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The prediction of breeding values and phenotypes is of central importance for both

livestock and crop breeding. In this study, we analyze the use of artificial neural

networks (ANN) and, in particular, local convolutional neural networks (LCNN) for

genomic prediction, as a region-specific filter corresponds much better with our prior

genetic knowledge on the genetic architecture of traits than traditional convolutional

neural networks. Model performances are evaluated on a simulated maize data panel

(n = 10,000; p = 34,595) and real Arabidopsis data (n = 2,039; p = 180,000) for a

variety of traits based on their predictive ability. The baseline LCNN, containing one local

convolutional layer (kernel size: 10) and two fully connected layers with 64 nodes each,

is outperforming commonly proposed ANNs (multi layer perceptrons and convolutional

neural networks) for basically all considered traits. For traits with high heritability and

large training population as present in the simulated data, LCNN are even outperforming

state-of-the-art methods like genomic best linear unbiased prediction (GBLUP), Bayesian

models and extended GBLUP, indicated by an increase in predictive ability of up to 24%.

However, for small training populations, these state-of-the-art methods outperform all

considered ANNs. Nevertheless, the LCNN still outperforms all other considered ANNs

by around 10%. Minor improvements to the tested baseline network architecture of the

LCNN were obtained by increasing the kernel size and of reducing the stride, whereas

the number of subsequent fully connected layers and their node sizes had neglectable

impact. Although gains in predictive ability were obtained for large scale data sets by

using LCNNs, the practical use of ANNs comes with additional problems, such as the

need of genotyping all considered individuals, the lack of estimation of heritability and

reliability. Furthermore, breeding values are additive by design, whereas ANN-based

estimates are not. However, ANNs also comes with new opportunities, as networks can

easily be extended to account for additional inputs (omics, weather etc.) and outputs

(multi-trait models), and computing time increases linearly with the number of individuals.

With advances in high-throughput phenotyping and cheaper genotyping, ANNs can

become a valid alternative for genomic prediction.
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1. INTRODUCTION

The prediction of breeding values and phenotypes is of central
importance for both livestock and crop breeding. Obtaining
accurate estimates of breeding values at an earlier stage can
impact the decision on which individuals should remain in a
breeding programs, shorten the generation interval and thus
lead to higher genetic gains per year (Schaeffer, 2006). Because
of this, optimizing breeding schemes is of key importance for
overcoming the global challenges of feeding a planet with a
growing Human population (Foley et al., 2011).

With the increasing and cheaper availability of genomic
data, the estimation of genomic breeding values has become an
important part of breeding. Over the years, a variety of methods
for the prediction of breeding values and phenotypes have been
proposed with the most commonly applied methods being based
on linearmixedmodels (genomic best linear unbiased prediction;
GBLUP) and Bayesian linear models (BayesA, BayesB, BayesC,
Bayesian Lasso) (Meuwissen et al., 2001; Gianola et al., 2009).
Currently, variations of these approaches have been successfully
implemented in both livestock (Hayes et al., 2009; Hayes and
Goddard, 2010; Gianola and Rosa, 2015) and plant breeding
(Jannink et al., 2010; Albrecht et al., 2011; Nakaya and Isobe,
2012; Heslot et al., 2015). Since breeding values are additive by
design, most of these models only account for additive single
marker effects, but extension to account for dominance and
epistatic interactions have been proposed (Da et al., 2014; Jiang
and Reif, 2015; Martini et al., 2017) and are regularly applied for
the prediction of phenotypes.

The computational load, both in terms of computing time and
memory requirements are common problems when performing
genomic prediction on large scale data set, as computing time
in the mixed model is increasing cubically in the number
of phenotyped individuals considered. In particular for large
scale livestock populations approximations such as the proven-
young algorithm (Misztal et al., 2014) for the inversion of the
genomic relationship matrix have been proposed to reduce the
computational load. Thus, enabling the use of genetic evaluations
in large scale genetic evaluations such as the US Holstein
population with 569,404 genotyped animals (Masuda et al.,
2016). Similarly, computing time andmemory requirements tend
to explode in state-of-the-art methods such as GBLUP when
additional input dimensions like weather data (Gillberg et al.,
2019) are considered or multi-trait models are used.

With increasing computational power, more and more
researchers have started using Deep Learning methods and, in
particular, artificial neural networks (ANN) in genetics (Eraslan
et al., 2019). As a results of this, a series of studies have recently
been carried out to analyse the use of ANNs for genomic
prediction (Bellot et al., 2018; Ma et al., 2018; Waldmann,
2018; Azodi et al., 2019; Khaki and Wang, 2019; Montesinos-
López et al., 2019; Pérez-Enciso and Zingaretti, 2019; Abdollahi-
Arpanahi et al., 2020). However, the common result in those
studies is that state-of-the-art methods such as GBLUP or
methods from the Bayesian alphabet (Meuwissen et al., 2001;
Gianola et al., 2009) have a similar or even better performance.
In cases for which improvements were obtained, either very

specific trait architectures are considered (Waldmann, 2018),
improvements are not consistent across traits (Bellot et al.,
2018; Montesinos-López et al., 2019) or additional data like
environmental information is used (Khaki and Wang, 2019).
Note that for most traits considered in those studies, the best
performing ANNs are usually multi-layer-perceptrons (MLP)
with one or sometimes two fully-connected layers (FCL) between
input and output layers (Bellot et al., 2018; Montesinos-López
et al., 2019). Performance obtained with convolutional neural
networks (CNN) are usually similar or even slightly worse (Bellot
et al., 2018) with best performing models using filters with very
small kernels. Here, kernel is referring to the number of adjacent
markers considered in a single filter/convolution (Figure 1).

The key idea of convolutional layers (CL) is that effects are
assigned to specific sequences of alleles. However, the same
sequence of marker variants in different areas of the genome
can have totally different effects as adjacent variants on a
genotyping array have no direct functional relation (e.g., protein
coding). Therefore, CNNs do not seem to be an appropriate
network architecture for genomic prediction via array data. In
this manuscript, we are proposing the use of local convolutional
layers (LCL), as they provide a natural extension to CLs that
fixes these issues by applying a region specific filter. As a toy
example consider the artificial neural network given in Figure 1.
In a CL a, d, g would be set to be equal, leading to the same
filter being applied across the whole input. On the contrary,
those parameters are fitted independently from each other in
a LCL. This leads to a model with more parameters, but still
far less than a MLP, where all inputs [here: single-nucleotide
polymorphisms (SNP)] would be linked to all nodes of the first
layer. For example, a FCL with 64 nodes would result in about
64 times more parameters than a LCL between input and the first
layer. Furthermore, a CL layer with a filter linking 10 markers
would only lead to 11 parameter (10 + intercept) while in a
LCL the number of parameters would be slightly higher than the
number of SNPs. As subsequent layer will typically have far more
parameters, differences in this layer should still be neglectable.
The aim here is to analyze the usefulness of the LCNN compared
to traditional network architectures and state-of-the-art methods
for a variety of trait architectures, heritabilities and population
sizes. Furthermore, the ideal network architectures of a LCNN is
investigated by performing benchmark tests with varying kernel
sizes in the LCL and layer designs in subsequent FCLs. All tests
were conducted on a simulated large scale data set in maize and a
variety of smaller real Arabidopsis thaliana data panels.

2. MATERIALS AND METHODS

2.1. Material
As a first data set, a simulated data panel containing 10,000
maize lines that were genotyped at 34,595 SNPs was generated.
This was done by simulating random matings between 235
founder lines, with genotypes for the founder lines being
generated by combining two haplotypes from a set of 470
doubled haploid lines of the European maize landrace Kemater
Landmais Gelb for each founder. Simulations were executed in
the software MoBPS (Pook et al., 2020) with the source code
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FIGURE 1 | Node architecture of a LCNN containing a LCL with window size and stride of 3 and a FCL with 5 nodes.

for the simulation given in Supplementary File 1. Founder lines
were genotyped via the Affymetrix Axiom Maize Genotyping
Array (Unterseer et al., 2014) and reduced via LD pruning in
PLINK (Purcell et al., 2007). The interested reader is referred to
Hölker et al. (2019) for details on the data generation procedure
of the doubled haploid lines. Furthermore, a variety of traits
were simulated with two main types of quantitative trait loci:
Additive single marker QTL, assigning a linear effect to a single
marker, and epistatic QTLs that are caused by the interaction
between two genomic markers with nine separate effects for all
marker combinations (00, 01,...,22). For the epistatic QTLs, we
additionally considered cases where the two involved markers
were physically linked. We will report results for six traits with
the following architectures:

• 10 additive QTLs
• 1,000 additive QTLs
• 10 non-linked epistatic QTLs
• 1,000 non-linked epistatic QTLs
• 10 linked epistatic QTLs (QTL-markers being at most 5

SNPs apart)

• 1,000 linked epistatic QTLs (QTL-markers being at most 5
SNPs apart).

Individual QTL effect sizes were either assumed to be all the same
or drawn from either a gaussian or gamma distribution, as true
underlying effect structures in practice are not well known and
can be highly dependent on the trait of interest. Since results
were similar for the different distributions used to generate the
individual QTL effect sizes, we will only report results for the
tests conducted with equal QTL effect size for the additive QTLs
and effects drawn from a gaussian distribution for the epistatic
QTLs. For each trait, residual variances were varied to obtain
traits with a heritability h2 of 0.1, 0.3, 0.5, 0.8, and 1. Furthermore,
a set of 5 correlated traits with 1,000 underlying additive QTLs
each was simulated by the use of shuffle.trait() in MoBPS (Pook
et al., 2020). Correlation between traits was set to be between 0.0
and 0.8 and effect sizes were drawn from a gaussian distribution.
Details on the generation of correlated traits in MoBPS can be
found in the MoBPS guidelines (available at https://github.com/
tpook92/MoBPS). Source code for the generation of all simulated
traits can be found in Supplementary File 1.
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Overall, this resulted in a data set of highly related individuals,
as commonly present in breeding application and covered a
variety of trait architectures ranging from relatively simple traits
with purely additive traits caused by a few markers to highly
complex traits caused by epistatic interactions between a high
number of involved QTLs. It should be noted that all individuals
considered in subsequent tests are part of the same generation.
Since population structure can vary heavily depending on the
species and the applied prediction methods can become more
complex to include parental effects or similar, this was neglected
there. Likewise, no additional fixed effects were simulated. In
principle, these two factors could for example be accounted for
by additional input layers and one-hot-encoded variables for the
respective effects.

As a second data set, a real data panel from the 1,001 genomes
project of Arabidopsis thaliana (Alonso-Blanco et al., 2016)
was considered. After quality control, filtering for minor allele
frequency and LD pruning, we reduced the available 10.7 M
SNPs to 180k SNPs for 2,029 lines. Tests were conducted for 50
different traits, with between 83 and 468 phenotyped lines for
each respective trait (Atwell et al., 2010; Li et al., 2010; Meijón
et al., 2014; Strauch et al., 2015; Seren et al., 2016). The interested
reader is referred to Freudenthal (2020) for details on the data
preparation steps. Note that lines in this panel should be far less
related than in the simulated maize data set.

All ANNs were fitted using Keras (Chollet, 2015) with
respective scripts being available in Supplementary Files 2, 3.
The R-package rrBLUP (Endelman, 2011) was used for fitting
of the GBLUP and extended GBLUP (EGBLUP) model. The
R-package BGLR (Pérez and de los Campos, 2014) was used
for training of all considered Bayesian models. Multi-trait
GBLUP models were fitted using ASRemlR (Butler et al., 2009).
Exemplary scripts used for the fitting of the GBLUP, EGBLUP,
and all Bayesian models can be found in Supplementary File 4.

2.2. Design of the Neural Network
For all tested ANNs, the SNP data set with genotypes encoded as
0,1,2 was used as the input layer and centered phenotypes (ȳ = 0)
as the output layer. In genomic prediction, and especially when
using an ANN, the number of parameters is usually substantially
higher than the number of individuals that can be used for the
model fitting. Thus, leading to n<< p problems (Fan et al., 2014).
In this study, we will compare four main classes of models:

1. Linear models (LM)
2. Multi-layer perceptrons (MLP)
3. Convolutional neural networks (CNN)
4. Local convolutional neural networks (LCNN).

We classify all models that assign linear effects to single
parameters as linear models. As a baseline for the class LM, we
are considering the GBLUP (Meuwissen et al., 2001) model with
a genomic relationship matrix as proposed by VanRaden (2008).
Furthermore, methods from the Bayesian alphabet (Gianola et al.,
2009; de los Campos et al., 2013), that perform Bayesian linear
regression with prior assumptions on the individual marker
variance, are considered. As results for all Bayesian methods were
similar, we will only present results of BayesA (marginal prior:

scaled-t-distribution) in the manuscript. The interested reader
is referred to Supplementary Table 5, for results when using
BayesB, BayesC, Bayesian Lasso. As an example for a linear model
that accounts for epistiatic interactions, we will also consider the
EGBLUP model (Martini et al., 2017) that is designed to assign
linear effects to specific marker combinations.

The other three classes considered describe different types
of ANNs. Here, we define the class of MLPs as ANNs that
only contain FCLs. In CNNs/LCNNs we are using an additional
single CL/LCL in front of the FCLs without use of pooling. For
all three ANN classes we tested different layer designs ranging
from zero up to three FCLs with varying number of nodes. For
the CNN and LCNN we also tested different designs for the
convolutional layer, by adjusting the kernel size between 3 and
40 and/or reduction of the stride to allow for filters to be applied
on overlapping windows. For all models the rectified linear unit
activation function (ReLU) was used with an adaptive estimates
of lower-order moments (Adam) optimizer (Kingma and Ba,
2014) to minimize the mean squared errors and a dropout rate
of 0.3 after each layer (Chollet, 2015; Goodfellow et al., 2016) was
used. Changes to activation function, optimizer, dropout rate and
target function were also tested but only had minor effects and
therefore are neglected in the following. The interested reader is
referred to Freudenthal (2020) for detailed results on adaption on
these parameters.

Models are compared based on their predictive ability, which
we define as the correlation between the estimated breeding
values and phenotypes of individuals that were not used for
the model training. Unless otherwise mentioned, 80% of the
samples are used for training and the remaining 20% for
testing (test set). For example, this results in 8,000 individuals
being used for model fitting in the maize data, whereas the
size of the training panel for the Arabidopsis data will be
trait specific.

2.3. Size and Structure of the Training Data
A well-known problem of ANNs is that over-fitting can occur
after a high number of training epochs (Goodfellow et al., 2016).
Therefore, we split the 8,000 samples used for model fitting for
the simulated maize data into 7,000 samples used for the actual
training of the model (training set) and 1,000 samples that are
only used to determine at which state training should be stopped
(validation set). After each epoch, the predictive ability of the
model was derived based on the validation set and the best
performing model from up to 50 epochs was used as the final
model. In the same way, the validation set could also be used to
derive the ideal network architecture of the ANN (Freudenthal,
2020).

To further investigate the impact of the size of the training
population, we considered varying number of individuals for
model fitting (100, 250, 500, 1,000, 2,000, 3,000, 4,000, 6,000,
8,000). The size of the validation set was adapted based on the
size of the data panel (20, 50, 100, 200, 300, 400, 500, 750, 1,000).
Note that the relative size of the validation set is higher for smaller
data sets as a higher impact of the validation set was observed in
such chases. The remaining individuals were all used as part of
the test set.
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FIGURE 2 | Predictive ability of different methods for genomic prediction for a simulated trait with 10 (A) and 1,000 (B) purely additive QTLs and a heritability of 0.5.

FIGURE 3 | Predictive ability of different methods for genomic prediction for a simulated trait with 10 (A) and 1,000 (B) purely non-linked epistatic QTLs and a

heritability of 0.5.

As the size of the training panel was already
extremely small for the Arabidopsis data, a second
study was conducted in which no validation set was
used, but instead a fixed number of 25 training
epochs was performed, therefore not requiring a
validation set.

All tests for the simulated maize data/Arabidopsis data were
repeated 25/100 times respectively, with randomly sampled
training, validation and test sets.

3. RESULTS

3.1. Comparison Between Model Types
In the following, we will report results for a baseline model from
each of the three ANN class:

1. MPL: 2 FCL with 64 nodes
2. CNN: CL with kernel size and stride 10 + 2 FCL with 64 nodes
3. LCNN: LCL with kernel size and stride 10 + 2 FCL with

64 nodes.
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FIGURE 4 | Predictive ability of different methods for genomic prediction for a simulated trait with 10 (A) and 1,000 (B) purely linked epistatic QTLs and a heritability

of 0.5.

Minor improvements were obtained by tweaking parameter
settings for selected traits but overall tendencies of predictive
ability across kernel size and number of layers as well as nodes
per layer were stable. More details on differences will be provided
for the LCNN at the end of the results section. There was no
clear best model from the LM class. We will consider GBLUP as
the baseline, but also report results for BayesA (Meuwissen et al.,
2001) and the EGBLUP model (Martini et al., 2017).

3.2. Simulated Data
Unless otherwise stated, all results reported are based on the traits
with a simulated heritability of 0.5 and 8,000 individuals used for
model training.

In the purely additive setting with just 10 underlying QTLs
the highest predictive ability was obtained with the LCNN
(0.666), outperforming the other three baselinemodels by around
0.03–0.04 (Figure 2A). When increasing the number of QTLs
to 1,000, differences between LCNN (0.606) and the other three
baseline models increased to around 0.06–0.09 (Figure 2B). The
BayesA model led to similar predictive ability (0.660) as the
LCNN for 10 QTLs but was outperformed (0.538) in case of
1,000 underlying QTLs. Even though the simulated traits had a
purely additive genetic background, the EGBLUP model led to
very similar or even slightly higher predictive ability than the
GBLUP model. A potential reason for this could be “phantom
epistatis” (de los Campos et al., 2019) as the use of pair-wise
marker interactions could lead to a better overall representation
of haplotype similarities.

When considering a purely epistatic trait architecture with
10 underlying non-linked QTLs, differences between the LCNN
and the other three baseline models were also around 0.06–0.08
(Figure 3A), whereas the predictive ability in the case of 1,000

underlying QTLs was very similar for all four baseline models
(Figure 3B), with the GBLUP model (0.416) leading to slightly
higher predictive ability (0.01–0.02).

In case the underlying QTLs of the epistatic trait were placed
on physically linked markers to imitate a trait caused by local
interactions in a gene, both the LCNN and CNN obtained
higher predictive ability when only 10 QTLs were involved
in the trait, whereas the MLP and GBLUP performed worse
(Figure 4A). As only CNN and LCNN are specifically accounting
for local interactions, this should not be surprising. The relative
differences between LCNN (0.625) and GBLUP (0.488) were here
highest among all considered cases. In the case of 1,000 locally
linked underlying QTLs, results of the four baseline models were
again very similar with GBLUP performing about 0.01 better than
the ANNs (Figure 4B). In all cases of epistatic trait architectures,
the use of the EGBLUP model led to higher predictive abilities
than GBLUP and was the best performing model for both traits
with 1,000 underlying epistatic QTLs. For both the case of linked
and non-linked traits with 10 underlying epistatic QTLs the
LCNN was the best performing method.

As expected, we observed a higher predictive ability for
traits with higher heritability. This was not only the case
when comparing absolute values but also when dividing by the
square root of the heritability to standardize performances. This
standardization was applied as this is the highest theoretical
achievable predictive ability for a given heritability (Figure 5).
Overall, obtained standardized predictive abilities for the additive
traits are higher and close to the maximum in the case of 10
additive underlying QTLs (Figure 5A). In particular for cases of
high heritability, the LCNN is outperforming all other models
for the additive trait with 1,000 QTLs and the two epistatic traits
with 10 QTLs (Figures 5B,C,E). For the epistatic traits with 1,000
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FIGURE 5 | Predictive ability of different methods for genomic prediction in relation to the trait heritability for the purely additive (A,B), epistatic (C,D), and physically

linked epistatic (E,F) trait with 10/1,000 underlying QTLs for the simulated maize data. Colored areas indicate 95% confidence intervals for the mean value.

QTLs all models performed on a similar level, with CNN/LCNN
performing worse for cases of low heritability (Figures 5D,F).

When comparing the predictive ability depending on the
number of individuals used for model fitting, we observed
an inferior performance of all three classes of ANN models
relative to GBLUP for small training sets (100, 250; Figure 6).

However, of the three ANN classes considered, the LCNN is
still performed best. In particular for traits with 1,000 purely
additive QTLs and 10 epistatic QTLs, the LCNN outperformed
the GBLUP model when considering a training panel with
1,000 or more individuals. Overall, we observed higher gains
in predictive ability in the ANNs compared to the considered
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FIGURE 6 | Predictive ability of different methods for genomic prediction depending on the size of the training set for purely additive (A,B), epistatic (C,D), and

physically linked epistatic (E,F) trait with 10/1,000 underlying QTLs and a heritability of 0.5. Colored areas indicate 95% confidence intervals for the mean value.

LMs. As ANNs are known to be extremely data hungry
(Goodfellow et al., 2016) this should not be that surprising,
but it also shows the promise of the method for large scale
data sets. Overall, the network architectures with less layers
and parameters were less affected by the reduced size of the
training set.

3.3. Comparison Between LCNN Models
When comparing different layer designs for the LCNNs, we
observed small, but still statistically significant differences
between the different network architectures. In particular for
purely additive traits, larger kernel sizes (KS) in the LCL
led to higher accuracies (KS 5: 0.603; KS 10: 0.606; KS 20:
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FIGURE 7 | Predictive ability of different layer designs of the LCNN with modifications to the FCLs for the purely additive trait with 1,000 QTLs (A) and the epistatic

trait with 10 QTLs (B) and a heritability of 0.5.

0.616; KS 40: 0.618—two-sample t-test: p-value < 0.0001 for
KS 5 against KS 40), whereas the stride had neglectable
impact (Supplementary Figure 1). In regard to the design of
the subsequently applied FCLs, the performance for most
models was similar, unless the design was extremely small
(e.g., one layer 32 nodes) or extremely large (e.g., two layers
with 512 nodes; Figure 7). A potential reason for this is
over/underparametrization in the applied network architectures.
Best results were obtained in network architectures with a
relatively high number of nodes per layer (128/256). With
more individuals used for model fitting, we would expect larger
network architectures to perform better (Goodfellow et al.,
2016). Although, differences between network architectures are
significantly different, we would still argue that they are too small
and trait specific to incline real practical relevance that would
justify extended cross-validation schemes to optimize.

3.4. Multi-Trait Models
When considering a data panel of 8,000 individuals and 5 traits,
performance of the LCNN significantly increased with trait

correlation (t-test: p-value = 0.0013, Figure 8). For example,
for uncorrelated traits an average predictive ability of 0.656
compared to 0.672 for highly correlated traits (0.8) was observed.
Although this difference might look small, one needs to consider
here that the maximal obtainable predictive ability for a trait with
heritability of 0.5 is 0.707.

As computing times of the GBLUP model were extremely
high when using ASRemlR (Butler et al., 2009), only reduced
data panels with two traits and limited numbers of individuals
were tested. However, difference between models and traits were
minor with no systematic gains for the single or multi-trait
models. Note that far higher gains in a mixed model should
be expected when considering partially available phenotypes.
In an ANN this could be modeled by including the available
phenotypes as an additional input, but again requires uniform
inputs from all individuals.

3.5. Arabidopsis Data
When comparing the model performance for the different ANNs
for the Arabidopsis data set, the highest average predictive ability
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FIGURE 8 | Predictive ability of the multi-trait LCNN models dependent on the correlation between traits.

TABLE 1 | Average predictive ability for the different models for the Arabidopsis traits in relation to the size of the training set.

Trait architecture GBLUP BayesA EGBLUP MPL CNN LCNN

Average predictive ability (all) 0.390 0.382 0.382 0.316 0.312 0.340

Average predictive ability (training set < 100) 0.385 0.367 0.376 0.297 0.291 0.313

Average predictive ability (100 < training set < 250) 0.376 0.375 0.368 0.324 0.318 0.338

Average predictive ability (training set > 250) 0.477 0.477 0.472 0.358 0.370 0.456

TABLE 2 | Average predictive ability for the different models for the Arabidopsis

traits in relation to the size of the training set and no validation set.

Trait architecture MPL CNN LCNN

Average predictive ability (all) 0.346 0.348 0.354

Average predictive ability (training set < 100) 0.332 0.332 0.336

Average predictive ability (100 < training set < 250) 0.353 0.352 0.347

Average predictive ability (training set > 250) 0.370 0.392 0.468

was observed for the LCNN model (0.340) compared to 0.316
for the MLP and 0.312 for the CNN model (Table 1). However,
all three ANNs were outperformed by the considered models
from the LM class. The differences between the ANNs and
LMs decreased for traits with higher number of individuals
used for model fitting. Whereas differences for traits with <100
individuals on average were 0.078 between GBLUP and the
LCNN, this difference is reduced to 0.037/0.021 for traits with
more than 100/250 lines in the training set (Table 1). The
variance in obtained predictive ability was highest for MLP
(0.031) and CNN (0.031) compared to the LCNN (0.029) and
lowest for the linear models (0.024). Note that no traits with

more than 468 phenotyped lines were considered here and gains
in the simulated data were typically only obtained when using
at least 1,000 lines (Figure 6). When using a set number of
epoch and no validation set the overall accuracies increased
for all three considered ANN architectures and differences in
predictive ability between the ANNs and GBLUP halved (Table 2,
Figure 9). One exception to this is the trait flowering time in
the field (FT_field) which resulted in extremely unstable models
for all three ANNs with 20% of all trained models leading to
basically zero predictive ability and 55% lower average predictive
ability. To our knowledge there is no immediately obvious reason
why these models should not work for this particular trait,
making this issue even more critical. Details on the predictive
ability of the individual traits and the number of phenotypes
considered for each trait are given in Supplementary Table 4.
Results reported here were obtained when using the baseline
network architectures. The interested reader is referred to
Freudenthal (2020) for details on extended benchmark tests with
varying model architectures. Note that after trait-specific model
architecture tunings in Freudenthal (2020), higher predictive
ability with the LCNN compared to GBLUP were obtained for 33
of the 52 traits with h2 > 0.5, whereas only 27 of the 93 traits with
h2 < 0.5 benefited from the use of a LCNN compared to GBLUP.
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FIGURE 9 | Predictive ability for GBLUP and the LCNN model for the different Arabidopsis traits in relation to the size of the training set and no validation set.

3.6. Computing Time
Tests for the ANNmodels were performed using a GeForce RTX
2080 Ti graphics card and Intel(R) Xeon(R) Gold 6154 processor
(3.00 GHz) with 18 cores, whereas all LMs were fitting on a server
cluster with Intel E5-2650 (2X12 core 2.2 GHz).

When using 8,000 individuals for model training, computing
times for the model fitting for the MLP and CNN were lowest
with 0.9 min (Figure 10), followed by the LCNN (7.6 min)
with LMs taking longest (GBLUP/EGBLUP: 9.9 min, BayesA:
8.6 min). Note that differences in computing time between LM
and ANN methods can also partially be attributed to faster
computing resources, as a high-end graphics card was used for
the training of the ANNs. However, this will only impact the
absolute computing time and not the scaling in the number
of individuals. Computing time increased only linearly for the
considered ANNs, whereas a cubic increase in the number of
phenotyped individuals was observed for the GBLUP model
(quadratic scaling in the total number of individuals). In all
ANNs 50 epochs were performed, although the finally chosen
model was usually obtained within the first 10 training epochs.
As the number of required epochs should decrease with larger
training populations one could even argue that ANNs have a
less than linear scaling. Scaling for the Bayesian methods was
linear in both the number of phenotyped and non-phenotyped
individuals. In terms of memory requirements the ANNmethods
at peak required 14 GB, whereas GBLUP/BayesA used up
to 22/24 GB. In terms of scaling, the ANNs should again
be favorable in large scale data sets, as ANNs have a linear
scaling in terms of memory, whereas all considered LMs
have an approximately quadratic scaling in the number of
individuals considered.

Multi-trait models in ASRemlR (Butler et al., 2009) required
extreme computational load with even a two trait model
with 5,000 individuals requiring 400 GB memory and 34
h of run-time. Consider here, that for practical applications
the computational load in mixed models is reduced by
using approximations, fixing variance components and only
considering bi-variate models. The five trait model in the three
considered ANN architectures took basically the same time
as the fitting of one single trait model (MLP/CNN: 0.9 min,
LCNN: 7.7 min).

4. DISCUSSION

A common misconception of ANNs is that they are treated as
black boxes, causing back propagation of causal variants and
fundamental design questions to be second-order problems. Note
that the baseline MLP model used for the simulated maize
dataset resulted in a model with 2.2 million interdependent
parameters. As “only” 8,000 individuals were used for training,
this can potentially lead to massive overparametrization issues
(Fan et al., 2014). The use of a CL is reducing this problems
substantially with our baseline CNN “only” needing 225,610
parameters. Potential problem with this is that, filters in a CLs
assign effects to specific sequences of input variants. However,
adjacent markers on a SNP-array usually have no underlying
direct functional relation (e.g., protein coding). Thus, the same
sequence of adjacent marker variants in different areas of the
genome should not have any related effects. Therefore, this
modeling approach does not really seem appropriate from a
genetics perspective and potentially makes it more difficult to
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FIGURE 10 | Computing time for training of the maize data depending on the number of individuals used for model training.

obtain a good model fit. The newly proposed LCNN fixes these
issues by introducing region-specific filters. This increases the
number of required parameters in the model slightly (260,195),
but still is a massive improvement in terms of number of
parameters compared to the MLP.

On the contrary, when working with whole genome sequences
on the level of single genes the use of CNNs has shown
to be quite useful (Washburn et al., 2019). However, using
whole-genome sequence data does not reflect the currently
available standard for genomic prediction, as no significant
gains in most applications are reported when using more
than just low (∼10 k SNPs) to medium (∼50 k SNPs)
density SNP arrays (Ober et al., 2012; Erbe et al., 2013),
generating such sequence data is still costly (Schwarze et al.,
2018) and problems of even higher overparametrization can
arise here.

As shown by the results above, the use of a LCNN
can substantially improve the accuracy of genomic prediction
compared to more frequently applied ANNs architectures like
MLPs and CNNs for both simulated and real data sets,
and independent of the size of the training set. However,
compared to state-of-the-art methods like GBLUP, results in
both simulated and real data for smaller training populations
(100–500) showed substantially worse performance, both in
terms of predictive ability and model robustness, of all
considered ANN architectures. On the contrary, for large scale
data set with up to 8,000 individuals used for training, the
LCNN is outperforming GBLUP, or at least performing on
a similar level, for basically all simulated trait architectures.
As results for the simulated and real data were very similar

for smaller training populations, we would expect results to
generalize to large scale real data sets. However, as typical
data panels in plant breeding contain <1,000 lines, we
must conclude that as of today, genomic data sets in plant
breeding are usually too small to justify the use of ANNs in
breeding application.

On the contrary, even larger populations with potentially
millions of animals are available in livestock breeding (Masuda
et al., 2016). However, the obtained predictive ability should
not be the only factor to consider when deciding which model
to use in practice. For example, consider that ANNs require
an unified input from all considered individuals, but in animal
breeding the use of single step GBLUP (Legarra et al., 2009;
Aguilar et al., 2010; Christensen and Lund, 2010) to perform
a joined breeding value estimation for genotyped and non-
genotyped animals via combination of a genomic and a pedigree
based relationship matrix is common practice. Furthermore,
there are no direct counterparts to the estimation of both
heritability and reliability, which can be required in subsequent
steps (e.g., construction of selection indices; Hazel and Lush,
1942; Miesenberger, 1997). Depending on the application,
there are potential solutions to this like the estimation of
the heritability via repeated measurements, pedigree-based
approaches for the estimation or numerical approximation.
Another aspect to bear in mind is that breeding values are
additive by design, so it is not even clear if a higher predictive
ability will actually result in higher genetic gain (Martini,
2017).

On the positive side, ANNs also come with great potential.
Most prominently, models are computationally extremely
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efficient, with computing times only increasing linear in the
number of individuals considered. As state-of-the-art methods
like GBLUP have a cubic cost or require approximated solutions,
we would expect great usefulness of ANNs for large scale
data set. Similarly, including additional inputs like other
omics (Li et al., 2019) or multi-trait models (Calus and
Veerkamp, 2011; Lyra et al., 2017) is computationally extremely
challenging and therefore usually neglected. In the context of
ANNs, computing time by adding additional input or output
layer to the models comes with no substantial increase in
computing time.

Overall, we can conclude that, as of today, ANNs will not
be the ideal model in most current breeding applications
unless uniform genomic data for all relevant individuals
are available. However, with reduced genotyping costs,
advances in high-throughput phenotyping and additional
inputs and outputs to consider, this might change in the
future. Of the tested ANN structures, we see the most
potential in the newly proposed LCNN architectures, as
negative aspects like the overparametrization in MLPs
and filters not being in line with our prior knowledge of
genetic traits for CNNs are avoided. This is also empirically
supported by the conducted test for both the simulated
and real data sets as obtained predictive abilities are
increased for basically all considered traits when using a
LCNN architecture. Therefore, LCNNs should be a key
network architecture to consider when designing artificial
neural networks for the use in genomic prediction, or
even in general when performing practical applications
that are using genomic data from a genotyping array
as an input.
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