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Glioblastoma is the most lethal malignant primary brain tumor; nevertheless, there
remains a lack of accurate prognostic markers and drug targets. In this study, we
analyzed 117 primary glioblastoma patients’ data that contained SNP, DNA copy, DNA
methylation, mRNA expression, and clinical information. After the quality of control
examination, we conducted the single nucleotide polymorphism (SNP) analysis, copy
number variation (CNV) analysis, and infiltrated immune cells estimate. And moreover,
by using the cluster of cluster analysis (CoCA) methods, we finally divided these
GBM patients into two novel subtypes, HX-1 (Cluster 1) and HX-2 (Cluster 2), which
could be co-characterized by 3 methylation variable positions [cg16957313(DUSP1),
cg17783509(PHOX2B), cg23432345(HOXA7)] and 15 (PCDH1, CYP27B1, LPIN3,
GPR32, BCL6, OR4Q3, MAGI3, SKIV2L, PCSK5, AKAP12, UBE3B, MAP4, TP53BP1,
F5, RHOBTB1) gene mutations pattern. Compared to HX-1 subtype, the HX-2 subtype
was identified with higher gene co-occurring events, tumor mutation burden (TBM), and
poor median overall survival [231.5 days (HX-2) vs. 445 days (HX-1), P-value = 0.00053].
We believe that HX-1 and HX-2 subtypes may make sense as the potential prognostic
biomarkers for patients with glioblastoma.

Keywords: multi-omics analysis, copy number variation, DNA methylation, mRNA expression, glioblastoma

INTRODUCTION

Gliomas are most common malignant brain tumors which derive from neuroepithelial cells
(Rivera et al., 2008). Most patients underwent tumor resection surgery with standard follow-up
chemotherapy/radiotherapy, and based on molecular neuropathology diagnosis, they may survive
from months to decades (median survival from 1 year to 15 years) (Marton et al., 2019). High-grade
gliomas’ recurrence was due to their invasive nature. Recent studies on molecular pathology of
glioma has outlined some valuable prognosis biomarkers such as IDH1, 1q-19p co-deletion, h3k27,
TERT (Killela et al., 2014; Marton et al., 2019; Zhang Z. Y. et al., 2019), but the existed biomarkers
still cannot fully predict the overall survival for all glioblastoma patients, such as IDH1 wild-type
in WHO grade 2 gliomas or in recurrent gliomas; moreover, we know a little about of the MGMT
demethylation status in glioma patients. Unlike many other types of malignant tumor, glioblastoma
lacks of effective treatment measures and drug targets (Snape and Warr, 2015; Higashijima and
Kanki, 2019; Ruta et al., 2019). Recent phase II/III clinical trials on glioblastoma were all failed,
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including immune checkpoint inhibitor PD-1 or PD-L1
(Berghoff and Preusser, 2016; Charoentong et al., 2017; Kurz
et al., 2018) or anti-angiogenic drugs like bevacizumab (Kurz
et al., 2018; Moriya et al., 2018). Life is composed of complicated
regulator control system, the cancer happened normally involved
in gene mutation, change of epigenetics and gain of fusion-
gene (Liang et al., 2019). Thus, through integrating analysis
of multi-omics data on glioblastoma is meaningful, which
could systematically study the negative molecular event like
genomic instability and somatic mutation (Song et al., 2019;
Zhang Z. Y. et al., 2019). In this study, we performed integrated
analysis via TCGA database of glioblastoma [(NIH), Genomic
Data Commons database (GDC)1], aimed to complete a new
molecular classification and provide some new treatment targets
for GBM. As a result, we enrolled 117patients that all contained
SNP, DNA copy, DNA methylation and mRNA expression
profile data. After combined the multidimensional data with
clinical information and cluster of clusters analysis steps, we
divided theses GBM samples into two novel subtypes (HX-1 and
HX-2), among the two subtypes, we identified 15 genes and 3
methylation variable position which are associated with overall
survival, and the subtype HX-2 has an obvious higher mutation
frequency than subtype HX-1, moreover, the NK cells activated
rate in HX-2 is also higher than HX-1 group.

RESULTS

Mutation Analysis Reveals
As the first step, we performed statistical analysis for the enrolled
117GBM samples, annotated the mutation types, depicted
proportion of different types of base changes and the top 10
mutation genes. Among these patients, the median age at initial
diagnosis was 62(from 21 to 89), and 44 of them are female, more
details of each patients could find in Supplementary Table 1.
The overall description of the results is revealed in Figure 1A.
In glioblastoma, the most common mutation type is C > T.
Figures 1A,B have displayed the 20 most mutated genes and
metadata information such as molecular subtypes information.
Figure 1C disclosed the frequency distribution of the top20 gene
mutations in GBM, the gene with the highest mutation rate is
PTEN, 56% of samples had gene mutation on PTEN.

We separately counted the number of somatic mutations
in each GBM sample and matched the clinical characteristics
of these samples, the clinical features including survival status,
tumor recurrence, etc. The analysis results indicated that the
somatic mutations between tumor recurrence and progression of
disease existed huge difference, and the recurrence samples has a
higher number of mutations (Figure 1D).

Somatic mutations are widespread events in tumorigenesis,
a few of gene mutations could directly cause tumor happening,
and those genes are called driver genes (Higashijima and Kanki,
2019). We used MutSigCV to predict driver gene of the samples
based on mutation data. When the significance threshold was
q < 0.01, a total of 925 candidate genes were obtained.

1https://gdc.cancer.gov/

Considering the mutation site of each sample and the bases at
1 bp position upstream and downstream of the mutation site, we
divided the mutation into 96 types according to the upstream and
downstream mutation site, calculated the frequency distribution
of the 96 mutation types of the 117 sample (Figure 1E). Moreover,
somatic mutations are present in all cells of the human body
and occur throughout life. They are the consequence of multiple
mutational processes, including the intrinsic slight infidelity
of the DNA replication machinery, exogenous or endogenous
mutagen exposures, enzymatic modification of DNA and
defective DNA repair. Different mutational processes generate
unique combinations of mutation types, termed “Mutational
Signatures”2. In this study, to figure out the relationship between
the mutation spectrum distribution of GBM samples and
mutational signatures in cosmic, we subsequently conducted non-
negative matrix factorization analysis based on 96 mutation types
of the 117 sample, and extracted three somatic point mutations
(Figure 1F). We found that the glioblastoma mutation spectrums
are mainly related to signature_27 like, signature_1 like and
signature_10 like.

Copy Number Variation Analysis
A total of 117 samples were conducted by GISTIC analysis.
The results suggested that 7q,7p,19p amplification and 10q,10p,
22q deletion are most notable, and Figure 2A revealed
the chromosome arms when GISTIC test significant (Q-
value < 10−5). In all tumor samples, there were 10 amplifications
and 21 copy number deletions in minimal common regions
(MCRs), these MCRs are showed in Figures 2B,C, among them,
the most significant amplification position are 7p11.2, 12q14.1,
the most significant deletion position are 9p21.3,10q23.31.
Figure 2D revealed the minimal common regions (MCRs) and
the genes within the MRCs (the deletion genes in the region is
represented by a negative value).

We then used ABSOLUTE software to evaluate the tumor
purity and ploidy based on copy number variation (CNV), as
showed in Figures 2E,F, the tumor purity ranged from 0.16–
1, and the tumor cell genome ploidy was ranged from 1.82–
10.13, which suggested that genomic disorder is a common event
in tumorigenesis.

Clustering by Integrated Platforms
We utilized four single platform data (SNP,DNA copy,DNA
methylation,mRNA expression profile) to integrate with
clinical information. When the significance threshold is set to
0.01(q < 0.01), 333 gene mutations, 60 DNA methylation sites,
and 123 mRNAs are associated with prognosis of GBM patients;
however, there were no significant CNV position with prognosis
in our array. According to the expression of 123 mRNAs, the
samples can be divided into 3 categories (Figure 3A). According
to the information of 60 methylation sites, the samples can be
divided into 2 subtypes (Figure 3B). According to the mutation
information of 333 genes the samples can be divided into 2
subtypes (Figure 3C).

2https://cancer.sanger.ac.uk/cosmic/signatures
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FIGURE 1 | Mutation analysis for enrolled samples. (A) Tumor mutation profile of glioblastoma samples. (B) Oncoplot with the top 20 most mutated genes.
(C) Frequency distribution of the top 20 gene mutations in glioblastoma. (D) Mutation and clinical feature correlation. (E) Distribution of mutation profile. (F) Mutation
correlation of character and cosmic mutation signature.

FIGURE 2 | Copy number variation analysis. (A) GISTIC analysis for enrolled samples, upper panel: amplification of chromosome arm, lower panel: deletion of
chromosome arm. (B,C) Distribution of minimal common regions (MCRs). (D) The number of genes in minimal common regions (the number of genes in the missing
region is represented by a negative value). (E,F) Purity and ploidy analysis.
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FIGURE 3 | Identification of subtype with cluster of different platforms. (A) Clustering mRNA expression profile. (B) Clustering of DNA methylation. (C) Clustering of
gene mutation. (D,E) CoCA cluster analysis, all samples can be divided into 2 subtypes, K = 2, HX-1(Cluster 1) and HX-2 (Cluster 2) subtype. (F) Subtype
classification with single platform clustering results display.

We next used CoCA cluster analysis method to conduct
cluster analysis again, the data was derived from SNP, DNA
methylation and mRNA platform, finally, we obtained two novel
subtypes from all GBM samples, and we named these subtypes as
HX-1 and HX-2 (Figure 3D). Figure 3E represents the delta area
curve of consensus clustering, indicating the relative change in
area under the cumulative distribution function (CDF) curve for
each category number k compared with k-1. When the subtypes
were classified into two groups (K = 2), the area under the cure
is biggest. We also plot the information of the subtypes with
each platform (Figure 3F). It suggests that HX1 and HX2 are
more correlated to SNP1, SNP2, and SNP3, but not correlated to
methylation subgroups or mRNA subgroups.

Subtype Analysis
Firstly, we analyzed the clinical features for each subtype, such
as gender, tumor status, survival status and the median survival
time etc. (Figure 4A and Table 1), the median survival time
between each group (HX-1 and HX-2) has significant differences
(P = 0.00053), the data indicated that the HX-2 had an obviously
poor OS (Figure 4B), the median OS for HX-1 is 445 days, and
the median OS for HX-2 is 231.5 days, P-value is 0.00053.

We further want to identify whether each subtype differs
in the type of mutation, as shown in Figures 4C,D, HX-1
and HX-2 were mainly happened as C > T mutation, and
Ti (transition) frequency was higher than TV (transversion)
frequency (Figures 4C,D).

Many genes that cause cancers often with mutually exclusive
or co-occurring events, in order to determine which genes
will happen with mutually exclusive or co-occurring events, we

conduct Fisher’s exact test for any two gene mutations, and we
found a plenty of gene co-occurring events in HX-2 subtype
instead of HX-1 (Figures 4E,F).

APOBEC (“apolipoprotein B mRNA editing enzyme, catalytic
polypeptide-like”) is a family of evolutionarily conserved cytidine
deaminases. In humans, they help protect from viral infections.
These enzymes, when misregulated, are a major source of
mutation in numerous cancer types (Rebhandl et al., 2015). We
used R package maftools to proceed APOBEC analysis. As shown
in Figure 4G, only subtype HX-2 had APOBEC cluster samples,
the genes with mutation rate which significantly high were
revealed in Figure 4G, the box plot shows differences in mutation
load between APOBEC-enriched and non-enriched samples,
donut plots display the proportion of mutations in tCw context,
bar plots show the top 10 differentially mutated genes between
APOBEC-enriched and non-APOBEC- enriched samples.

We also compared the 96 signatures collected in cosmic
with each subtype; as a result, the mutational signatures in
each subtype were both associated with signature1 (Figure 4H),
but the HX-1 had high similarity with signature6 subtype
independently; the HX-2 subtype also had high similarity with
signature10 and signature 27 (Figure 4I).

In order to identify the gene mutations for each subtype,
we counted the total amount of mutations in each subgroup
of each gene, and then conduct chi-square test. Finally,
we identified 727 different mutations in reach subtypes, the
subtype HX-2 had an obvious higher mutation rate than HX-
1 (Figure 4J). We subsequent counted the tumor mutation
burden (TBM) for each subtype, the result confirmed the
TBM in HX-2 (TBM = 55.4) is significantly higher than HX-1
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FIGURE 4 | Analysis of subtypes. (A) Clinical characters of subtypes. (B) Survival curve between subtypes. (C) Distribution of mutation types of HX-1.
(D) Distribution of mutation types of HX-2. (E) Mutually exclusive or co-occurring events in HX-1. (F) Mutually exclusive or co-occurring events in HX-2. (G) Cluster of
APOBEC (“apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like”) analysis of HX-2. (H) Mutation signatures of HX-1. (I) Mutation signatures of HX-2.
(J) Distribution of significant difference genes between HX-1 and HX-2. (K) Distribution of immune cells. (L) Tumor mutation burden comparison. (M,N) Purity and
ploidy analysis between HX-1 and HX-2. (O) Fusion genes events in HX-1 and HX-2. (P) Distribution of T cells CD4 memory activated between HX-1 and HX-2.
(Q) Distribution of mast cells activated between HX-1 and HX-2.

(TMB = 5.7, P = 3.881e-06, Figure 4L). There was no significant
difference of each subtype on tumor ploidy (Figure 4M) and
purity (Figure 4N).

We download fusion gene baseline from http://54.84.12.177/
PanCanFusV2/database. In total, we identified 144 fusion genes
in HX-1 cluster and 284 fusion gene in HX-2 (Figure 4O,

TABLE 1 | Clinical features for each subtype.

HX-1 HX-2 P-value

Female 16 28 0.5072

Male 32 40

Not available 1 0

Alive 18 12 0.0285

Dead 30 56

Not available 1 0

Progression of disease 24 25 0.6217

Recurrence 8 5

Not available 17 38

Tumor free 6 4 0.4655

With tumor 39 53

Not available 4 11

Supplementary Table 2). We uploaded the expression data of
117 GBM samples to cibersort website, calculated the proportion
of 22 immune cells in these samples (Figure 4K). Then, the
distribution of the proportion of each immune cell between
the two subgroups was calculated separately, we determined
that proportion of T cells CD4 memory activated (Figure 4P)
and mast cells activated (Figure 4Q) was significant different
between HX-1 and HX-2.

Prognostic Marker Identification and
Validation
In order to further identify of the prognostic markers
for the subtypes, we conjointly analyzed the 19 DE
genes, 27 DE methylation position and 727 DE genes
between HX-1 and HX-2. The analysis results show
that when the significance threshold is set to 0.05, there
had three methylation positions [cg16957313(DUSP1),
cg17783509(PHOX2B),cg23432345(HOXA7)] and 21 genes
were associated with prognosis, in which 15 genes were same
as in Mut2SigCV analysis. In addition, the distribution of all
GBM cases based on TCGA is displayed in Supplementary
Figure 1 according to the mutation signature of these 15 genes.
The survival curve of these 21 associated prognosis factors
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FIGURE 5 | Display of landscape between HX-1 and HX-2, the clinical features and mutation status of 15 driver gene were integrated into subtypes, it can be clearly
seen from the figure that the frequency of gene mutations in HX-2 subtype is much higher than that of HX-1.

were showed in Supplementary Figure 2 We also described the
landscape of the 15 genes between the two subtypes (Figure 5).

Moreover, to validate the outcome of our analysis, the 15
mutant genes mutation signature genes used to develop a cancer-
related risk signature. Samples from the Chinese Glioma Genome
Atlas (CGGA) dataset were divided into high risk group and low
risk group. These samples carrying mutations within 15 genes
were defined as high-risk group (n = 11) in CGGA primary GBM
cohort; while the others were defined as low-risk group (n = 42).
According to the Kaplan-Meier survival analysis, the prognosis of
high-risk group was strikingly worse than that of low-risk group
(Supplementary Figure 3A, P = 0.032). Moreover, the 15 gene
signature in the CGGA primary GBM cohort showed a high area
under the receiver operating characteristic curve (AUC = 0.632)
(Supplementary Figure 3B), close to that in the TCGA GBM
cohort (AUC = 0.756) (Supplementary Figure3C).

DISCUSSION

Glioblastomas (GBM) is the most invasive and prevalent
types of glioma with extremely poor prognosis and limited
treatment options (Rebhandl et al., 2015). In recent years,
tremendous articles reported the molecular characterization of
GBM, make us better understanding of how to use the key
molecules to predict the OS for glioma patients (Colaprico
et al., 2016; Holdhoff, 2018; Higashijima and Kanki, 2019;
Marton et al., 2019). However, most of the published articles
were based on single platform analysis, which is hard to

explain why the similar molecular pattern may induce diverse
prognosis in GBM patients sometimes. In order to make a
comprehensive understanding on molecular characteristic of
GBM, we used the unsupervised clustering method to cluster
the data from four different platforms (SNP,DNA copy,DNA
methylation,mRNA expression) and subsequently used the
cluster of clusters analysis (CoCA) method to further identify
the subtypes of GBM. Therefore, through systematic studying
of the integrated multi-omics analysis, genomic instability,
somatic mutation and the molecular characteristics of each
GBM subgroup, we hope we can provide new ideas and novel
theoretical basis for early diagnosis and individualized treatment
for GBM patients.

We conducted the SNP associated analysis in the first
step, our result showed the glioblastoma was characterized
by prominence of C > T. The signatures of mutational
processes in human cancer was firstly reported by Michael
R. Stratton and his colleagues, they concluded more than
20 distinct mutational signatures from 4,938,362 mutations
from 7,042 cancers (Wu et al., 2019). We extracted the
mutation characteristics of somatic point mutations, the
result showed that the mutation spectrum of glioblastoma
is similar to signature27,signature1 and signature10 which
collected in cosmic. As reported, the Signature 1A/B is
probably related to the relatively elevated rate of spontaneous
deamination of 5-methyl-cytosine which results in C > T
transitions and which predominantly occurs at NpCpG
trinucleotides, and signature10 was the associated with altered
activity of the error-prone polymerase Pol ε consequent on
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mutations in the gene. However, the reason for signature 27
is still unknown.

We next use clusters analysis (CoCA) method to
classified the subtype of enrolled glioblastoma samples
as HX-1 and HX-2, the main mutation signature of the
two subtypes are the same as C > T, however, there were
a plenty of gene co-mutation events in HX-2 but not
shown in HX-1, the Tumor mutation burden in HX-2
was significant higher that HX-1, and the median survival
forHX-2 is 231.5 days, much shorter than HX-1 445 days,
suggested that the HX-2 subtype is more aggressive than
HX-1 subtype, and HX-2 occurred from high frequency
of gene mutation.

The proportion of T cells CD4 memory activated and mast
cells activated were determined significant difference between
HX-1 and HX-2 in our result. Dongrui Wang et al. found that
maintenance of the CD4 + subset was positively correlated
with the recursive killing ability of CAR T cell products
derived from GBM patients (Alexandrov et al., 2013). His
finding identified CD4 + CAR T cells as a highly potent and
clinically important T cell subset for effective CAR therapy.
This may probably explain why the HX-1 had the better
prognosis. Moreover, recent research indicated that mast cells
(MCs) upon activation by glioma cells produce soluble factors
including IL-6, which are documented to be involved in cancer-
related activities and promoted glioma cell differentiation and
growth (Wang et al., 2018). It was also figured out that MCs
exert their effect via inactivation of STAT3 through GSK3β

downregulation. This could probably explain why the HX-2
cluster had the shorter OS.

We further analyzed the negatively regulative biomarkers
which may distinguish the OS of HX-2 from HX-1, and we
identified 3 methylation variable positions [cg16957313(DUSP1),
cg17783509(PHOX2B), cg23432345(HOXA7)] and 15 genes
(PCDH1, CYP27B1, LPIN3, GPR32, BCL6, OR4Q3, MAGI3,
SKIV2L, PCSK5, AKAP12, UBE3B, MAP4, TP53BP1, F5,
RHOBTB1) that may induce poor overall survival for HX-2.
Some of these genes have been reported to be associated with
the malignant behavior of glioblastoma. For example, studies
have shown that BCL6 is essential for the survival of GBM cells
(Attarha et al., 2017), the overexpression of BCL6 is associated
with poor prognosis for glioma patients, BCL6 gene could
inhibits the expression of wild-type p53 and its target genes in
GBM cells. In gliomas, the expression levels of MAGI3 and PTEN
were reported significantly down-regulated, and for glioma C6
cell line, overexpressed MAGI3 will inhibits Akt phosphorylation,
and inhibits cell proliferation (Xu et al., 2017). We also identified
some novel genes which are still not been reported, such as
PCDH1, LPIN3, GPR32, SKIV2L, PCSK5.

In this study, we used a comprehensive bioinformatics
method to integrate 4 platform data of glioblastoma, and
further identified two novel subtypes of glioblastoma which
could be characterized by the cluster of 3 methylation
variable position and 15 gene mutation, the multi-omic
signatures for the prognosis of glioblastoma developed by
us were also be validate in CGGA independent dataset. We
hope that our research could provide potential stratification

marker for clinical outcome and new theoretical basis
for glioblastoma.

MATERIALS AND METHODS

TCGA Data Acquisition
The TCGAbiolinks R package was used to help us obtain patients
data from the National Institutes of Health (NIH), Genomic
Data Commons database (GDC)3 (Holdhoff, 2018). Briefly, we
get 577 SNP6 Copy Number segment GBM samples data and
411 samples methylation microarrays data from the website http:
//firebrowse.org/, and we also downloaded 154 GBM samples
mRNA expression data from https://portal.gdc.cancer.gov/. After
filtrate these data and link sample information, there are 117
sample contained multi-omics data, which means all the filtered
samples contained gene mutation data, CNV data, methylation
data and mRNA expression data. Our subsequent analysis was
based on these data. The fusion gene result subsequently used
was acquired from TUMOR FUSION GENE DATA PORTAL
database4.

Single Nucleotide Polymorphism (SNP)
Analysis
MutSigCV module in GenePattern was used to analysis the driver
gene in GBM5 (Ma et al., 2015). There are strong correlations
between somatic mutation frequencies in cancers and both gene
expression level and replication time of a DNA region during
the cell cycle, MutsigCV analysis could substantially reduce the
number of false positives, especially when applied to tumor
samples that have high mutation rates.

We use the maftools R package6 (Lawrence et al., 2013)
and SomaticSignatures7 (Mayakonda et al., 2018) to conduct
mutation analysis and plot the mutation spectrum and
characteristics.

Copy Number Variation Analysis
GISTIC module in GenePattern was also used to extract the
landmark CNV events in GBM, the parameters in GISTIC
algorithm were set as follows: Q-value < 0.05 as statistics
significance, confidence levels were set as 95% to confirm
peak region. Chromosome arm length was set as 0.98 when
analyzed the chromosome arm mutation. Tumor purity and
ploidy character were analyzed by the R package R ABSOLUTE8.

Subtype Identification of Glioblastoma
Unsupervised clustering was proceeded based on the three
different platforms (SNP, DNA methylation, and mRNA
expression profile) and molecules associated of overall survival,
the we conduct the clustering again based on a method called

3https://gdc.cancer.gov/
4https://tumorfusions.org/PanCanFusV2/
5https://cloud.genepattern.org/gp/pages/index.jsf
6https://bioconductor.org/packages/release/bioc/html/maftools.html
7https://bioconductor.org/packages/release/bioc/html/SomaticSignatures.html
8https://software.broadinstitute.org/cancer/cga/absolute_download
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cluster of clusters analysis (CoCA) (Hoadley et al., 2014;
Gehring et al., 2015). Briefly, Subtype calls from each of the
4 platforms analyzed for subtypes within each data type were
used to identify relationships between the different classifications.
Subtypes defined from each platform were coded into a series
of indicator variables for each subtype. The matrix of 1 and 0s
was used in ConsensusClusterPlus R package (Gehring et al.,
2015) to identify structure and relationship of the samples.
Parameters for Consensus cluster were 80% sample resampling
with 1000 iterations of hierarchical clustering based on a Pearson
correlation distance metric. and ultimately, we acquired the two
subtypes result from glioblastoma that integrated the data of
different platforms. We named these two subtypes as subtype
HX-1 and subtype HX-2.

Characteristic Analysis of Subtypes
Chi-square test was used to the characteristic analysis of GBM
subtypes, including survival state and progression of disease.

R package limma9 (Smaglo et al., 2015) was conduct to screen
the valuable biomarkers within the subgroups, we tried to filter
the difference expressed (DE) mRNA and methylation variable
positions (MVPs), and finally proceed KEEG and GO analysis for
those DE mRNA and MVPs.

We also utilized the maftools to map the gene mutation
characteristic in GBM subtypes, including C>T, T>C, C>A,
T>G, C>G, T>A, Ti(transition) and TV (transversion).
Moreover, mutation signature analysis and APOBEC enrichment
analysis (apolipoprotein B mRNA editing enzyme, catalytic
polypeptide-like) were also conduct between the subtypes.

Infiltrated Immune Cells Estimate
Tumor immune cell infiltration refers to the migration of
immune cells from the blood to the tumor tissue and begins
to exert its effects. The infiltration of immune cells in tumor
directly affects the overall survival in GBM patients. Thus,
to quantify the proportion of immune cells in the enrolled
samples, we used CIBERSORT algorithm (Ritchie et al., 2015;
Chen et al., 2018; Zhang L. et al., 2019) and LM22 algorithm
(Charoentong et al., 2017), and calculated the percentage of
9 https://bioconductor.org/packages/release/bioc/html/limma.html

22 types of human immune cells in GBM, concluding the B cells,
T cells, natural killer cells, macrophages and dendritic cells.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work was sponsored by the National Natural Science Young
Foundation of China (Grant no. 81904218 to PQ and Grant no.
81902532 to YY) and Innovation and Sparkle Project of Sichuan
University (Grant No. 2082604401004/060 to YY).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.565341/full#supplementary-material

Supplementary Figure 1 | Mutation signature of these 15 DE genes.

Supplementary Figure 2 | Survival curves of the three methylation variable
position [cg16957313(DUSP1), cg17783509(PHOX2B), cg23432345(HOXA7)]
and 15 genes (PCDH1, CYP27B1, LPIN3, GPR32, BCL6, OR4Q3, MAGI3,
SKIV2L, PCSK5, AKAP12, UBE3B, MAP4, TP53BP1, F5, RHOBTB1).

Supplementary Figure 3 | Prognostic marker validation. (A) Kaplan–Meier
survival analysis of Chinese Glioma Genome Atlas (CGGA) dataset. (B) Operating
characteristic curve (AUC = 0.632) of CGGA primary GBM cohort. (C) Operating
characteristic curve (AUC = 0.756) of TCGA GBM cohort.

REFERENCES
Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin,

A. V., et al. (2013). Signatures of mutational processes in human cancer. Nature
500, 415–421.

Attarha, S., Roy, A., Westermark, B., and Tchougounova, E. (2017). Mast cells
modulate proliferation, migration and stemness of glioma cells through
downregulation of GSK3beta expression and inhibition of STAT3 activation.
Cell Signal. 37, 81–92. doi: 10.1016/j.cellsig.2017.06.004

Berghoff, A. S., and Preusser, M. (2016). In search of a target: PD-1 and PD-
L1 profiling across glioma types. Neuro. Oncol. 18, 1331–1332. doi: 10.1093/
neuonc/now162

Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder,
D., et al. (2017). Pan-cancer Immunogenomic Analyses Reveal Genotype-
Immunophenotype Relationships and Predictors of Response to Checkpoint
Blockade. Cell Rep. 18, 248–262. doi: 10.1016/j.celrep.2016.12.019

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., and Alizadeh, A. A. (2018).
Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol.
Biol. 1711, 243–259.

Colaprico, A., Silva, T. C., Olsen, C., Garofano, L., Cava, C., Garolini, D., et al.
(2016). TCGAbiolinks: an R/Bioconductor package for integrative analysis of
TCGA data. Nucleic Acids Res. 44:e71. doi: 10.1093/nar/gkv1507

Gehring, J. S., Fischer, B., Lawrence, M., and Huber, W. (2015). SomaticSignatures:
inferring mutational signatures from single-nucleotide variants. Bioinformatics
31, 3673–3675.

Higashijima, Y., and Kanki, Y. (2019). Molecular mechanistic insights: The
emerging role of SOXF transcription factors in tumorigenesis and development.
Semin. Cancer Biol. S1044-579X, 30146–30149.

Hoadley, K. A., Yau, C., Wolf, D. M., Cherniack, A. D., Tamborero, D., Ng,
S., et al. (2014). Multiplatform analysis of 12 cancer types reveals molecular
classification within and across tissues of origin. Cell 158, 929–944. doi: 10.
1016/j.cell.2014.06.049

Frontiers in Genetics | www.frontiersin.org 8 November 2020 | Volume 11 | Article 565341

https://bioconductor.org/packages/release/bioc/html/limma.html
https://www.frontiersin.org/articles/10.3389/fgene.2020.565341/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.565341/full#supplementary-material
https://doi.org/10.1016/j.cellsig.2017.06.004
https://doi.org/10.1093/neuonc/now162
https://doi.org/10.1093/neuonc/now162
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1016/j.cell.2014.06.049
https://doi.org/10.1016/j.cell.2014.06.049
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-565341 November 20, 2020 Time: 22:40 # 9

Yuan et al. Multi-Omics Analysis for Glioblastoma

Holdhoff, M. (2018). Role of Molecular Pathology in the Treatment of Anaplastic
Gliomas and Glioblastomas. J. Natl. Compr. Canc. Netw. 16, 642–645. doi:
10.6004/jnccn.2018.0045

Killela, P. J., Pirozzi, C. J., Healy, P., Reitman, Z. J., Lipp, E., Rasheed, B. A., et al.
(2014). Mutations in IDH1, IDH2, and in the TERT promoter define clinically
distinct subgroups of adult malignant gliomas. Oncotarget 5, 1515–1525. doi:
10.18632/oncotarget.1765

Kurz, S. C., Cabrera, L. P., Hastie, D., Huang, R., Unadkat, P., Rinne, M., et al.
(2018). PD-1 inhibition has only limited clinical benefit in patients with
recurrent high-grade glioma. Neurology 91:e1355–e1359.

Lawrence, M. S., Stojanov, P., Polak, P., Kryukov, G. V., Cibulskis, K., Sivachenko,
A., et al. (2013). Mutational heterogeneity in cancer and the search for new
cancer-associated genes. Nature 499, 214–218.

Liang, Q., Li, X., Guan, G., Xu, X., Chen, C., Cheng, P., et al. (2019). Long non-
coding RNA, HOTAIRM1, promotes glioma malignancy by forming a ceRNA
network. Aging 11, 6805–6838. doi: 10.18632/aging.102205

Ma, Q., Zhang, Y., Meng, R., Xie, K. M., Xiong, Y., Lin, S., et al. (2015). MAGI3
Suppresses Glioma Cell Proliferation via Upregulation of PTEN Expression.
Biomed. Environ. Sci. 28, 502–509.

Marton, E., Giordan, E., Siddi, F., Curzi, C., Canova, G., Scarpa, B., et al. (2019).
Over ten years overall survival in glioblastoma: A different disease? J. Neurol.
Sci. 408:116518. doi: 10.1016/j.jns.2019.116518

Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C., and Koeffler, H. P.
(2018). Maftools: efficient and comprehensive analysis of somatic
variants in cancer. Genome Res. 28, 1747–1756. doi: 10.1101/gr.239
244.118

Moriya, S., Ohba, S., Adachi, K., Nishiyama, Y., Hayashi, T., Nagahisa, S., et al.
(2018). A retrospective study of bevacizumab for treatment of brainstem glioma
with malignant features. J. Clin. Neurosci. 47, 228–233. doi: 10.1016/j.jocn.2017.
10.002

Rebhandl, S., Huemer, M., Greil, R., and Geisberger, R. (2015). AID/APOBEC
deaminases and cancer. Oncoscience 2, 320–333. doi: 10.18632/oncoscience.155

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res. 43:e47. doi: 10.1093/nar/gkv007

Rivera, A. L., Pelloski, C. E., Sulman, E., and Aldape, K. (2008). Prognostic and
predictive markers in glioma and other neuroepithelial tumors. Curr. Probl.
Cancer 32, 97–123. doi: 10.1016/j.currproblcancer.2008.02.003

Ruta, V., Longo, C., Boccaccini, A., Madia, V. N., Saccoliti, F., Tudino,
V., et al. (2019). Inhibition of Polycomb Repressive Complex 2
activity reduces trimethylation of H3K27 and affects development in

Arabidopsis seedlings. BMC Plant Biol. 19:429. doi: 10.1186/s12870-019-
2057-7

Smaglo, B. G., Tesfaye, A., Halfdanarson, T. R., Meyer, J. E., Wang, J., Gatalica,
Z., et al. (2015). Comprehensive multiplatform biomarker analysis of 199
anal squamous cell carcinomas. Oncotarget 6, 43594–43604. doi: 10.18632/
oncotarget.6202

Snape, T. J., and Warr, T. (2015). Approaches toward improving the prognosis of
pediatric patients with glioma: pursuing mutant drug targets with emerging
small molecules. Semin. Pediatr. Neurol. 22, 28–34. doi: 10.1016/j.spen.2014.
12.003

Song, J., Song, F., Liu, K., Zhang, W., Luo, R., Tang, Y., et al. (2019). Multi-
omics analysis reveals epithelial-mesenchymal transition-related gene FOXM1
as a novel prognostic biomarker in clear cell renal carcinoma. Aging 11,
10316–10337. doi: 10.18632/aging.102459

Wang, D., Aguilar, B., Starr, R., Alizadeh, D., Brito, A., Sarkissian, A., et al. (2018).
Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity.
JCI Insight 3:e99048.

Wu, F., Chai, R. C., Wang, Z., Liu, Y. Q., Zhao, Z., Li, G. Z., et al. (2019). Molecular
classification of IDH-mutant glioblastomas based on gene expression profiles.
Carcinogenesis 40, 853–860. doi: 10.1093/carcin/bgz032

Xu, L., Chen, Y., Dutra-Clarke, M., Mayakonda, A., Hazawa, M., Savinoff, S. E.,
et al. (2017). BCL6 promotes glioma and serves as a therapeutic target. Proc.
Natl. Acad. Sci. U S A. 114, 3981–3986. doi: 10.1073/pnas.1609758114

Zhang, L., Liu, Z., Li, J., Huang, T., Wang, Y., Chang, L., et al. (2019). Genomic
analysis of primary and recurrent gliomas reveals clinical outcome related
molecular features. Sci. Rep. 9, 1–8.

Zhang, Z. Y., Zhan, Y. B., Zhang, F. J., Yu, B., Ji, Y. C., Zhou, J. Q., et al.
(2019). Prognostic value of preoperative hematological markers combined with
molecular pathology in patients with diffuse gliomas. Aging 11, 6252–6272.
doi: 10.18632/aging.102186

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Yuan, Qi, Xiang, Yanhui, Yu and Qing. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 9 November 2020 | Volume 11 | Article 565341

https://doi.org/10.6004/jnccn.2018.0045
https://doi.org/10.6004/jnccn.2018.0045
https://doi.org/10.18632/oncotarget.1765
https://doi.org/10.18632/oncotarget.1765
https://doi.org/10.18632/aging.102205
https://doi.org/10.1016/j.jns.2019.116518
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1016/j.jocn.2017.10.002
https://doi.org/10.1016/j.jocn.2017.10.002
https://doi.org/10.18632/oncoscience.155
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/j.currproblcancer.2008.02.003
https://doi.org/10.1186/s12870-019-2057-7
https://doi.org/10.1186/s12870-019-2057-7
https://doi.org/10.18632/oncotarget.6202
https://doi.org/10.18632/oncotarget.6202
https://doi.org/10.1016/j.spen.2014.12.003
https://doi.org/10.1016/j.spen.2014.12.003
https://doi.org/10.18632/aging.102459
https://doi.org/10.1093/carcin/bgz032
https://doi.org/10.1073/pnas.1609758114
https://doi.org/10.18632/aging.102186
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Multi-Omics Analysis Reveals Novel Subtypes and Driver Genes in Glioblastoma
	Introduction
	Results
	Mutation Analysis Reveals
	Copy Number Variation Analysis
	Clustering by Integrated Platforms
	Subtype Analysis
	Prognostic Marker Identification and Validation

	Discussion
	Materials and Methods
	TCGA Data Acquisition
	Single Nucleotide Polymorphism (SNP) Analysis
	Copy Number Variation Analysis
	Subtype Identification of Glioblastoma
	Characteristic Analysis of Subtypes
	Infiltrated Immune Cells Estimate

	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


