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Molecular evolution offers an insightful theory to interpret the genomic consequences of
thermal adaptation to previous events of climate change beyond range shifts. However,
disentangling often mixed footprints of selective and demographic processes from
those due to lineage sorting, recombination rate variation, and genomic constrains
is not trivial. Therefore, here we condense current and historical population genomic
tools to study thermal adaptation and outline key developments (genomic prediction,
machine learning) that might assist their utilization for improving forecasts of populations’
responses to thermal variation. We start by summarizing how recent thermal-driven
selective and demographic responses can be inferred by coalescent methods and in
turn how quantitative genetic theory offers suitable multi-trait predictions over a few
generations via the breeder’s equation. We later assume that enough generations have
passed as to display genomic signatures of divergent selection to thermal variation and
describe how these footprints can be reconstructed using genome-wide association
and selection scans or, alternatively, may be used for forward prediction over multiple
generations under an infinitesimal genomic prediction model. Finally, we move deeper
in time to comprehend the genomic consequences of thermal shifts at an evolutionary
time scale by relying on phylogeographic approaches that allow for reticulate evolution
and ecological parapatric speciation, and end by envisioning the potential of modern
machine learning techniques to better inform long-term predictions. We conclude that
foreseeing future thermal adaptive responses requires bridging the multiple spatial
scales of historical and predictive environmental change research under modern
cohesive approaches such as genomic prediction and machine learning frameworks.

Keywords: coalescent theory, genome-wide association studies, genome-wide selection scans, genome–
environment associations, phylogeography, breeder’s equation, genomic prediction, machine learning

ON THE CHALLENGES OF STUDYING GENOMIC THERMAL
ADAPTATION

Warming is imposing an unprecedented climate emergency on nature, food, energy supply, and
economy around the world (Ripple et al., 2020). While evolutionary genomics may improve
prediction of populations’ responses to thermal change (Waldvogel et al., 2020a), geologic records
of temperature and carbon dioxide (CO2) variations (Supplementary Figure S1) are also insightful
into the coupling of biodiversity, climate, and the carbon cycle and hence may help predicting the
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consequences of future carbon emissions (Zachos et al., 2008).
For instance, several reports of fire activity (Whitlock and
Bartlein, 2003; Bush et al., 2008) and hydroclimate changes
(Wang et al., 2017) as records of thermal changes during the
Holocene have taught us that extinction is a slow process and that
many species may already be functionally extinct (Cronk, 2016).
A key modern advance has precisely been to couple the extinction
risk with the migratory potential under an ecological niche
conservatism scenario (Steinbauer et al., 2018), and predictions
of population-level genomic and phenotypic responses to thermal
change (Hoffmann and Sgro, 2011). Although atmospheric CO2
has been found to be better correlated with richness of (plant)
species (Supplementary Figure S1C) than temperature itself
throughout the Cenozoic up until 20 Mya (Jaramillo et al.,
2006; Royer and Chernoff, 2013), we need to improve our
understanding on how thermal change vulnerability impacts
current and historical adaptive genetic variation in order to
enhance populations response projections (Razgour et al., 2019).

Genomes are diverse in signatures of the populations’
evolutionary past across timescales (Wolf and Ellegren, 2017)
and therefore are informative on historical adaptive responses to
ancient and more recent events of climate change (Figure 1 and
Table 1). By revealing the nature of these signatures and learning
from previous reactions to environmental change, genomics can
truly assist modern predictions aimed at incorporating responses
beyond migration. Yet, disentangling often confused selective
and demographic signatures from those due to genetic drift
and genomic constrains is challenging (Ellegren and Galtier,
2016), consequently delaying the factual utilization of genomics
for forecasting. Therefore, in this mini-review we envision
summarizing modern tools from the genomic era that are
enriching our comprehension of the genetic consequences of
past and recent climate change, while offering a perspective
on how to improve predictive models that incorporate thermal
adaptation. Specifically, we aim prospecting how genomic
prediction (GP) and machine learning (ML) approaches may
offer cohesive frameworks to (1) integrate more traditional,
but heterogeneous, genomic, and ecological datasets across
temporal scales, by (2) maximizing prediction accuracies, while
(3) understating the relative contribution of the underlying
genomic processes. This is still a future avenue of research, and
so we close by offering perspectives. Different drivers of the
genomic landscape to thermal adaption (Gompert et al., 2014;
Ravinet et al., 2017; Cortés and Blair, 2018; López-Hernández
and Cortés, 2019), such as disruptive and background selection,
gene flow (Miller et al., 2020), shared ancestral polymorphism,
and mutation/recombination rate variation (Feder et al., 2012;
Ellegren and Wolf, 2017; Cortés et al., 2018b), have been
identified. In order to discern among them, a first necessary
step toward the evaluation of the adaptive potential involves
typifying the genomic landscape by using summary statistics
like nucleotide diversity, π (Nei, 1987), and relative, FST
(Weir and Cockerham, 1984), and absolute, DXY (Nei, 1987),
divergence. FST vs. DXY contrasts inform population divergence
in the presence of gene flow (co-occurrence of peaks in both
profiles), recurrent selection across subpopulations (FST peaks
match shallow DXY valleys), and selective sweeps predating

the subpopulations’ split (FST peaks match deep DXY valleys)
(Nachman and Payseur, 2012; Cruickshank and Hahn, 2014;
Irwin et al., 2016). Inferences are more robust if carried out
across replicated samplings of contrasting populations (e.g.,
in terms of thermal variation) within a hierarchically nested
framework of divergence (Cortés et al., 2018b). A second step
refers to the detection of selection signatures, if any – i.e.,
hard vs. soft selection sweeps (Pritchard et al., 2010; Zahn and
Purnell, 2016), which must be followed by a third validation
step across replicated demographics (Roesti et al., 2014; Lotterhos
and Whitlock, 2015) and temporal levels (Nosil and Feder, 2011;
Matos et al., 2015; Fragata et al., 2018).

Exclusively phenotypic empirical methods (Figure 1A), such
as in situ monitoring, growth chamber experiments, and
“common garden” (provenance) tests (Miller et al., 2020),
constitute baseline evidence of thermal adaptation and should
therefore inform more advanced genomic approaches. Naturally
available environmental gradients (e.g., elevation or latitudinal
clines) can also be used as proxies for climate change (Wheeler
et al., 2016; Cortés and Wheeler, 2018), which is known as space-
for-time (SFT) substitution. Replicated “common garden” tests
(a.k.a. reciprocal transplants) carried out in an SFT framework
are in turn useful to test whether populations can cope with
changes through local adaptation (standing variation) or via
phenotypic plasticity, especially in long-living species (Bridle and
Vines, 2007; Sedlacek et al., 2015). Within an SFT framework,
restricted gene flow can lead to small-scale genetic structures
(Stanton et al., 1997) or distorted source/sink-like patterns (e.g.,
Cortés et al., 2014) driven by environmental factors (Nathan and
Muller-Landau, 2000). Asymmetric migratory potential in a local
scale may provide suitable habitats within only a few meters of
the current locations (Yamagishi et al., 2005; Scherrer and Körner,
2011) but may also lead to narrowly adapted populations, even in
the face of gene flow (Fitzpatrick et al., 2015), that may respond
poorly to future conditions (North et al., 2011; Miller et al., 2020).

FROM RECENT GENETIC RESPONSES
TO SHORT-TERM PREDICTIONS

Coalescence Informs on Contemporary
Thermal-Driven Selective and
Demographic Changes
In order to trace back thermal-driven selective and demographic
changes at recent temporal scales (Figure 1B), coalescent theory
(Wakeley, 2008) helps in discriminating among authentic
signatures of selection and those related to demography
(e.g., bottlenecks and among populations reduced gene
flow), from spurious covariates (Yeaman and Otto, 2011)
such as lineage sorting (Wolf and Ellegren, 2017; Becher
et al., 2020) and inversions (Dolgova et al., 2010; Fragata
et al., 2014). Recursive simulation-based tools to incorporate
the mutation/selection balance (Bustamante et al., 2001)
across various scenarios of divergence and gene flow are
approximate Bayesian computation – ABC (Csilléry et al., 2010;
Cornuet et al., 2014), and pairwise sequentially Markovian
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FIGURE 1 | Potential approaches to assess populations’ thermal adaptation by looking into their genomic past. Genomic analyses allow reconstructing populations’
adaptive responses to previous events of climate change across various temporal scales (A,B,D,F), as a tool to improve forecasting (C,E,G,H). (A) Empirical
approaches such as replicated “common garden” (provenance) tests and space-for-time (SFT) substitution allow studying in situ ongoing genomic thermal
adaptation. The inset plot exemplifies a significant genotype-by-environment (GxE) interaction, as can be quantified using reciprocal transplant experiments between
habitat types that differ in their thermal stress. (B) Coalescent and approximate Bayesian computation (ABC) analyses help infer recent thermal-driven selective and
demographic responses. The inset diagram shows a typical coalescent genealogy depicting divergence with gene flow. (C) The breeder’s equation predicts
responses of genetically correlated traits over one generation (vector R) given standardized selection gradients to thermal stress (vector β) by means of the
variance–covariance matrix (G) of additive genetic parameter estimates. Alternatively, experimental evolution traces real-time changes in allele frequencies (1p)
across generations. (D) When genomic signatures of thermal selection are under divergent selection after several generations, genome-wide association (GWAS),
and selection (GWSS) scans, as well as genome–environment associations (GEA), allow characterizing the genomic architecture of thermal adaptation. The inset
Manhattan plot schematizes a hypothetical genomic scan between populations that contrast in their thermal adaptation. (E) Modern high-throughput genotyping
may facilitate predictions of the thermal adaptive potential over multiple generations using infinitesimal models under a genomic prediction (GP) framework.
(F) Phylogeographic approaches offer an understanding of the genomic consequences of deep-time thermal shifts at an evolutionary time scale. The inset tree
represents an imaginary phylogeny. Finally, (G) machine learning (ML) approaches (H) trained using heterogeneous past responses to thermal variation may enhance
long-term predictions of the thermal adaptive potential. ML’s modus operandi, as GPs, requires partitioning the calibrating historical dataset between training (TRN)
and testing (TST) subsets that are iteratively imputed into a N-fold cross-validation scheme.
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TABLE 1 | Case studies that have addressed thermal adaptation at different temporal scales using diverse genetic analyses.

Analytical approach Diagram Data sources Main finding References

Coalescence theory
and ancestry
distribution models

Figure 1B 20 alpine plant species across the European
Alps genotyped with AFLP markers and
analyzed with ancestry distribution models

Ancestry distribution models open new
perspectives to forecast population genetic
changes within species

Jay et al., 2012

Coalescence theory in
a SFT framework

Figure 1B 273 Salix genets in 12 SFT populations
genotyped with 7 SSRs

There is asymmetric gene flow across a
thermal gradient that may be affected
under future climate conditions

Cortés et al., 2014

Coalescence theory Figure 1B Exome re-sequencing of 48 Populus
trichocarpa individuals

Effective population size has varied in
concert with atmospheric temperature
deviation from the past c. 120,000 years

Zhou et al., 2014

Quantitative genetics Figure 1C Review of models on whether evolutionary
changes within species can contribute to
species adapting to global thermal change

Evolutionary processes and trait trade-offs
(Q matrix) need to be incorporated into
schemes that try to manage thermal
impacts

Hoffmann and Sgro,
2011

Quantitative genetics Figure 1C Review discussing thermal adaptation to
climate change from an evolutionary
physiological perspective

Species’ physiological, genetic and plastic
(Nicotra et al., 2010) capacities can aid in
forecasting their response to thermal
change

Chown et al., 2010

Quantitative genetics Figure 1C Physiological model that simulates thermal
tolerance assays for multilocus quantitative
traits in D. melanogaster

Realized heritabilities of knockdown
temperature may underestimate the true
heritability of the upper thermal limit

Rezende et al., 2010;
Santos et al., 2012

Breeder’s equation in
2-habitats SFT design

Figure 1C 1,061 Salix herbacea genotypes, from 2
habitats in a SFT design, screened for 6
thermally influenced traits and 7 SSRs

Significant heritable variation in morphology
and phenology might help S. herbacea
adapt to thermal stress

Sedlacek et al., 2016

Quantitative genetics
and breeder’s equation

Figure 1C 166 lines of D. melanogaster assessed for cold
tolerance at 5 temperatures

Low thermal tolerance is environment
specific and evolvability decreases with
increasing developmental temperatures

Ørsted et al., 2019

Quantitative genetics
and breeder’s equation

Figure 1C 4,267 25- to 35-year-old European larch trees
growing in 21 reforestation installations across
4 distinct climatic regions in Austria

Genetic evaluation across broad thermal
gradients permits delineation of suitable
reforestation areas under future climates

Lstiburek et al., 2020

GWAS Figure 1D Review on molecular-level regulation of the
annual growth cycle in temperate and boreal
regions

Merging genomic analyses with more
quantitative approaches will aid studies on
how species cope with thermal changes

Singh et al., 2017

eGWAS Figure 1D Whole-genome transcriptional responses in
D. subobscura subjected to threefold replicated
laboratory thermal shocks

Many genes appear to be involved in
thermal adaptation, as expected for the
adaptive evolution of a complex trait

Laayouni et al., 2007

GWAS across a SFT
latitudinal gradient

Figure 1D 446 Populus trichocarpa trees from a latitudinal
gradient screened for bud-break in 2
provenance trials and with 2.2-M SNPs

Variation in bud-break reflects differential
selection for thermal functions likely to be
affected by climate warming

McKown et al., 2018

GWSS across a SFT
latitudinal gradient

Figure 1D Two populations of D. subobscura from
different latitudes introduced to a new common
laboratory environment and WGS

Populations followed different genetic
routes to reach predictable and similar
adaptive phenotypic outcomes

Seabra et al., 2017

GWSS given a modern
heat wave

Figure 1D Long-term time series of seasonal genetic data
in D. subobscura

Genetic constitution of the populations
transiently shifted to summer-like
frequencies during the 2011 heat wave

Rodriguez-Trelles et al.,
2013

GWSS in 2 postglacial
lineages

Figure 1D 48 Populus alba ramets from 2 postglacial
recolonization lineages genotyped with GWS
for 1.7-M SNP markers

Selection from standing variation implies
the potential for rapid evolution of P. alba
populations in the face of thermal change

Stölting et al., 2015

GEA at a continental
scale

Figure 1D 78 Andean and Mesoamerican wild bean
accessions with 23,373 GBS-derived SNPs
and 3 bioclimatic heat stress indices

24 associated loci with contrasting habitat
types flank 22 heat shock protein genes
(Simões et al., 2003; Sørensen et al., 2003)

López-Hernández and
Cortés, 2019

GEA at a latitudinal
gradient

Figure 1D Four populations of D. subobscura from
different latitudes screened for 4 candidate loci
for thermal adaptation in inversions

Inversion frequency clines are being
maintained by local thermal adaptation in
face of gene flow

Simões and Pascual,
2018

GEA at a regional scale Figure 1D 79 natural Fagus sylvatica populations, 144
SNPs out of 52 thermal candidate genes, and
87 environmental predictors

F. sylvatica exhibits local genetic adaptation
to thermal heterogeneity at the regional
scale (Swiss Alps)

Pluess et al., 2016

GEA at a regional scale Figure 1D 140 wild tomato accessions, 6,830 SNPs, and
redundancy analysis (RDA), structural equation
modeling (SEM), and generalized dissimilarity
modeling (GDM)

Regional differences in the abiotic
environment contribute to genomic
divergence within a wild tomato species

Gibson and Moyle,
2020

(Continued)
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TABLE 1 | Continued

Analytical approach Diagram Data sources Main finding References

Genomic prediction
(GP)

Figure 1E 48 cows genotypes with a BovineLD BeadChip
and studied in climate-controlled chambers that
simulate a heat wave event

GP for heat tolerance may increase
resilience and welfare in animal breeding to
increased incidence and duration of heat
events

Garner et al., 2016

Backward genomic
prediction (GP)

Figure 1E Re-sequencing of 15 1900-year-old maize cobs
from Turkey Pen Shelter, and GBS data of
1,316 modern landraces for training

Thermal adaptation drove modern maize
divergence and was selected in situ from
ancient standing variation 2000 years ago

Swarts et al., 2017

Genomic prediction
(GP)

Figure 1E 287 elite spring wheat lines assessed in a 90K
Illumina array for traits as thermal time to
flowering in 18 heat/drought environments

GP is capable to predict complex traits and
find the best environments to adapt new
crop lines to heat and drought stress events

Sukumaran et al., 2017

Genomic prediction
(GP)

Figure 1E 3,485 wheat lines genotyped with 9,285
GBS-derived SNPs and phenotyped for grain
yield in heat and drought environments

GP can be used to increase the size of
plant nurseries by considering
un-phenotyped lines for heat and drought
stress-resilience

Juliana et al., 2019

Fossil record Figure 1F Palynological neotropical plant diversity of
1,411 morpho-species and 287,736
occurrences (65–20 million years ago)

Low Paleocene flora diversity, more diverse
early Eocene flora exceeding Holocene
levels, and a decline at early Oligocene

Jaramillo et al., 2006

Phylogenetics Figure 1F Thoreau’s dataset of the Concord (MA) flora
that provides data on changes in species
abundance and flowering time (150 years)

Thermal change has shaped the
phylo-genetically biased pattern of species
loss in species that do not respond to
temperature

Willis et al., 2008

Fossil record Figure 1F Pollen and macroscopic charcoal from the
Erazo profile (Ecuador)

Global Pleistocene temperature change can
radically alter vegetation communities on
the Andean flank in western Amazonia

Cardenas et al., 2011

Phylogeographic
inferences – fossils

Figure 1F Long-term ecological records and their
relevance to climate change predictions for a
warmer world

Range shifts, community turnover, genetic
adaptation, and an increase in diversity are
observed during warmer intervals

Willis and MacDonald,
2011

Phylogeographic
inferences

Figure 1F 17 time-calibrated phylogenies of major
tetrapod clades and climatic data from
distributions of > 500 extant species

Rates of projected climate change
dramatically exceed past rates of thermal
niche evolution among vertebrate species

Quintero and Wiens,
2013

Phylogeographic
inferences

Figure 1F Niche shifts among populations within 56 plant
and animal species using time-calibrated
phylogenetic trees

Rates of change in thermal niches in plant
and animal populations have been much
slower than projected climate change

Jezkova and Wiens,
2016

Phylogenetic-assisted
modeling

Figure 1F 9,737 records for 1,312 plant species and
phylogenetic correlation matrix as an additional
random effect

Tropical plants do not have narrower heat
tolerances, but are more at risk due to their
upper thermal limits (Feeley et al., 2020)

Sentinella et al., 2020

Dynamic
eco-evolutionary
modeling

Figure 1G Four endemic Alpine plant species analyzed
with niche modeling, and individual-based
demographic and genetic simulations

Monitoring species’ local abundance
instead of their range better informs on
species’ extinction risks under thermal
change

Cotto et al., 2017

Machine learning (ML) Figure 1G Species geographic distributions modeling
using maximum entropy (MaxEnt)

ML modeling can be used for discrimination
of suitable vs. unsuitable areas for the
species with presence-only datasets

Phillips et al., 2017

Machine learning (ML) Figure 1G Temporal uncertainty framework to assess
when and where cultivation of key crops in
sub-Saharan Africa will become unviable

Incremental, preparatory and
transformational adaptation phases enable
projected crop transformational changes

Rippke et al., 2016

Machine learning (ML) Figure 1G Random forest in Himalaya’s Betula for last
inter-glaciation, present (1970–2000) and future
(2061–2080) conditions

Biodiversity in high elevation ecosystems is
sensitive to global environmental changes,
especially temperature warming

Mohapatra et al., 2019

Machine learning (ML) Figure 1G Modeling of the spatiotemporal distribution in
the present and the future of pine in heat
scenarios (RCP 4.5 y RCP 8.5) by MaxEnt

There were good predictions for both
climate change scenarios, and two
contrasted tendencies of progressive
evolution

Garah and Bentouati,
2019

Machine learning (ML) Figure 1G Association between gene expression and
critical temperature in divergent trout
populations was measured by random forest

The “gradient boosting” approach showed
that evolution for higher upper thermal
tolerance is possible

Chen et al., 2018

Machine learning
(ML) + phylogenetic
diversity

Figure 1G Predictive models of taxonomic and
phylogenetic diversity using vascular plant
database for the United States

Native phylogenetic diversity is likely to
decrease over the next half century despite
increases in species richness

Park et al., 2020

(Continued)
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TABLE 1 | Continued

Analytical approach Diagram Data sources Main finding References

The potential of big
data

Figure 1G Special issue inspired by the symposium
“Fitness landscapes, big data, and the
predictability of evolution”

Understanding evolutionary adaptive
responses in the face of epistasis is a major
need that could benefit from big data

Visser et al., 2018

Genomic prediction
(GP) + machine
learning (ML)

Figures 1E,G ca. 11,000 wheat landrace accessions
assessed for 40,000 GBS-derived SNPs and
traits possibly related with heat stress

Deep learning should be integrated with
GBLUP for the study of complex traits and
the GxE interaction

Montesinos-Lopez
et al., 2018

Genomic prediction
(GP) + machine
learning (ML)

Figures 1E,G ca. 3,500 wheat landrace accessions examined
for 2,038 GBS-derived SNPs in 4 environments
of drought and 2 of heat stress

MLP and SVM were competitive in genomic
prediction of complex traits possibly related
to heat stress as days to heading

Montesinos-Lopez
et al., 2019

Examples enlighten how analytical approaches that try to reconstruct populations’ past genetic adaptive responses to previous events of climate change could be
proxies for better forecasting. This compilation is built for illustrative purposes and is not meant to be exhaustive. Examples are sorted as in Figure 1. SFT, space-for-time
substitution, GWAS, genome-wide association study; eGWAS, expression GWAS; GWSS, genome-wide selection scans; GEA, genome–environment associations; SSRs,
simple sequence repeats; SNP, single-nucleotide polymorphism; WGS, whole-genome sequencing; GBS, genotyping-by-sequencing; SVM, support vector machine; MLP,
multilayer perceptron; GP, genomic prediction; ML, machine learning.

coalescent – PSMC (Nadachowska-Brzyska et al., 2016).
These approaches can inform how isolated populations
that usually occupy climates with scarce habitat complexity
(Flantua et al., 2019) may favor thermal generalists, while
intricate local-scale heterogeneity at larger scales could trigger
(Hughes, 2006; Cortés et al., 2018a) thermal specialists with
limited migration potential (Cuesta et al., 2019). They can
also model population sizes (Beerli, 2006) in concert with
thermal changes (Zhou et al., 2014; Lehnert et al., 2019).
Yet, these approaches may be limited by computational
burden as they rely on simulation-based rejection sampling,
while much effort is gone into the design of multiple
scenarios, dimensionality reduction, and feature selection
(Schrider and Kern, 2018).

The Breeder’s Equation Assists
Multi-Trait Predictions Over a Few
Generations
In order for thermal adaptation to happen, there must be
heritable trait variation upon which selection, enforced by climate
change, acts (Darwin, 1874). A simple deterministic model that
condenses this evolutionary paradigm, aiding in the forecast of
adaptive trait responses across few generations, comes from the
quantitative genetic discipline and is known as the breeder’s
equation (Figure 1C). Its multivariate form (Walsh, 2008) allows
predicting responses of genetically correlated traits (vector R)
to standardized thermal selection gradients (vector β) over one
generation, so that R = Gβ, where G is the variance–covariance
matrix of additive genetic parameter estimates – a proxy for traits’
heritabilities and trade-offs (Falconer and Mackay, 1996). The
potential evolutionary response can therefore be computed using
selection-gradient estimates derived from fitness proxies (i.e.,
fitness values regressed as a function of standardized trait values)
and marker-based heritabilities (Lynch and Ritland, 1999). This
approach by itself is not novel, but what makes it powerful is that
it can be coupled with SFT (Wheeler et al., 2014), among other
trials, to predict thermal responses to thermal change (Sedlacek
et al., 2016). Yet, a major drawback is that selection gradients
heavily depend on the nature of the fitness proxies (Sedlacek et al.,

2016). Alternatively, experimental evolution studies (Exposito-
Alonso et al., 2019) could test more explicitly how rapidly
growing populations may respond to different thermal scenarios
(Kawecki et al., 2012) that, together with evolve and re-sequence
analyses (Turner and Miller, 2012), may contribute to understand
the genetic basis of short-term thermal adaptation.

FROM DEEPER GENOMIC SIGNATURES
OF SELECTION TO MID-TERM
PREDICTIONS

Genome-Wide Scans Reveal Signatures
of Divergent Selection to Past Thermal
Adaptation
Assuming that enough generations have passed as to exhibit
divergent selection to thermal changes, genome-wide association
(GWAS) (Hirschhorn and Daly, 2005) and selection (GWSS)
(Sabeti et al., 2007) scans (Figure 1D) are essential analytical
tools to reconstruct the genomic architecture of adaptive trait
divergence to thermal stress (Lecheta et al., 2020; Zwoinska et al.,
2020). These methods assume that some allele variants are in
linkage disequilibrium (LD) (Slatkin, 2008) with causal variants
that influence the adaptive phenotype (Morris and Borevitz, 2011;
Tam et al., 2019), a.k.a. genetic “hitchhiking” (Maynard Smith
and Haigh, 1974; Feder and Nosil, 2010). An interface between
GWAS and GWSS studies where loci are directly correlated
with niche’s thermal variables is named genome–environment
association (GEA) (Forester et al., 2016) and is insightful to infer
past thermal adaptation, too (Hancock et al., 2011; Pluess et al.,
2016; López-Hernández and Cortés, 2019). Yet, these approaches
partly disregard non-additive and highly polygenic architectures
(Stephan, 2016; Csillery et al., 2018; Barghi et al., 2020) and may
be misleading (Maher, 2008; Pennisi, 2014) if standardized data
(Waldvogel et al., 2020b) and statistical covariates (Lambert and
Black, 2012), such as population stratification (Barton et al., 2019)
and genomic constrains (Wray et al., 2013; Huber et al., 2016), are
incorrectly accounted for.
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Genomic Prediction May Assist
Forecasting of Adaptive Traits Over
Multiple Generations
A cutting-edge development that materialized after bringing
genomics into quantitative genetics theory is genomic prediction
(GP) (Desta and Ortiz, 2014; Crossa et al., 2017; Grattapaglia
et al., 2018). GP uses historical phenotypic data to adjust
marker-based infinitesimal (Figure 1E) models (Meuwissen
et al., 2001; Gianola et al., 2006; de los Campos et al.,
2013) that may overcome some of the restraints described
in the previous section. GP may offer a more thoughtful
picture of complex traits (e.g., thermal adaptation), presumably
regulated by many low-effect loci (Pritchard et al., 2010). GP
has so far informed predictions of single adaptive traits in
populations with known pedigrees (Saint Pierre et al., 2012;
Cros et al., 2019) and hybrid origins (Technow et al., 2014;
Tan et al., 2017), as well as multi-trait inferences across diverse
unrelated populations (Crossa et al., 2007, 2016; Resende et al.,
2012; Suontama et al., 2019) under genotype by environment
interactions (GxE) (Montesinos-Lopez et al., 2018; Crossa et al.,
2019) facing polygenic climate adaptation (Isabel et al., 2020).
GP of thermal adaptive traits across multiple generations and
populations may be incipient (Table 1), yet it harbors a
promising potential, as was demonstrated by reversely predicting
unobserved thermal phenology in 1900-year-old ancient corn
(Swarts et al., 2017), and as we prospect in the last section of this
mini-review.

FROM DEEP-TIME GENOMIC
CONSEQUENCES OF THERMAL SHIFTS
TO LONG-TERM PREDICTIONS

Phylogeography Offers Insights Into Past
Responses at an Evolutionary Scale
Phylogeographic inferences (Figure 1F) offer insights into how
species (1) diversify (Quintero and Wiens, 2013) and (2) face
the effects of past thermal variation (Jezkova and Wiens, 2016;
Richardson et al., 2019) by boosting complex interactions
such as species facilitation (Wheeler et al., 2015), adaptive
introgression, and hybrid speciation (Coyne and Orr, 2004;
Abbott et al., 2013; Payseur and Rieseberg, 2016; Marques et al.,
2019). For instance, interspecific hybrids with intermediate niche
requirements may rescue population’s gene pools in the face of
climate change, while they can also display signals of heterosis
for thermal adaption due to dominance on recessive alleles
or overdominance via novel allele combinations (Abdelmula
et al., 1999; Leinonen et al., 2011). Modern phylogeographic
inferences currently rely on abundant and unlinked genetic
markers (Bryant et al., 2012) that are capable of bypassing
traditional assumptions of single gene mutation models (Caliebe,
2008) while accounting for scenarios of reticulate evolution
(Vargas et al., 2017). Marker-based inferences also offer higher
resolution to validate cases where adaptive radiation (Madriñán
et al., 2013), and ecological parapatric speciation resulted from
local patterns of environmental variation (Cortés et al., 2018a)

that may resemble those expected by thermal change. Mosaics
of local-habitat heterogeneity can ultimately enforce thermal
pre-adaptation (Cortés and Wheeler, 2018). Distance-based
phylogenic reconstruction without proper out-groups (Baum
et al., 2005; Cortés, 2013) is yet a major risk of these approaches.

Machine Learning May Bridge Historical
Genomics and Long-Term Predictions
A promising way to simultaneously make sense of multiple
sources of historical genomic data that can be utilized to predict
populations’ adaptive responses is by merging them into a
machine learning (ML) framework (Figures 1G,H). ML bypasses
the “curse of dimensionality” and benefits from high-dimensional
inputs of heterogeneous dependent variables (“features”) without
a priori knowledge of their joint probability distribution
(Schrider and Kern, 2018). This improves predictions’ “recall”
(true positive) rate among a set of possible responses, especially
when the classification is iteratively trained using “labeled” data
(i.e., historical thermal responses may offer novel calibration
datasets, Table 1) via N-fold cross-validation. ML has been
routinely used to make ecological niche modeling (Phillips
et al., 2017; Valencia et al., 2020) and functional predictions
across genomes (Libbrecht and Noble, 2015). Yet, ML may
likely displace other tools useful to characterize the genomic
consequences of thermal adaptation, already introduced in this
mini-review, such as ABC modeling (Liu et al., 2019) and GWSS
(Schrider and Kern, 2018).

CONCLUDING REMARKS

Thermal adaptation is a complex polygenic trait well-described
in terms of its genetic architecture and selection footprints
across a wide range of phylogenetically diverse taxa (Way and
Oren, 2010; Valladares et al., 2014; López-Hernández and Cortés,
2019). While genomics has enabled these achievements that
rely on past events of thermal variation, forward predictions
remain one step behind partly because (1) disentangling selective
and demographic drivers of the genomic landscape from
fortuitous genomic constrains (Logan and Cox, 2020) is puzzling
(Ellegren and Galtier, 2016) and (2) merging these heterogeneous
signatures and data sources into a cohesive predictive framework
was unfeasible, until recently. In this mini-review, we advocated
for novel approaches that may enhance our understanding of
the genetic consequences of past climate change, while offering
new avenues to calibrate more accurate predictive models of the
thermal adaptive potential. For instance, ML advances are likely
to now move beyond species distribution modeling (Phillips
et al., 2017) and functional genomics (Libbrecht and Noble,
2015) to permeate the backward interpretation of recent genetic
demographic responses and genomic signatures to historical
thermal selection by updating popular but sometimes intractable
methods such as ABC modeling and GWSS (Schrider and Kern,
2018). Meanwhile, GP and ML might boost forward predictions
of the adaptive potential beyond a single generation by
training multifactorial models that can try incorporating genomic
heterogeneous evidence of historical thermal adaption across a
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wide spectrum of temporal scales. Ultimately, understanding how
biotas formed in response to historical environmental change
may improve our ability to predict and mitigate the threats to
species posed by global warming (Ding et al., 2020).

Despite GP’s and ML’s being useful to comprehend and
predict thermal adaptation, these new paradigms are not
exempt of criticism. A reiterative misconception is that because
these methodologies aim at strengthening predictions and
classification boundaries, they do not offer a mechanistic
understanding of the subjacent processes. However, even though
GP and ML rely on algorithmically generated models, both are
far from “black boxes” because they allow direct measurement
of the contribution of each genetic marker (Resende et al.,
2012; Spindel et al., 2016) and “feature” (Schrider and Kern,
2018), to the point that they can offer higher resolution
than traditional genetic mapping (Hirschhorn and Daly, 2005)
and deterministic model building (Otto and Day, 2007)
techniques. A second misconception assumes computational
burden. Although both GP and ML require a large number
of simulations, they do not depend on rejection sampling,
which means they may efficiently use all of the simulations to
inform the mapping of historical thermal data to parameters
(Schrider and Kern, 2018).

FUTURE DIRECTIONS

So far, GP and ML have been mostly utilized to address
thermal adaptation individually (Table 1). For instance, GP
has been used to project heat tolerance in diverse wheat lines
(Sukumaran et al., 2017; Juliana et al., 2019), and bovine
genotypes (Garner et al., 2016), in all cases more as a proof
of concept. Similarly, ML approaches have not only deepened
our understating on populations’ range shifts in the light of
thermal variation (Rippke et al., 2016; Garah and Bentouati,
2019; Mohapatra et al., 2019) but also assisted eGWAS of critical
temperature thresholds (Chen et al., 2018) and phylogenetic
forecasting in plants (Park et al., 2020). However, since GP and
ML are both cutting-edge tools, there is still room and need
for new developments. For instance, merging more cohesively
past adaptive responses to previous events of environmental
change into cutting-edge analytical frameworks like GP and ML
will ultimately allow predicting whether populations’ adaptive
potential may keep up with the pace of current thermal increase
(Franks and Hoffmann, 2012; Franks et al., 2014). Swarts
et al. (2017) illustrates that across-temporal predictions may
be useful not only to improve forecasting (Sweet et al., 2019)
but also to better understand previous responses to thermal
variation, since they used backward GP to demonstrate that
thermal adaptation in maize was selected in situ from ancient
standing variation 2000 years ago. By enlightening on the
nature of these historical genetic signatures to past climate
change, genomics can also enhance predictions that aim at
incorporating adaptive responses beyond extirpation and range
shifts (Chen et al., 2011).

Data sources incorporated into GP and ML can transcend
those with a direct genomic connotation and involve others that

can modulate or be informative of the thermal responses. For
instance, from an abiotic point of view, nutrient availability (Little
et al., 2016), absorption (Wu et al., 2020), and soil interactions
(Sedlacek et al., 2014) could act as enhancers or limiting factors
of the adaptive responses. From a biotic perspective, among-
ecotype differentiation (Cortés et al., 2012a,b, 2013; Blair et al.,
2016), intrapopulation divergence (Cortés et al., 2011; Blair et al.,
2012, 2018; Kelleher et al., 2012), and within-family variation
(Galeano et al., 2012; Blair et al., 2013) could encourage or coerce
adaptation. Population’s functioning, abundance, distribution,
and diversity, as predicted from controlled experiments (Way
and Oren, 2010; Elmendorf et al., 2012; Wolkovich et al., 2012;
Andresen et al., 2016; Becklin et al., 2017; Singh et al., 2017),
experimental evolution (Tenaillon et al., 2012; Mallard et al.,
2018; Pfenninger and Foucault, 2020), biological monitoring
(Walther et al., 2002; Franks et al., 2013; Wipf et al., 2013;
Reichstein et al., 2014; Hällfors et al., 2020), and shifts
observed in the fossil record (Alsos et al., 2009; Willis and
MacDonald, 2011; Lyons et al., 2016; Bruelheide et al., 2018),
can feed back on climate change (Pearson et al., 2013) and
so be considered as drivers themselves. Regardless of the exact
nature and extent of the data type, both GP and ML may
offer suitable scenarios to merge diverse, and even conflicting,
data sources in order to pinpoint emergent properties (Street
et al., 2011) out of a complex system, as is thermal genomic
adaptation. Therefore, a key guideline for new developments
concerns a better coupling of GP and ML approaches. Until
now, only a few works have relied on both methodologies,
in the context of thermal adaptation in wheat landraces
(Montesinos-Lopez et al., 2018, 2019), but have not gone beyond
technical comparisons/recommendations, nor have designed
integrated pipelines. Also, reconciling modern genomics with
last-generation predictive inferences of the thermal adaptive
potential and stochastic demographic modeling (Jenouvrier et al.,
2009) is necessary. Open-access resources and data sharing
platforms are as crucial in this effort as new integrated analytical
pipelines. We are looking forward to seeing more cohesive (Beyer
et al., 2020) and systematic studies and predictions across the
rich and informative temporal spectrum (Kristensen et al., 2018)
of past and future environmental variation (Franks et al., 2013).
These efforts should be carried out through a wide range of
spatial scales (Parmesan and Hanley, 2015; Way et al., 2015;
Gonzalez et al., 2020) spanning contrasting ecosystems (Lenoir
et al., 2020), microhabitats (Zellweger et al., 2020), and unrelated
taxa, which together may already be keeping heritable adaptive
trait differentiation valuable for long-term thermal responses
and informative for conservation prioritizations (Barnosky et al.,
2017; Elsen et al., 2020).
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FIGURE S1 | Past and future of thermal and CO2 variation, and their correlates
with past biodiversity. (A) Temperature and richness of plant species (from pollen)
for the Cenozoic Era (65 Mya – present). Temperature estimates (Supplementary
Table S1) were computed by Hansen et al. (2013) using the original δ18O record
from Zachos et al. (2008). Richness of plant species from pollen data
(Supplementary Table S1) is based on 15 Neotropical stratigraphic sections
inspected by Jaramillo et al. (2006). This profile goes from 65 to 20 Mya due to a
lack of more recent suitable sampling records. (B) Projections of the near-surface
temperature anomalies to 2,050 (Supplementary Table S2), which follow the
CIMP5 RCP 8.5 scenario from the KNMI (http://climexp.knmi.nl/) repository
averaged from an original 5-min resolution. Light gray shaded areas depict
minimum and maximum estimates. (C) Atmospheric CO2 and richness of plant
species (as in A) for the Cenozoic Era (65 Mya – present). CO2 records are an
updated version (Supplementary Table S1) derived from Royer and Chernoff
(2013), originally compiled by Beerling and Royer (2011). (D) Projected CO2

concentration (ppm) to 2,050 also follow the CIMP5 RCP 8.5 scenario, as in B
(Supplementary Table S3).

TABLE S1 | Dataset of temperature, atmospheric CO2, and richness of plant
species for the Cenozoic Era (65 Mya – present for temperature and CO2, and
65–20 Mya for richness of plant species). Temperature estimates were computed
by Hansen et al. (2013) from five-point running means of the original temporal
resolution of the δ18O record from Zachos et al. (2008), a profile of surface
low-magnesium calcitic fossils (including planktonic foraminifera, belemintes,
brachiopods, and bivalves) that was lower during periods with warmer seawater.
Atmospheric CO2 corresponds to an updated version from Royer and Chernoff
(2013), originally compiled by Beerling and Royer (2011). Richness of plant
species is based on pollen data from Jaramillo et al. (2006), who analyzed 1,530
samples from 15 stratigraphic sections in Colombia and Venezuela (Neotropics).

TABLE S2 | Projections of thermal variation to 2,050. Simulation of Near-Surface
Air Temperature Anomalies (◦C) from 1,860 to 2,050 follow the CIMP5 RCP 8.5
scenario from the KNMI (http://climexp.knmi.nl/) database averaged from an
original 5 min resolution. Minimum and maximum temperature estimates were
generated by the coupled ACCESS v.1.0 model specifically designed for the
CIMP5 project (Kowalczyk et al., 2013).

TABLE S3 | Projections of CO2 concentration (ppm) to 2,050. Simulations follow
the CIMP5 RCP 8.5 scenario from 1,860 to 2,050 available at KNMI
(http://climexp.knmi.nl/) database averaged from an original 5 min resolution.
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