function of the kth Gaussian component, and πk is the
mixing proportions which satisfy the constraint that

∑K
k=1 πk =

1 and 0 ≤ πk ≤ 1. The parameter vector θ consists of the mixing
proportions πk, the mean valueµk and the standard deviation σk,
which can be estimated by the EM algorithm.

Next, we describe MGMIN in detail. First, M-values of type
I and type II probes are modeled by GMM separately. Let µS

T
and σ S

T denote the mean value and standard deviation where
S ∈ (U,H, F) and T ∈ (I, II). KI and KII are the numbers of
components for type I and type II probes, which are both set as 3
by default.

Second, each probe is assigned to hypomethylated (UT),
hemimethylated (HT), or hypermethylated (FT) states by using
the maximum probability criterion. Let UL

T (UR
T ) denote the UT

probes with M-values smaller (larger) than µU
T , and let FLT (FRT)

represent the FT probes with M-values smaller (larger) than
µF
T where T ∈ (I, II). Then, we calculate the probabilities of
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FIGURE 1 | The density curves of β-values for the three replicates in Dataset 1. The left panel is for the case of raw data with no normalization, middle panel for BMIQ

and right panel for MGMIN.

FIGURE 2 | Boxplots of the standard deviations of β-values for the three replicates in Dataset 1, for raw β-values (RAW), normalized β-values by BMIQ (BMIQ), and

normalized β-values by MGMIN (MGMIN). RAW-1 represents the type I of raw values and RAW-2 represents the type II of raw values, and so on.

UL
II probes, i.e.,

p = P(MUL
II
|µU

II , (σ
U
II )

2) (2)

where P represents the cumulative distribution function of the
Gaussian component. These probabilities are transformed back
to quantiles (M-value) by using the parameters µU

I and σU
I of
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FIGURE 3 | Barplots of the average absolute difference in β-values of type II probes between two samples in each of the three pairs of the three replicates in Dataset 1.

type I probes, i.e.,

q = P−1(p|µU
I , (σ

U
I )2) (3)

where P−1 returns the value of the inverse cumulative density
function given the probability p and q is the normalizedM-values
for UL

II . The similar operation is performed on FRII probes.
Then, we merge the UR

II , HII , and FLII probes into one set G on
which a conformal (shift + dilation) transformation is performed.
Some parameters are identified as minG = min{MG}, maxG =

max{MG} and 1M
G = maxG − minG. Similarly, the minimum

value of FRII and the maximum value ofUL
II are also identified, i.e.,

minF = min{FRII} and maxU = max{UL
II}. Two distance values

can be calculated as

1UG = minG−maxU

1GF = minF −maxG

The new normalized maximum and minimum values of G-
probes are expected to satisfy the constraint that

maxG′ = min{FRII
′} − 1GF

minG′ = max{UL
II
′} + 1UG

where FRII
′ and UL

II
′ are new normalized values for FRII and UL

II ,
respectively. So the new normalized range value of setG is1M

G
′ =

maxG′ − minG′. The normalized M-values of set G, MGII
′, is

calculated by

MGII
′ = minG′ + df (MGII −minG) (4)

where df = 1M
G
′/1M

G is the dilation factor. So, the normalized

M-values for type II probes consist of q for UL
II , MGII

′, and q for
FRII .

MII
′ = (qUL

II
,MGII

′, qFRII
)

Lastly, the normalizedM-values are transformed to β-values.
There are some important points to notice: (i) the initial

values for µ and σ in EM algorithm are set as (−4,0,4)
and (1,1,1) and small perturbations to the initial µ and σ

will not affect the final model because MGMIN captures the
natural property of the M-value of DNA methylation, (ii) KI

will be changed to 4 automatically when µF
I − σ F

I is smaller
than µF

II − σ F
II in order to ensure that µF

I can always be
larger than µF

II and avoid the presence of an unexpected
peak in transformed M-values of hypermethylated type II
probes, (iii) if KI = 4, the FI will be the set of probes
belonging to the component with the largest µ, while the
UI contains the probes belonging to the component with
the smallest µ and the other two components are assigned
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FIGURE 4 | The density curves of β-values for type I probes, type II probes and normalized type II probes (type II-MGMIN) for sample GSM815138 from GEO29290.

to HI , (iv) no thresholds need to be set by default or
estimated by manual to distinguish the three different states of
DNA methylation.

2.3. Datasets
We selected several public 450K datasets as following:

Dataset 1: GSE29290 downloaded from GEO
considered in Dedeurwaerder et al. (2011). We used
the three replicates (GSM15136, GSM15137 and
GSM15138) from the HCT116WT cell-line and matched
bisulfite pyrosequencing (BPS) date for nine type
II probes of sample GSM815138 (r3) (Table 1 in
Dedeurwaerder et al., 2011) to evaluate the performance of
different methods.

Dataset 2: GSE38268 downloaded from GEO considered in
Lechner et al. (2013) which consists of 6 fresh frozen HNC
samples. We selected 5 samples as same as (Teschendorff et al.,
2012), of which 2 were HPV+ and 3 HPV− (GSM937820
to GSM937824).

Dataset 3: GSE38266 downloaded from GEO considered in
Lechner et al. (2013) which contains 21 FFPE HPV+ HNSCC
samples and 21 FFPE HPV− HNSCC samples. Note that the
entire quality of the dataset GSE38266 is not high.

Dataset 4: GSE95036 downloaded from GEO considered in
Degli Esposti et al. (2017) which contains 6 HPV+ HNC samples
and 5 HPV−HNC samples.

3. RESULTS

3.1. MGMIN Needs No Default Initial Values
of Parameters
Similar to themixturemodel of BMIQ,MGMIN applies Gaussian
mixture models for M-values instead of beta-mixture models
for β-values. MGMIN also uses quantile information to correct
the M-values of the type II probes into a distribution which
is comparable with that of type I probes. MGMIN complies
the inherent Gaussian mixture distributions for M-values of
type I and type II probes to avoid setting any parameters
manually, which is different from the default breakpoints in
BMIQ. Thus, MGMIN needs less manual intervention than
BMIQ. However, MGMIN is slightly inferior to BMIQ on some
dataset (Table 1) due to the entire low quality of the dataset. Note
that the PPV of BMIQ on Dataset 3 is lower than that of no
normalization (RAW).

3.2. MGMIN Reduces Technical Variation
MGMIN is applied to Dataset 1 to identify the ability to
improve reproducibility. The standard deviation (SD) for each
probe across the three replicates was computed using no
normalization (RAW), BMIQ, and MGMIN separately. As
can be seen in Figure 1, both MGMIN and BMIQ almost
made the density curves for the three replicates coincide with
each other and reduced the technical variation significantly
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FIGURE 5 | Barplots for the maximum (MAX), mean (MEAN) and root mean square error (RMSE) of the absolute deviation from the matched BPS values of nine type II

probes for GSM815138 (r3) in Dataset 1 considered in Dedeurwaerder et al. (2011) using no normalization (RAW), BMIQ, and MGMIN, respectively.

compared to no normalization. Compared to BMIQ, the
standard deviation for type II probes adjusted by MGMIN is
smaller (Figure 2). MGMIN also provided significant reduction
of average absolute difference in β-values of type II probes
between two samples in each of the three pairs of the three
replicates (Figure 3).

3.3. MGMIN Reduces Probe Design Bias
MGMIN reduces the probe design bias via correcting the M-
values of the type II probes such that the distribution curves
for the M-values of the type I and type II probes show similar
dynamic ranges and peaks (Figure 4). In Dedeurwaerder et al.
(2011), the β-values for nine probes of type II by bisulfite
pyrosequencing technique for sample GSM815138 (r3) were
provided, which can be used as a gold-standard to evaluate
the performance of different correction methods. Hence, we
compared the normalized results of the nine type II probes in
450K arrays by MGMIN and BMIQ. As shown in Figure 5,
although MGMIN performed slightly worse than BMIQ at
the maximum value of the absolute deviation from BPS data,
MGMIN significantly reduced the type II bias than BMIQ
and raw data in terms of mean and root mean square
error (RMSE) of the absolute deviation from the matched
BPS values.

3.4. MGMIN Robustly Finds Informative
Differential Methylation Probes Associated
With HPV Status
The goal of a bias correction approach is to reduce the technical
variation and identify the biological informative signals at the
same time. We used a strategy similar to Teschendorff et al.
(2012) to compare the result between MGMIN and BMIQ in
identifying the differential methylation probes (DMPs) associated
with HPV status. First, Dataset 2 consisting of two HPV+
and three HPV− fresh frozen HNC samples were used as the
training set to obtain the DMPs associated with HPV status by
the limma method (Smyth, 2005) and an FDR threshold 0.35
which was as same as (Teschendorff et al., 2012). Both Dataset
3 and Dataset 4 described in the methods section were used
as test set. We reanalyzed Dataset 2 and got similar numbers
of DMPs to those reported in Teschendorff et al. (2012) with
no normalization method (Raw) or BMIQ method (shown in
Table 1). The results in Table 1 shows that the positive predictive
value (PPV) of MGMIN is slightly less than BMIQ in terms of
GSE38266 (Dataset 3) whereas MGMIN outperforms BMIQ in
GSE95036 (Dataset 4). The reason for MGMIN slightly inferior
to BMIQ in Dataset 3 may be the entire low quality of the
dataset (see Figure 6) which is that the ratio of samples passing
filters is <0.9 (r = 0.88) under the least restrictive condition.
Let τp represent the p-value threshold for bad probes and τr
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FIGURE 6 | Barplots of the ratio of good samples in GSE38266 under different quality control options (τp&τr ).

represent the threshold for the ratio of bad probes in a sample.
Themaximum value of τr is set to 0.3 here in our opinion because
a sample with more than 30% bad probes is vulnerable. We can
get the same test dataset from GSE38266 with the one described
in Teschendorff et al. (2012) which consists of 18 HPV+ and 14
HPV− samples under the following conditions: (i) τp = 1e − 4
or 1e − 3 and τr = 0.2 or 0.25, (ii) τp = 1e − 2 and τr = 0.1
or 0.15. Overall, MGMIN identified more true positive features
than BMIQ.

4. DISCUSSIONS

In this paper, we have proposed a method called MGMIN for
correcting the probe design bias of type II probes in Illumina
Infinium 450K BeadChips, which can reduce the technical
variation and improve the ability to find biologically differential
methylation signals. We have shown that MGMIN outperforms
BMIQ on multiple evaluation datasets in correcting the type II
design bias and improving the data quality.

Similar to BMIQ, MGMIN uses quantile information to
correct the M-values of type II probes while leaving the M-
values of type I probes unchanged. The three-state beta-mixture
distribution model in BMIQ sets two default breakpoints (0.2,
0.75) to divide the β-values into three classes: hypomethylated,
hemimethylated, and hypermethylated, which works well for
most cases. However, the result curves of BMIQ show obviously
inconsistent in some samples with high heterogeneity.We set 3 or
4 classes for probes depending on the result of µF

T −σ F
T to ensure

that the fitted hypermethylated component of type II probes can

be located in the left of the hypermethylated component of type I
probes, which can partly eliminate the effects of the heterogeneity
of samples.

Based on the results of Dataset 3, we think the high
quality of dataset is the base of normalization, in other
words, there is no meaning to correct the samples with
low quality. It should be pointed out that the parameter
estimation of MGMIN is slower than that of BMIQ (about
1.5 times), which can be relieved by reducing the number
of iterations.

MGMIN can be used in the 450K methylation data
preprocessing with other methods to normalize the values of the
two type probes and improve the data quality.
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