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About 20–30% of early-stage breast cancer patients suffer relapses after surgery. To
identify such high-risk patients, many signatures have been reported, but they lack
robustness in data measured on different platforms. Here, we developed a signature
which is robust across multiple profiling platforms, and identified reproducible omics
features characterizing metastasis of estrogen receptor (ER)-positive breast cancer from
the Gene Expression Omnibus database with the aid of the signature. Based on the
stable within-sample relative expression orderings (REOs), we constructed a signature
consisting of five gene pairs, named 5-GPS, whose REOs were significantly correlated
with relapse-free survival using the univariate Cox regression model. Using 5-GPS,
patients were classified into the low-risk and high-risk groups. Patients in the high-risk
group have worse survival compared to those in the low-risk group using Kaplan-Meier
curve analysis with the log-rank test. Applying 5-GPS to the RNA-sequencing data
of stage I-IV breast cancer samples archived in The Cancer Genome Atlas (TCGA),
we found that the proportion of the high-risk patients increases with the stage. The
proposed REO-based signature shows potential in identifying early-stage ER+ breast
cancer patients with high risk of relapse after surgery.

Keywords: ER+ breast cancer, micro-metastasis, relapse risk, prognosis signature, gene expression

INTRODUCTION

Breast cancer is the most common malignant cancer among women (Bao et al., 2019), and
approximately 70% of breast cancer patients are estrogen receptor-positive (ER+) (Jemal et al.,
2011; Cai et al., 2018; Mitobe et al., 2020). About 20–30% of early-stage breast cancer patients
suffer a relapse after surgery, and these patients need adjuvant therapies to reduce the risk of
relapse (Cardoso, 2003; Yamashita et al., 2020). The relapse after surgery mostly drives from lymph
nodes metastasis (LNMs) or micro-metastases of preoperative tumor cells. Detecting LNMs, the
sensitivity of current preoperative imaging techniques is only from 30.3 to 57.6%;most the small
LNM (<1.0 cm in the greatest dimension) patients remain undetected (Huang et al., 2011). It is

Frontiers in Genetics | www.frontiersin.org 1 October 2020 | Volume 11 | Article 566928

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.566928
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.566928
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.566928&domain=pdf&date_stamp=2020-10-29
https://www.frontiersin.org/articles/10.3389/fgene.2020.566928/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-566928 October 23, 2020 Time: 19:2 # 2

Li et al. A Prognostic Signature for Breast Cancer

difficult to detect LNMs efficiently and accurately in routine
examinations (Wang et al., 2014)and there exists a high rate
of false-negative clinical reports for tiny lesions or micro-
metastases (Li et al., 2016). Thus, there exists an urgent
need to develop a prognostic signature to identify high-risk
patients with micro-metastases and poor prognosis from early
stage patients. These high-risk patients would be recommended
adjuvant therapy.

Many prognostic signatures have been developed for
predicting clinical outcome of breast cancer patients. For
example, a 70-gene signature assay has been approved by the
U.S. Food and Drug Administration for identifying breast cancer
patients likely to develop distant metastases (van ’t Veer et al.,
2002), as documented in the National Comprehensive Cancer
Network Breast Cancer Clinical Practice guidelines 2020.V4
(please see the full guidelines on NCCN.org). However, the
measurement of the 70-gene signature must be carried out at
two central laboratories in the Netherlands and the United States
(Beumer et al., 2016) in order to control the experimental batch
effects, which limits its wide applications. Other prognostic
signatures, based on risk scores, usually calculated as the sum of
the weighted expression values of the signature genes (Sotiriou
et al., 2006; Wang et al., 2006). This type of signatures usually
have low reproducibility across laboratories and platforms due
to that there are large variations in the absolute gene expression
values profiled by current RNA-sequencing (RNA-Seq) and
microarray techniques (Seqc Maqc-Iii Consortium, 2014).
Additionally, the gene expression measurements are also greatly
affected by the sampling locations which may lead to varied
proportions of tumor epithelial cells (Xu et al., 2015; Cheng et al.,
2017) and RNA degradation problem during sample preparation
(Chen et al., 2017).

In the contrast, our previous study has proved that the
signatures based on the within-sample relative expression
orderings (REOs) are highly robust against experimental
batch effects, obviating the requirement of data normalization
(Guan et al., 2016; Qi et al., 2016). Besides, the most
important feature of the REO-based signature is that it
is relatively robust against proportion variations in tumor
epithelial cells due to the uncertainty of sampling locations
(Xu et al., 2015; Cheng et al., 2017) and against certain
RNA degradation during sample preparation (Chen et al.,
2017). Cai et al. (2015) constructed a REO-based prognostic
signature for early stage ER+ breast cancer. However, the
signature was not validated in the data cohorts measured by
platforms other than the Affymetrix platform. Therefore, it is
worth adopting the REO-based approach to develop robust
prognostic signatures.

In this study, we developed a signature for identifying early-
stage ER+ breast cancer patients with high risk of relapse after
surgery, which can aid the diagnosis of occult metastasis of early-
stage breast cancer. Applying the signature in ER+ stage I-IV
breast cancer samples from The Cancer Genome Atlas (TCGA),
the proportion of the high-risk samples in each stage increase
with the stage level. Based on the reclassified metastasis status of
breast cancer samples of TCGA, we identified genomic features
characterizing metastatic tissues.

MATERIALS AND METHODS

Data Acquisition and Pre-processing
The breast cancer gene expression datasets analyzed in this study
were downloaded from the Gene Expression Omnibus (GEO1)
(Barrett et al., 2013) in August 2016, the European Genome-
Phenome Archive (EGA2) in October 2016 with authorization
(Lappalainen et al., 2015) and The Cancer Genome Atlas
(TCGA3) (International Cancer Genome Consortium et al.,
2010) in November 2017, as described briefly in Table 1. The
detailed clinical information of all the datasets is given in
Supplementary Table S1.

In this study, the lymph node-positive samples with 4
or more node, stage T2–T4 and the tumor size above
20 mm were defined as true metastasis samples and the
lymph node-negative samples with 0 node, stage T1 and
tumor size of 20 mm or less were defined as non-metastasis
samples, respectively. The ER+ breast cancer patients from
GSE7390, GSE6532, GSE2034, and GSE4922 did not receive
any adjuvant treatment after surgery. The clinical characteristics
for discovery and validation cohort were summarized in
Supplementary Table S2.

For the data measured by the Affymetrix’s microarray
platform, we downloaded the raw data (.CEL files) and used
the Robust Multi-array Average algorithm (Irizarry et al., 2003)
for background adjustment without quantize normalization.
Each probe-set ID was mapped to its Entrez gene ID with the
corresponding CDF files. If a probe was mapped to multiple
or zero genes, the data of this probe was dropped. If multiple
probes were mapped to one gene, the expression value for the
gene was summarized as the arithmetic mean of the values
of the probes. The number of gene matched in GPL570 is
20486, 12752 in GPL96, 18926 in the TCGA microarray datasets
and 12273 genes matched the EGA microarray datasets. The
number of common genes shared by all datasets is 11792. The
percentage of dropped genes was 62.53 and 42.77% in the
expression data measured by GPL570 and GPL96. While 68.71
and 65.21% were dropped form the TCGA and EGA dataset.
The probe id, Entrez ID and matched genes were listed in
Supplementary Table S3.

For the data measured by the Illumina’s microarray platform,
we directly downloaded the processed data. For TCGA datasets,
the integrated data including both level-3 mRNA profiles
and level-2 gene mutation profiles were obtained from the
TCGA portal, and level-4 copy number data were downloaded
from Firehose4.

Identification of Significantly Stable
REOs
Figure 1 describes the process of developing and validating the
prognosis predictor. The REO of two genes, A and B, is denoted
as A > B (or A < B) if gene A has a higher (or lower) expression

1http://www.ncbi.nlm.nih.gov/geo
2http://www.ebi.ac.uk/ega//
3http://cancergenome.nih.gov/
4https://confluence.broadinstitute.org/display/GDAC/Download
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TABLE 1 | Description of ER+ breast cancer tissue datasets used in this study.

Dataset Platform Metastasis group Non- metastasis group

Discovery cohort Significantly stable gene pairs GSE19615 Affymetrix GPL570 21 19

GSE43365 Affymetrix GPL570 6 52

GSE31448 Affymetrix GPL570 78 30

EGAS00000000083 Illumina GPL6947 99 184

Dataset Platform LN-

Prognosis gene pairs GSE7390 Affymetrix GPL96 / 134

GSE6532 Affymetrix GPL96 / 85

Validation cohort Validation GSE2034 Affymetrix GPL96 / 209

GSE4922 Affymetrix GPL96 / 116

TCGA data Stage I Stage II Stage III Stage IV

126 350 142 15

Note: / represents there have no such samples.

level than gene B. The stable significance of a REO is determined
by a binomial distribution (Bahn, 1969) as follows:

p =
k−1∑
i=0

(
n
i

)
pi0(1− p0)

n−i

where n denotes the total number of samples in one dataset, k
denotes the number of samples that have a certain REO pattern
(e.g., A > B or A < B) in n samples and p0 (=1/2) is the probability
of observing a certain REO pattern in a sample by chance. In
other words, a pair of genes, A and B, is considered as statistically
stable if the same order (A < B or A > B) is held in most of
the samples with the binomial distribution is used to calculate
the p value under the null hypothesis (A and B does not have
a stable order relation) for the large-scale samples. If a gene
pair have a statistically stable REO in both the non-metastasis
group and metastasis group, respectively, but a reverse direction
(A > B in one group but A < B in the other group), they form
a REO reversal gene pair. The p-values were adjusted using the
Benjamini-Hochberg method (Benjamini and Hochberg, 1995)
for multiple tests.

Algorithm for Searching the Optimal
Signature
For a set of gene pairs whose REOs were associated with
the relapse-free survival (RFS), a forward-stepwise selection
algorithm was performed to search for an optimal subset of
these gene pairs with the highest maximum concordance index
(C-index). One gene pair with the largest C-index as the seed
signature, candidate gene pairs were added to the signature
one at a time until the further addition did not improve the
predictive performance.

Survival Analysis
The univariate Cox proportional hazards regression model was
used to evaluate whether a REO reversal is significantly associated
with the relapse risk of the patients. For each gene pair (Gene A,
Gene B) in this study, the REO pattern of non-metastasis samples
groups is that the expression level of Gene A is higher than that
of Gene B (Gene A > Gene B), and REO reversal of metastasis

samples groups means that the expression level of Gene A is
lower than that of gene B (Gene A < Gene B). The independent
prognostic value of a signature was assessed by multivariate Cox
proportional hazards regression model after adjusting for clinical
factors including age, grade and tumor size. The concordance
index (C-index) proposed by Harrell et al. (1996) was used to
evaluate the overall concordance between the risk classification
and the observed RFS time with the “survival” R package.
C-index, ranging from 0.5 (indicating random chance) to 1
(indicating prefect discrimination), is one of the most appropriate
indexes for studies focusing on risk prediction. Survival curves of
RFS between different groups were estimated with the Kaplan-
Meier method and the p-value for the difference between the
survival curves was calculated by the log-rank test (Harrington
and Fleming, 1982) and drawn with the “ggplot2” R package.
The predictive accuracy of the signature was assessed using the
time-dependent, receiver operating characteristic curve (ROC)
(Heagerty et al., 2000) with the “survivalROC” R package and
AUC (the area under the ROC curve) was calculated. Time point
of the ROC curve was set as 60 months. All statistical analyses
were performed using the R software package version 3.2.0.

Genomic Data Analyses
Fisher’s exact test was used to detect genes which had significantly
different mutation frequencies or CNA frequencies between two
groups classified by the prognostic signature. Spearman rank
correlation analysis was used to estimate the correlation of genes
expression levels with the CNAs. Significance level was defined as
p < 0.05 or FDR < 0.05 for multiple testing.

RESULTS

Development of Prognostic Signature for
Postoperative Relapse Risk
Using the gene expression profiles of ER+ breast cancer
samples, integrated from three datasets (GSE19615, GSE43365,
GSE31448) measured by the Affymetrix’s microarray platform
(Table 1 and Supplementary Table S3), we identified 1,442,839
significantly stable gene pairs, each of which had a stable REO
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FIGURE 1 | Flowchart of the processes for developing and validating the prognosis signature.

in the 105 metastasis samples and a reversely stable REO in
the 101 non-metastasis samples (Binomial test, FDR < 0.05).
Similarly, using the data measured by the Illumina’s microarray
platform from the European Genome-Phenome Archive, we
identified 79,732 gene pairs with significantly stable REOs in
the 99 metastasis samples and reversely significantly stable REOs
in the 184 non-metastasis samples (FDR < 0.05, binomial
test). The two lists of gene pairs shared 1690 common pairs
(Supplementary Table S4) with consistent REO patterns, defined
as the metastasis-related gene pairs.

The 219 samples of lymph node negative patients accepting
surgery only, collected from the GSE7390 and GSE6532 datasets
measured by Affymetrix, were used as the discovery cohort to

develop a prognostic signature of postoperative relapse risk.
From the 1690 metastasis-related gene pairs, using the univariate
Cox proportional hazard model, we identified 71 gene pairs
whose REOs were significantly (FDR < 0.05) associated with the
RFS time (Supplementary Table S5). Here, RFS was used in a
broad sense to represent the prognostic end points of both local
relapse and distant relapse (Hudis et al., 2007; Suciu et al., 2018).
Then, a forward-stepwise selection algorithm was performed to
obtain a subset of gene pairs with the maximum C-index. Five
gene pairs (Table 2) were obtained as the signature, denoted as
5-GPS, to predict the postoperative relapse risk based on the
majority rule. In train data, we have found the non-metastasis
samples (low-risk) with REO pattern of Gene A > Gene B
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TABLE 2 | The genes information of 5-GPS.

Gene A Gene B

Gene ID Official symbol Official full name Gene ID Official symbol Official full name

10902 BRD8 bromodomain containing 8 10112 KIF20A kinesin family member 20A

51257 MARCH2 membrane associated ring-CH-type finger 2 3221 HOXC4 homeobox C4

9014 TAF1B TATA-box binding protein associated factor,
RNA polymerase I subunit B

9518 GDF15 growth differentiation factor 15

123872 DNAAF1 dynein axonemal assembly factor 1 55176 SEC61A2 SEC61 translocon subunit alpha 2

64421 DCLRE1C DNA cross-link repair 1C 10024 TROAP trophinin associated protein

Gene A has a higher expression level than Gene B in non-metastatic breast tissues.

and metastasis samples (high-risk) with REO pattern of Gene
A < Gene B in Table 2. If gene B have a higher expression
level than gene A in 3 or more pairs among 5 gene pairs
tabulated in Table 2, the sample was classified as relapse high-risk,
otherwise low-risk.

The discovery cohort was classified by 5-GPS into a low-risk
group with 144 patients and a high-risk group with 75 patients
(Supplementary Table S6). As shown in Figure 2A, the patients
in the low-risk group had a significantly better RFS than those in
the high-risk group (Hazard ratio (HR) = 5.41, 95% confidence
interval (CI): 3.49–8.41, p = 1.11E-16, C-index = 0.71). The AUC
was 0.7672 (Figure 2B).

Validation of the 5-GPS Signature
The 5-GPS signature was firstly validated in two independent
microarray datasets (Supplementary Table S6). In the GSE2034
dataset, the 5-GPS identified 97 patients with low risk of relapse
and 112 patients with high risk of relapse, and the RFS of the
former were significantly better than that of the latter (HR = 1.79,
95%CI: 1.14–2.83, p = 1.10E-02, C-index = 0.54, Figure 2C).
The AUC was 0.6069 (Figure 2D). In the GSE4922 dataset,
the low-risk group of 63 patients identified by 5-GPS had a
significantly better RFS than the high-risk group of 53 patients
(HR = 2.08, 95%CI: 1.04–4.19, p = 3.56E-02, C-index = 0.59,
Figure 2E). The AUC was 0.6123 (Figure 2F). As expected, we
also found the similar difference in RFS between low-risk and
high-risk patients identified from integrated data of GSE2034
and GSE4922 (Supplementary Figure S1A) and integrated data
of GSE7390, GSE6532, GSE2034 and GSE4922 (Supplementary
Figure S1B). In the Multivariate Cox analyses for the discovery
and validation cohorts all showed the prognostic signature was
a strong independent factor for predicting the postoperative
relapse risk after adjusting age, tumor size and histology grade
(Table 3 and Supplementary Figure S2).

Then we further tested 5-GPS on the RNA-Seq data
from TCGA (Supplementary Table S6). After screening both
accepting surgery and having follow-up data, only 7 ER+
breast cancer patients who received surgery but without further
adjuvant therapy were left. Survival analysis in these patients
cannot be performed. Endocrine therapy, chemotherapy and
radiotherapy all have a great effect on prognosis of breast
cancer. The significantly different survival between populations
with irregular medical meta information cannot prove the good
performance of 5-GPS in TCGA due to the effect of treatment on

survival. In consideration of a strong correlation between stage
level and RFS, we analyzed the proportion of high-risk samples
identified by the signature in each stage rather than carrying out
the survival analysis to test 5-GPS on the RNA-Seq data of 633
female ER+ stage I-IV breast cancer samples from TCGA. From
Figure 2G, we see that the proportion of the high-risk samples in
each stage increase with the stage level. The conformity implies
the application feasibility of 5-GPS in the RNA-Seq data though
it was obtained from the microarray data, supporting the cross-
platform robustness of 5-GPS. We also compared the clinical
information of AJCC metastasis pathologic of the high-risk and
low-risk patients classified by 5-GPS. Among the 633 female
ER+ stage I-IV breast cancer samples from TCGA, there are 15
patients with pathologic M1 and 903 patients with pathologic M0
(Supplementary Table S1). The 5-GPS classified 330 M0 patients
into high-risk group, indicating lymphatic metastasis. And five
M1 patients were stratified into low-risk group, where tumor cells
may metastasize by other modes like hematogenous metastasis.

The expression profiles are dependent on the proportion
of tumor epithelial cells in clinical samples. Our previous
study showed that the REO-based signature is relatively robust
against proportion variations of tumor epithelial cells (Cheng
et al., 2017). Taking advantage of proportions of tumor
epithelial cells in breast cancer samples from TCGA, we further
confirmed the conclusion. The 633 samples were divided into
a high-purity group with more than 50% tumor epithelial
cells and a low-purity group with less than 50% tumor
epithelial cells. Detailed information is given in Supplementary
Table S1. The growth trend of proportions of the high-risk
samples identified by 5-GPS was found in both the low-purity
group (Supplementary Figure S3A) and the high-purity group
(Supplementary Figure S3B). When the low-purity and high-
purity group were classified by 60% tumor epithelial cells, similar
increase were found (Supplementary Figures S3C,D). The line
chart in Supplementary Figure S2 represents the number of
samples in each stage.

Taken together, the above results demonstrated that the 5-
GPS could robustly predict the relapse risk of ER+ breast
cancer patients using samples profiled by microarray or RNA-
Seq platforms. For each breast cancer sample, the prediction
result of each signature gene pair was summarized in the
Supplementary Table S6. In the above datasets measured by the
Affymetrix platform, 5-GPS performed comparably with 9-GPS,
a prognostic signature previously constructed by Cai et al. (2015)
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FIGURE 2 | The predictive performance of the 5-GPS signature. The Kaplan-Meier curves of RFS for the early-stage breast cancer patients accepting surgery only in
(A) the discovery cohort and (C,E) the validation cohorts. (G) The proportion of high-risk samples in I-IV stage. (B,D,F) The ROC curves for 5-GPS.
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TABLE 3 | Univariate and multivariate Cox regression analysis.

Multivariate model Univariate model

Variables HR (95%CI) p HR (95%CI) p

The 201 samples of the discovery cohort

5-GPS 4.89 (3.05–7.86) 4.99E-11 5.00(3.16–7.88) 3.09E-14

Age (>55 vs. < 55) 0.99(0.98–1.00) 0.16 1.00(0.99–1.01) 0.53

Grade (3 vs. 2 vs. 1) 0.85(0.57–1.27) 0.43 1.24(0.85–1.80) 0.27

Size (>2 vs. < 2 cm) 1.35 (1.00–1.83) 0.05 1.22(0.96–1.55) 0.10

The 116 samples of the validation cohort

5-GPS 1.98 (0.96–4.08) 0.06 2.08(1.04–4.19) 0.04

Age (>55 vs. < 55) 0.90(0.42–1.92) 0.78 0.97(0.46–2.04) 0.93

Grade (3 vs. 2 vs. 1) 1.61 (0.91–2.84) 0.10 1.73(1.00–3.01) 0.05

Size (>2 vs. < 2 cm) 2.20(1.08–4.47) 0.03 2. 70(1.36–5.36) 0.003

(Supplementary Figure S4 and Supplementary Table S7).
However, 9-GPS performed poorly in the RNA-Seq data of
TCGA, where the proportion of high-risk samples was at least
95% in every stage and sustained a weak increase with the
stage level (Supplementary Figure S5). We used the hybrid
model, combination of 5-GPS and 9-GPS, to validate the
datasets. If the results of 5-GPS and 9-GPS are consistent, it is
considered to be the high- and low-risk group, otherwise it is the
difference group (Supplementary Table S7 and Supplementary
Figure S6). From the results, the hybrid model performs better
than the single model.

Genomic Characteristics of the
Prognostic Groups
We further investigated genomic differences between the two
prognostic groups of the TCGA samples. Among the 633
samples with transcriptional data, 519 samples also have somatic
mutation data and 622 samples have copy number aberrations
(CNAs) data. This allowed us to further characterize the two
prognostic groups with genomic profiles.

The 622 samples with copy number alteration data were
stratified into 339 high-risk and 283 low-risk samples by 5-GPS.
Comparing 156 stage III-IV samples with 466 stage I-II sample,
there were only five chromosome regions with significantly
different frequencies of amplification (1 region) or deletion (4
regions) (Fisher’s exact test, FDR < 0.05). However, we found
55 chromosome regions with significantly different frequencies
of amplification (20 regions) or deletion (35 regions) (Figure 3A
and Supplementary Table S8) between the 339 high-risk samples
and the 283 low-risk samples (Fisher’s exact test, FDR < 0.05).
The high-risk group include 94 stage III-IV patients and the low-
risk group include 221 stage I-II samples. In addition, 54 of the
55 regions had higher aberration frequencies in the high-risk
group than in the low-risk group, providing further evidence
for the higher degree of instability in the genomes of the high-
risk patients. Within the 55 chromosome regions, the expression
levels of 35 genes were significantly correlated, positively, with
their CNA frequencies (Spearman correlation, p < 0.05). Many
genes in these chromosome regions, such like ERLIN2 (amp
8p11.23) (Wang et al., 2012), VAV2 (del 9q34.2) (Tan et al.,

2017), ADAMTS6 (del 5q12.3) (Xie et al., 2016)and NCS1 (del
9q34.11) (Moore et al., 2017), are known to be related with tumor
invasion and metastasis.

The 519 samples with somatic mutation data were stratified
into 277 high-risk samples and 242 low-risk samples by 5-GPS. In
the high-risk group, 77 are stage III-IV patients and 200 are stage
I-II patients. In the low-risk group, 194 are stage I-II patients and
48 are stage III-IV patients. We compared 77 stage III-IV high-
risk patients and 194 stage I-II low-risk patients and identified
15 genes that had significantly different mutation frequencies
(Fisher’s exact test, p < 0.05). Furthermore, 14 of 15 genes had
significantly higher mutation rates in the high-risk group than
in the low-risk group (Figure 3B and Supplementary Table S9),
suggesting that the high-risk samples had an increased degree
of genomic instability. For example, TP53 mutated in 27.3% of
the 77 high-risk samples but only in 12.9% of the 194 low-risk
samples. It is well known that TP53 aberrations could induce
genomic instability, aggravate tumor progression and promote
tumor metastases (Marchetti et al., 1993; Reichel et al., 1994;
Haase et al., 2019). PIK3CA had lower mutation frequencies
in the high-risk patients than in the low-risk patients. PIK3CA
mutations may be associated with worse clinical outcomes
(Mollon et al., 2019). In comparison, 63 genes with significant
mutation frequencies were identified by comparing all stage III-
IV samples with all stage I-II samples using Fisher’s exact test
(p < 0.05) and the mutation frequencies are low. Only one gene,
FAT3, mutated in more than 5% stage III-IV cancer samples, and
there is no report in literature to our knowledge on this gene’s
relation with breast cancer relapses and metastasis.

Taken together, the high-risk samples predicted by 5-GPS
are characterized with distinct genomic lesions related to breast
cancer micro-metastasis, indicating that the high-risk samples
classified by 5-GPS are indeed those with occult metastases.

DISCUSSION

In this study, based on within-sample REOs, we developed a
relapse-free prognostic signature, 5-GPS. We hypothesized that
there exists micro-metastasis before surgery for those early-
stage primary breast cancer patients who suffer relapse after
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FIGURE 3 | Genomic characteristics of the high- and low-risk groups. (A) The copy region frequencies of high- and low-risk group. (B) The mutation frequencies of
high- and low-risk group.

surgical resection. Based on this hypothesis, we identified the
signature from metastasis-related gene pairs consistently detected
from samples measured by different microarray platforms. The
signature can perform robustly for samples measured by the
RNA-sequencing platform as well, demonstrating the unique
advantage of the cross-platform robustness of the REO-based
signature. The value of the signature was supported by the
result that the RFS were significantly better in the predicted
low-risk samples than in the predicted high-risk samples.
Furthermore, there are clear genomic characteristics related to
tumor metastasis in the high-risk samples. The majority rule used
for 5-GPS may have insufficient sensitivity to identify metastases.
We tried to reset a stricter criterion to identify non-metastatic
patients: a patient is determined to be non-metastatic only if all
gene pairs vote for low-risk and under this criterion the identified

low-risk group has a better RFS and lower 5-year relapse rate than
the high-risk group.

It is noteworthy that there was a significant number of patients
whose cancers were relapsed within 5 years, but were classified as
relapse-risk low by 5-GPS. This suggests an insufficient sensitivity
of the 5-GPS signature combined with the majority rule to
identify metastases. Considering a signature as an auxiliary tool
for clinical decisions, it is reasonable to use a strict criterion
to make conservative decisions on the identification of non-
metastatic patients, while increasing the discovery sensitivity for
metastatic patients. Therefore, a stricter criterion was applied to
identify non-metastatic patients: a patient is classified as non-
metastatic (low-risk) only if all gene pairs vote for the relapse-risk
low and a patient is classified as metastatic (high-risk) only
if all gene pairs vote for the relapse-risk high. Based on the
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criterion, for 544 samples integrated from GSE7390, GSE6532,
GSE2034, and GSE4922 datasets, 23 patients were classified as
low-risk, and 12 patients were classified as high-risk, where the
low-risk group has a better RFS and a lower 5-year relapse
rate than the high-risk group (HR = 13.71, 95%CI: 2.93–64.07,
p = 1.64E-05, Supplementary Figure S7). The 5-year relapse
rate in the low-risk group is 0, compared with 50% in the
high-risk group. The relapse rate within 10 years is 4.17 and
66.67% in the low-risk group and high-risk group, respectively
(Supplementary Figure S7A). Similar results were also obtained
if one exception was allowed in the voting for the low-risk
and high-risk groups (see Supplementary Figure S7B). This
suggested that the 5-GPS signature is beneficial in reclassifying
or identifying occult metastases.

Previously, we reported that the REO-based signatures are
highly robust against experimental batch effects and differences
in probe designs used in different platforms (Guan et al.,
2016). The subtle quantitative gene expression values tend to
be unreliable, the apparent disadvantage of qualitative nature of
the relative orderings is in fact a unique advantage in terms of
robustness (Guan et al., 2016). In this study, we constructed and
validated the REO-based signature using microarray platforms
from two companies and one RNA-sequencing platform. In
comparison, the 70-gene signature assay approved by the FDA
needs that tumor samples be sent to the Agendia Laboratories
of the Netherlands Cancer Institute (Bueno-de-Mesquita et al.,
2007). Therefore, the REO-based signatures are more convenient
to apply under clinical settings than the signatures based on the
quantitative expression values.

Although the REO-based signature constructed in this work
demonstrated the cross-platform transferability, the number of
significantly stable gene pairs was found to vary significantly
among different platforms. For example, there are 1,442,839
significantly stable gene pairs selected from the samples measured
by the Affymetrix’s microarray platform, while only 79,732
significantly stable gene pairs found in the samples measured
by the Illumina’s microarray platform. The main effect of the
number of gene pairs is the degree of difference between two
groups, beside sample size and the number of measured genes.
The magnitude of the difference was measured by differentially
expressed genes (DEGs). Specially, 9557 DEGs (T-test, p < 0.01)
were detected in GSE31448 but 1113 DEGs (T-test, p < 0.01) in
EGAS00000000083, which suggested a small degree of difference
between metastasis and non-metastasis groups and a large
degree of uncertainty in sample composition associated to the
Illumina dataset (EGAS00000000083). The weak and complex
signals between metastasis and non-metastasis groups also results

in low repeatability of REOs. Only 1690 gene pairs were
shared and had consistent REO patterns between 1,442,839
gene pairs and 79,732gene pairs. The large discrepancy deserves
further investigation.

In summary, the REO-based 5-GPS can aid the identification
of early-stage breast cancer patients with micro-metastases who
should receive adjuvant treatments.
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