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The rapid development of molecular markers and sequencing technologies has made
it possible to use genomic prediction (GP) and selection (GS) in animal and plant
breeding. However, when the number of observations (n) is large (thousands or millions),
computational difficulties when handling these large genomic kernel relationship
matrices (inverting and decomposing) increase exponentially. This problem increases
when genomic × environment interaction and multi-trait kernels are included in the
model. In this research we propose selecting a small number of lines m(m < n) for
constructing an approximate kernel of lower rank than the original and thus exponentially
decreasing the required computing time. First, we describe the full genomic method for
single environment (FGSE) with a covariance matrix (kernel) including all n lines. Second,
we select m lines and approximate the original kernel for the single environment model
(APSE). Similarly, but including main effects and G× E, we explain a full genomic method
with genotype × environment model (FGGE), and including m lines, we approximated
the kernel method with G × E (APGE). We applied the proposed method to two different
wheat data sets of different sizes (n) using the standard linear kernel Genomic Best
Linear Unbiased Predictor (GBLUP) and also using eigen value decomposition. In both
data sets, we compared the prediction performance and computing time for FGSE
versus APSE; we also compared FGGE versus APGE. Results showed a competitive
prediction performance of the approximated methods with a significant reduction in
computing time. Genomic prediction accuracy depends on the decay of the eigenvalues
(amount of variance information loss) of the original kernel as well as on the size of the
selected lines m.

Keywords: genomic-enabled prediction, approximate kernels, computing time, genotype × environment
interaction, large data sets

INTRODUCTION

The rapid development of molecular markers and sequencing technologies has made it possible
to use genomic prediction (GP) and selection (GS) in animal and plant breeding (Meuwissen
et al., 2001), and practical evidence in plant and animal breeding data has shown that GS provides
important prediction accuracy for GS-assisted breeding (Meuwissen et al., 2001; Crossa et al., 2010,
2011; de los Campos et al., 2010; Pérez-Rodríguez et al., 2012).
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Additive genetic effects can be predicted directly from marker
effects by Ridge Regression best linear unbiased prediction
(rrBLUP) (Endelman, 2011) and/or by employing Bayesian
inference (Meuwissen et al., 2001), and/or developing the
genomic relationship linear kernel matrix (G) to fit the
GBLUP (VanRaden, 2008). The GBLUP has the advantage
of mitigating the high dimension problem and is flexible
enough to be extended to more complex situations like
incorporating genotype × environment interactions (GE) or
studying multi-traits and multi-environments with multi-kernel
methods (Jarquín et al., 2014; Lopez-Cruz et al., 2015). The G
of the GBLUP method is a linear kernel (K), since it models the
additive lineal relationship between lines.

Departures from linearity can be assessed by semi-parametric
approaches, such as mixed models with non-additive covariance
structure defined in the Reproducing Kernel Hilbert Space
(RKHS) framework or more complicated prediction methods
such as neural networks (Gianola et al., 2006; Gianola and van
Kaam, 2008; de los Campos et al., 2010; González-Camacho et al.,
2012; Pérez-Rodríguez et al., 2012). Gianola et al. (2006, 2014)
suggested using RKHS regression for semi-parametric, genomic-
enabled prediction and pointed out that non-parametric methods
such as kernel regression are necessary to reduce the dimension
of the parametric space, and to be able to capture complex
cryptic interaction among markers. The most commonly used
nonlinear kernels in the Reproducing Kernel Hilbert Space
(RKHS) (Gianola et al., 2006, 2014) is the Gaussian kernel (GK)
that can be expressed dually as a marker effect and interaction
effect model (epistasis) (Martini et al., 2020). The Gaussian
kernel (GK) for estimating genetic values captures more complex
relationships between markers using the Euclidean distance as
the dissimilarity between lines based on molecular markers
and estimating a bandwidth parameter (h) (de los Campos
et al., 2010). Thus, a Gaussian kernel function is Kh (xi, xi′) =
exp

(
−hd2

ii′/q
)
, where xi, xi′ are the marker vectors for the

ith and i’th individuals, and q is a scale factor that can be
fixed by the user with the idea of reducing the value of h;
in general it is a percentile of the squared Euclidean distance
d2

ii′ for example, the fifth percentile of the squared Euclidean
distance d2

ii′ (Pérez-Rodríguez et al., 2012), or the 50 percentile
used by Crossa et al. (2010).

Standard GS models were extended to multi-environments by
assessing genomic × environment interaction (GE) (Burgueño
et al., 2012). Jarquín et al. (2014) proposed an extension of
the GBLUP that is a type of random effects model where the
main effects of markers and environmental covariates (ECs),
as well as the interactions between markers and ECs, are
introduced using covariance structures that are functions of
marker genotypes and ECs. The proposed approach can be
interpreted as a random effects model on all the markers, all the
ECs, and all the interactions between markers and ECs using
a multiplicative operator. Lopez-Cruz et al. (2015) proposed a
marker × environment interaction model where the marker
effects and genomic values are partitioned into components
that are stable across environments (main effects) and others
that are environment-specific (interactions); this interaction
model is useful when selecting for stability and for adaptation

to targeted environments. Consistently, genomic prediction
accuracy substantially increased when incorporating GE and
marker × environment interaction (Crossa et al., 2017). The
marker × environment interaction model has some advantages
over previous models; it is easy to implement in standard software
for GS like the BGLR (de los Campos and Pérez-Rodríguez,
2018) or the BGGE (Granato et al., 2018), and it can also be
implemented with any priors commonly used in GS, including
not only shrinkage methods (e.g., GBLUP), but also variable
selection methods (that could not be directly implemented under
the reaction norm model) (Crossa et al., 2016).

Cuevas et al. (2016) applied the marker × environment
interaction GS model of Lopez-Cruz et al. (2015) but modeled
not only through the standard linear kernel (GBLUP) but also
through a nonlinear Gaussian kernel similar to that used in
the Reproducing Kernel Hilbert Space with Kernel Averaging
(RKHS KA) (de los Campos et al., 2010) and a Gaussian kernel
with the bandwidth estimated through an empirical Bayesian
method (Pérez-Elizalde et al., 2015). The methods proposed by
Cuevas et al. (2016) were used to perform single-environment
analyses and extended to account for GE interaction in wheat and
maize data sets. Cuevas et al. (2016) concluded that the higher
prediction accuracy of the Gaussian kernel models with the GE
model is due to more flexible kernels that allow accounting for
small, more complex marker main effects and marker-specific
interaction effects.

In the Ridge Regression rrBLUP (Kang et al., 2008;
Endelman, 2011), the reduced dimensionality advantages of eigen
decomposition were used to estimate the variance components
by means of maximum likelihood and/or restrictive maximum
likelihood (REML) to compute the genomic-enabled predictions.
Pérez-Elizalde et al. (2015) also used eigen decomposition
with the marginal maximum likelihood to estimate the genetic
and the residual variance components. Pérez-Rodríguez and
de los Campos (2014) developed a very useful and efficient
statistical software for Bayesian Generalized Linear Regression
(BGLR) based on Monte Carlo Markov Chain (MCMC).
Granato et al. (2018) also used the spectral decomposition
with covariance matrices of exact rank when employing a
Bayesian approach.

However, in GP, not only is the number of markers large,
but also the number of individuals could be high, thus
making the complete kernel matrix difficult to manipulate,
and computationally very intensive. This significant increase
in the number of observations (individuals) is common
when the genomic-enabled prediction model includes
genotype × environment interaction (GE) with different
and large numbers of lines in each environment (or year)
(Jarquín et al., 2014). In these models, the covariance matrices
of the main effects and interactions usually have ranks smaller
than the number of observations (lines). In these cases, exact
low rank matrices are commonly employed, as in rrBLUP (Kang
et al., 2008; Endelman, 2011), as well as the Bayesian Genomic
Genotype × Environment interaction (BGGE) software of
Granato et al. (2018); however, eigen decomposition also has a
high computational cost when both the number of observations
and markers is large.
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An alternative way to deal with large data sets is to use
methods such as approximate kernels with the objective of
reducing the computational processing time without affecting the
genomic prediction accuracy very much. This methodology is
commonly used in the framework of machine learning and in
the Gaussian process (Rasmussen and Williams, 2006), where
the main problem is the large number of observations (e.g.,
several thousands), whereas the number of covariates (markers)
is not that large.

Wang et al. (2015) commented that the method of
approximate kernels could be useful for GP when the number
of observations is large. The application of GBLUP or GK is
practically intractable for deriving the eigen decomposition of
large n because of the time scale and the storage capacity. In
animal genomic selection, Misztal (2016) proposed a method to
approximate a linear kernel relationship matrix using a small size
of the original large training population with the objective of
facilitating the inversion of the genomic matrix and being able to
employ a single-step method when predicting the performance of
a large number of animals.

Lately, a number of new ideas and algorithms have addressed
the problem of determining input that is relevant for predicting
the output, that is, it is possible to develop an efficient predictive
model that does use all the large n observations, but approximates
the kernels with a low rank. The method of approximate kernels
seems to achieve this objective by proposing a simple input
that originally had a kernel matrix Kn,n of order n× n from
where a smaller sub-matrix is selected, Km,m of order m×m
with the restriction that m < n, with the objective of finding an
approximate matrix Q of rank m, smaller than the rank of the
original matrix (Seeger et al., 2003). That is,

K ≈ Q = Kn,m K−1
m,m K

′

n,m

where Km,m is a sub-matrix of the initial K = Kn,n and can be
constructed with m selected lines with p markers where Kn,m is
a sub-matrix of K with the relation between the total n lines and
the m selected ones. Therefore, Q is an approximation of K , but
of smaller rank (m), so that computational time is significantly
saved when performing the required spectral decomposition
or/and inversion. Based on this approximation, a large number
of methods have been proposed, such as the projected process
of Seeger et al. (2003), which assumes a priori that the random
effects have a covariance matrix of σ2

u Q. Also, Snelson and
Ghahramani (2006) proposed correcting the diagonal of Q in
order to propose a method of pseudo points. Furthermore, a
similar approximate method was proposed and implemented by
Misztal et al. (2014) and Misztal (2016), who employed recursive
methods from the joint distribution of the random genetic effects
when testing a large amount of animal production. Titsias (2009)
proposed a variational perspective that maximizes the lower
bound of the exact marginal likelihood by incorporating, as a
penalized element, the trace of the differences of matrices K, Q.
Hensman et al. (2013) presented a stochastic variational method
and found a lower limit than the one reported by Titsias (2009).

In general, approximate kernel methods could be useful
when the size of the training set is large and the construction
of the matrices and their manipulations in terms of storage,

inversion and decomposition are highly computing intensive
and practically prohibitive (Rasmussen and Williams, 2006).
On the other hand, the main concern is how the quality of
the approximations would be in terms of genomic-enabled
prediction. According to Wang et al. (2015), the eigenvalue
decomposition of these full matrices decays rapidly, thus favoring
the use of these approximations (Rasmussen and Williams, 2006).
Based on the previous difficulties in assessing efficient computer-
scale time of genomic problems when the number of observations
is large, we have adopted an approximate kernel method for large
data using a Bayesian approach to be used in genomic-enabled
prediction R packages like BGLR (Pérez-Rodríguez and de los
Campos, 2014). To test our proposed approximate method, we
used two wheat data sets, one of which is relatively small and the
other very large. We compared the performance of the proposed
approximate kernel versus the full kernel based on the genomic-
enabled prediction accuracy, which in turn was measured based
on the correlations between the observed and predictive values,
the mean squared error and the estimation of the magnitude of
the residual error. This method is valid for any kind of kernel;
however, in this study we used it only with linear kernels.

MATERIALS AND METHODS

Statistical Models and Methods
We named the conventional GBLUP the “full genomic model”
(FG) and the approximation model the “genomic sparse kernel
approximation model” (AP). Depending on whether the model
is for single-environment (SE) analyses or for GE analyses, FG
is called FGSE and FGGE, respectively, and the AP method is
called APSE and APGE.

The Full Genomic Method
Single-Environment Model (FGSE)
To facilitate the description of this model, we first explain the
basic parametric genetic model (assuming the fixed effects have
been already considered)

y = µ1n + Xβ + ε (1)

where y is the vector of observations of the response variable
of size n× 1, µ is the overall mean, X is the matrix of the p
markers on the n lines associated with y, and β is the vector
of the p marker effects, which in the Bayesian framework are
considered random effects with normal distribution N(0, σ2

β In).
Finally, random vector ε has normal distribution N

(
0, σ2

ε In
)
,

where σ2
ε is the variance component of the random errors and

In is an identity matrix of order n× n.
The previous model can be represented as a GBLUP model

y = µ1n + u+ ε (2)

where u is the vector of random effects of size n× 1 with
N(0, σ2

u K), σ2
u is a scaled parameter to be estimated and K is

a known positive semidefinite matrix of order n× n, constructed
based on molecular markers X of order n× p, where p denotes

the number of markers such that K =
XX′

p
is known as GBLUP
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(VanRaden, 2008; Lopez-Cruz et al., 2015). Note that there is no
incidence matrix for u because K is constructed directly using
the markers of model (1), which are in line with the response
vector y.

The eigenvalue decomposition of K is US1/2 S1/2 U ′,
substituting u in model (2), is equivalent to

y = µ1n + Pf + ε (3)

where f ∼ N
(

0, σ2
f Ir

)
, (where r is the rank of K) and P =

US1/2. Note that models (1), (2) and (3) are equivalent. Models
(1) and (3) can be fitted by the conventional Ridge regression
model. The Ridge regression model can be computationally fitted
very quickly, especially in situations where r < min

(
n, p

)
, which

is common in multi-environment and/or multi-trait models. It
should be noted that only r effects can be summarized and
projected for P to explain the n effects without any loss of
precision with the available information.

Genomic Approximate Kernel Methods
for a Single-Environment Model (APSE)
First, the method considers K , based on a smaller sub-matrix
Km,m(m < n) constructed with the markers of m lines. When
the row vectors are linearly independent, the rank of Km,m
is m. Williams and Seeger (2001) showed that the Nyström
approximation of the kernel is as follows:

K ≈ Q = Kn,m K−1
m,m K ′n,m

where Q will have the rank of Km,m, that is m. Note, however,
that it is not necessary to compute and store the original matrix
K , only Km,m and Kn,m.

In this approximation, Km,m is constructed with m lines with
all the p markers, that is, Xm,p. For the case of the GBLUP,

Km,m =
Xm,pX′m,p

p
and Kn,m =

Xn,pX′m,p

p
which captures the

relationship of all n lines with the m. Note that in the construction
of Q, all the p markers and all the n lines are considered,
but not all their relationships are accounted for; for example,

relationships Kn−m,n−m =
Xn−m,pX′n−m,p

p
are not considered

(where n−m represents all the rest of the m lines). To try to
explain this, we ordered the elements of matrix K per blocks,

such that Kn,n =

[
Km,m Km,n−m
Kn−m,m Kn−m,n−m

]
.

Rasmussen and Williams (2006) showed that Qm,m =

Km,m, Qn−m,m = Kn−m,m, Qm,n−m = Km,n−m, and that
the difference between Kn−m,n−m − Qn−m,n−m, that is,
Kn−m,n−m− Kn−m,m K−1

m,m Km,n−m is the Schur complement of
Km,m on Kn,n. Then, because it is assumed that Km,m and Kn,n
are positive semidefinite, their Schur complement is also positive

semidefinite: Qn,n =

[
Km,m Km,n−m
Kn−m,m Qn−m,n−m

]
. Assuming

the effects of un−m| um are conditional independent, Snelson
and Ghahramani (2006) and Misztal et al. (2014) proposed
substituting the diagonal of the differences of Qn−m,n−m with
the diagonal of Kn−m,n−m.

In the method called Projected Process, Seeger et al. (2003)
theoretically show that using all lines and considering the
minimum Kullback-Leibler distance KL(q( u|y)||p

(
u|y
)
)

justifies that matrix K in the prior distribution of u (of model 2)
can be substituted for the Q approximations from Nyström
(Titsias, 2009). That is, the random genetic vectors have a normal
distribution u ∼ N(0, σ2

u Q), where Q = Kn,m K−1
m,m K ′n,m.

More details are given in Csató and Opper (2002).
These adjustments in the distribution of the random effects

u of model 2 can be done for genome-based prediction. It
is common to estimate parameters σ2

ε and σ2
u of the model

with the marginal likelihood by means of numerical methods
and then predict them using the inversion lemma, which is
fast when the model is for a single environment. However,
the purpose of this study is to develop a methodology in
order to jointly estimate and predict complex models such
as genotype × environment interactions by making the eigen
value decomposition transformation so that it allows us to
use ridge regression or Bayesian ridge regression, which can
be adjusted with diverse software. Furthermore, if matrix Q
is directly used with model (2), the advantages (in terms of
speed) of the approximate kernel would not apply. Therefore,
similar to model (3), what we did is perform an eigen-
decomposition of K−1

m,m = Um,mS
−1/2
m,m U ′m,m, where Um,m are the

eigenvectors of order m×m and Sm,m is a diagonal matrix
of order m×m with the eigenvalues ordered from largest
to smallest. These values are substituted in Q resulting in
un ∼ N(0, σ2

u Kn,mUm,mS
−1/2
m,m S−1/2

m,m U ′m,m K ′n,m), and thus, due
to the properties of the normal distribution, model (1) could be
expressed as:

y = µ1n + Pf + ε (4)

Model (4) is similar to model (3), except that f is a vector of order
m× 1 with a normal distribution of the form f ∼ N(0, σ2

f Im),

where P = Kn,mUm,mS
−1/2
m,m . This implies estimating only the m

effects and expanding them in the n dimensional space in order
to predict un and explain yn. Note that model (4) has a Ridge
regression solution, and thus diverse software can be used.

In summary, the approximation described above consists of
the following steps:

Step 1. Compute the matrix Km,m from m lines of the
training set. The lines are randomly selected.
Step 2. Construct matrix Kn,m.
Step 3. Compute the eigenvalue decomposition of Km,m.

Step 4. Compute matrix P = Kn,mUm,mS
−1/2
m,m .

Step 5. Fit the model and make genomic-enabled
predictions with Bayesian Ridge Regression or
Ridge Regression.

The Full Genomic Method With the
Genotype × Environment Model (FGGE)
The model of Jarquín et al. (2014) including GE is described as

y = µ1n + e+ g + ge+ ε (5)
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In this case, the response y is a column vector of size n×
1 comprising observations from k environments, that is, y =
( y n1, . . . , y ni, . . . , y nK

)
′

, where yn i
denotes the vector of

observations of the ith environment, and ni is the number of

observations in the ith environment, with n =
k∑

i=1
ni the total

number of observations in k environments. Also, µ is the overall
mean, vector e is a random effects of the environments of size n×
1 with a normal distribution e ∼ N

(
0, σ2

e Z
e EZe’

)
, where E

could be an identity matrix of order k× k (where k represents the
number of environments) or a variance-covariance matrix when
some lines are repeated in some environments. Matrix Z e is the
incidence matrix of size n× k that relates the y observations with
the environments. Vector g denotes the genetic random main
effects of size n× 1 with normal distribution g ∼ N(0, σ2

g G),
where G is a matrix of order n× n, which is usually computed
as Z gKZ g’, where Z g is an incidence matrix that relates the
genotypes to the observations and K is the genomic similarity
kernel matrix of lines. Vector ge represents the random effect
of the genotype × environment interaction of size n× 1 with
a normal distribution ge ∼ N(0, σ2

ge GE), where GE is a known
matrix of order n× n. Note that matrix GE can be constructed
as G# Z e EZ e’ where # represents the Hadamard product. The
vector of random errors with homogeneous variance is normal
ε ∼ N(0, σ2

ε In).

Genomic Approximate Kernel Methods
With a Genotype × Environment Model
(APGE)
We will focus on the main effects of the genotypes and
the interaction effects to take advantage of the properties of
the approximate kernel. Therefore, the approximate method
is similar to the case of a single environment, that is, g ∼
N(0, σ2

g Q g), where G ≈ Q g
= Gn,mG−1

m,mG′n,m, whereas for
the random interaction ge ∼ N(0, σ2

ge Q ge), where GE ≈ Q ge
=

GEn,m GE−1
m,m GE

′

n,m.
Similarly, for the approximate method for a single

environment, we can decompose G−1
m,m and GE−1

m,m in such
a way that model (5) could be approximated as:

y = µ1n + e+ Pg f + Pge l + ε (6)

where Pg
= Gn,mU

g
m,m Sg−

1
2

m,m, Pge
= GEn,m Uge

m,m Sge−
1
2

m,m , and
vectors f , l are of order m× 1.

In summary, the suggested approximate method described
above can be implemented with the following steps:

Step 1. Randomly select m lines from the training set,
extracting the same number of lines for each environment.
Step 2. To construct matrices Gm,m and Gn,m,
one could proceed by ordering matrix X =
(Xn1,p, .., Xni,p, . . . , Xnk,p)

′, and constructing

Gm,m =
Xm,p X′m,p

p , Gn,m =
Xn,p X′m,p

p . Another way
to proceed is to use matrix K , if available, and
construct matrices Gm,m = Zg

m,c Kc,c Z
g′
m,c and

Gn,m = Zg
n,c Kc,c Z

g′
m,c, where c represents the number of

lines without replicates.
Step 3. Construct matrices GEm,m =

Gm,m
# Ze

k,m Ek,k Ze
k,m, GEn,m = GEn,m

# Ze
n,k Ek,k Ze

k,m,
Pg , Pge.
Step 4. With the previous matrices, model (6) can
be fitted and the required genomic-enabled predictions
can be obtained.

EXPERIMENTAL DATA

To evaluate the performance of the different methods (FS and
AP) and models (SE and GE) (FSSE, FSGE, ASE, and APGE), we
used two sets of wheat data; the first data set (data set 1) is a large
data set and the second is a small data set (data set 2).

Data Set 1 – Large Data Set
This data set was used by Pérez-Rodríguez et al. (2020) and
comprises 45,099 wheat lines and genotypes with 6978 GBS
markers. From the total number of 45,099 wheat lines, 7671,
9021, 9501, 9821 and 9015 wheat lines were evaluated in years
2013–2014, 2014–2015, 2015–2016, 2016–2017 and 2017–2018,
respectively. Thus, this data set has 5 environments that represent
5 different years, and the lines in different years are different.

Data Set 2 – Small Data Set
This data set includes the wheat data sets used by Crossa
et al. (2010), and comprises 599 wheat lines evaluated
in four different environments and genotyped with
1279 SNP markers.

Assessing Prediction Accuracy of the
Full Genomic and the Genomic
Approximate Kernel models for
Single-Environment and for GE
To assess the performance of method-model combinations FGSE
and APSE, we used models 3 and 4, respectively, and drew 20
random samples, with 80% of the observations used for training
and 20% for testing in each sample. We used all the data and
made predictions for single environments for both FGSE and
APSE methods. However, for the AP method, we used 5 different
sample sizes (m); for data set 1, m = 4000, m = 2000, m = 1000,
m = 500, and m = 100. The analyses were performed in each case
(FGSE and APSE) for five of the cycles included in this study
(Table 1 and Figure 2). For data set 2, m = 264, m = 132, m = 74,
m = 32, m = 15 (Table 2 and Figure 3). In addition, Tables 1 and
2 show the % of variation of matrix K that would be explained
by taking the first m eigenvalues from the decomposition of K ,
that is, ϕ = 100×

∑m
i=1 si/

∑n
i=1 si (as a measure of the decay of

the eigenvalues).
Data set 1 is used for fitting the GE models, FGGE and

APGE, using training cycles 2013–2014, 2014–2015, 2015–2016,
2016–2017 to predict cycle 2017–2018. For the FGGE model,
it was computationally not possible to fit such a model using
a standard laptop (computer 1, laptop) since the size of the
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TABLE 1 | Data set 1.

Sample size of the training m

Cycle (n = total number of lines) Model FGSE
m = all ϕ = 100

Model APSE
m = 4000 ϕ = 99.7

Model APSE
m = 2000 ϕ = 98.6

Model APSE
m = 1000 ϕ = 97.2

Model APSE
m = 500 ϕ = 96.0

Model APSE
m = 100 ϕ = 92.5

CORR

Cycle 2017_2018 (n = 9015) 0.575 (0.016) 0.575 (0.016) 0.570 (0.015) 0.557 (0.017) 0.534 (0.017) 0.464 (0.02)

Cycle 2016_2017 (n = 9821) 0.483 (0.011) 0.483 (0.011) 0.477 (0.015) 0.465 (0.013) 0.447 (0.011) 0.386 (0.012)

Cycle 2015_2016 (n = 9501) 0.533 (0.013) 0.533 (0.013) 0.522 (0.014) 0.508 (0.013) 0.483 (0.014) 0.402 (0.016)

Cycle 2014_2015 (n = 9021) 0.494 (0.017) 0.493 (0.012) 0.485 (0.020) 0.470 (0.016) 0.441 (0.018) 0.318 (0.021)

Cycle 2013_2014 (n = 7671) 0.572 (0.015) 0.572 (0.015) 0.567 (0.016) 0.549 (0.015) 0.515 (0.016) 0.366 (0.004)

PMSE

Cycle 2017_2018 (n = 9015) 0.282 (0.009) 0.282 (0.009) 0.284 (0.008) 0.290 (0.009) 0.300 (0.008) 0.336 (0.01)

Cycle 2016_2017 (n = 9821) 0.369 (0.009) 0.369 (0.010) 0.364 (0.010) 0.377 (0.010) 0.385 (0.010) 0.410 (0.011)

Cycle 2015_2016 (n = 9501) 0.304 (0.010) 0.304 (0.010) 0.309 (0.013) 0.315 (0.010) 0.326 (0.010) 0.356 (0.012)

Cycle 2014_2015 (n = 9021) 0.309 (0.012) 0.309 (0.013) 0.311 (0.011) 0.319 (0.013) 0.329 (0.013) 0.368 (0.016)

Cycle 2013_2014 (n = 7671) 0.413 (0.011) 0.413 (0.013) 0.413 (0.014) 0.429 (0.012) 0.451 (0.012) 0.508 (0.011)

σ̂2
ε

Cycle 2017_2018 (n = 9015) 0.247 (0.003) 0.250 (0.003) 0.262 (0.002) 0.275 (0.002) 0.293 (0.003) 0.330 (0.004)

Cycle 2016_2017 (n = 9821) 0.317 (0.003) 0.323 (0.003) 0.337 (0.003) 0.350 (0.003) 0.365 (0.003) 0.400 (0.003)

Cycle 2015_2016 (n = 9501) 0.255 (0.003) 0.257 (0.003) 0.279 (0.003) 0.297 (0.003) 0.315 (0.004) 0.357 (0.005)

Cycle 2014_2015 (n = 9021) 0.259 (0.003) 0.266 (0.003) 0.280 (0.003) 0.298 (0.003) 0.315 (0.004) 0.366 (0.004)

Cycle 2013_2014 (n = 7671) 0.313 (0.004) 0.324 (0.005) 0.358 (0.005) 0.391 (0.006) 0.424 (0.006) 0.501 (0.006)

TIME (in seconds)

Cycle 2017_2018 (n = 9015) 3931 1710 707 345 174 47

Cycle 2016_2017 (n = 9821) 4350 1765 768 356 176 48

Cycle 2015_2016 (n = 9501) 4200 1750 759 375 184 49

Cycle 2014_2015 (n = 9021) 3850 1310 695 330 165 51

Cycle 2013_2014 (n = 7671) 2800 1135 533 247 134 44

Prediction of 20 random samples with 80% of observations in the training set and 20% in the testing set for single site models for the 5 cycles. The FGSE model with a
training set of size m = all and the % of variation retained of matrix K (ϕ) as ϕ = 100, and APSE for m = 4000, m = 2000, m = 1000, m = 500, and m = 100 wheat lines
and ϕ = 99.7, ϕ = 98.6, ϕ = 97.2, ϕ = 96.0, and ϕ = 92.5. Average correlation between predictive and observed values (CORR). Predictive Mean Squared Error (PMSE),
and residual variance (σ̂2

ε ). Computing average time required including the time for preparing matrix K plus the time required for 20,000 iterations using the software R
package BGLR (standard deviations for CORR, PMSE, and σ̂2

ε in parentheses).

training set is a G matrix of order 45099 × 45099. Therefore,
we used the results from Pérez-Rodríguez et al. (2020; Chapter
13, Table 13.4), who used the same training data to predict
cycle 2017–1018. These authors achieved a genomic-enabled
prediction accuracy of 0.4263 using only markers. The prediction
of the same cycle (2017–2018) used the approximate APGE
model with only 25% of the total training lines from each cycle
for the m, that is, matrices Km,m, Kn,m are manageable matrices
of order 9021 × 9021 and 45099 × 9021, respectively. Table 3
shows the genomic prediction of each cycle taking one or more
of the previous cycles as training. For model APGE, we used
25% of the total training set for each cycle as the size of m.
For fitting model FGGE, we used another computer facility
(computer 2) because the laptop (computer 1) could not fit
the models.

For the small data set, data set 2 is predicted with the rest
of the environments using the full genomic FGGE (model 5);
the variance-covariance matrices are of order 2396 × 2396,
a size that does not cause any computational problem. For
APGE, m was 25% of the training set of each environment
(representing a total of 450 wheat lines, that is, 150 lines in
each of the three environments used for training). Table 4

shows the variance component estimates for model APGE in
data set 2.

As criteria for all model-method combinations (FGSE, APSE,
FGGE, APGE) used to evaluate the prediction accuracy and
computing time, we employed: (1) the mean Pearson’s correlation
between the predictive and the observed values (CORR), where
the predictive values are extracted from the mode of the Bayesian
predictive distribution; (2) the prediction mean squared error
PMSE is the mean of the squared difference between the
predictive and the observed value; (3) the fitted models with
the residual error variance (σ̂2

ε ); and (4) the time (TIME) for
constructing the matrices and fitting the model (Tables 1–3
and Figures 1, 2). For model APGE, we estimated the variance
components of the main effects σ2

g , the interaction effects σ2
ge and

random error σ2
ε (Table 4).

Software
To fit the models we used Bayesian Ridge Regression from BGLR
(de los Campos and Pérez-Rodríguez, 2018), because it is a free
software that focuses on genomic predictions, and it is flexible,
allowing users to fit complex models including multi-kernels,
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TABLE 2 | Data set 2.

Sample size of m

Environment Model FGSE
m = all ϕ = 100

Model APSE
m = 264 ϕ = 98.6

Model APSE
m = 132 ϕ = 95.8

Model APSE
m = 72 ϕ = 95.6

Model APSE
m = 36 ϕ = 88.8

Model APSE
m = 15 ϕ = 82.2

CORR

E1 0.506 (0.046) 0.501 (0.047) 0.468 (0.063) 0.425 (0.073) 0.362 (0.060) 0.266 (0.088)

E2 0.471 (0.068) 0.461 (0.062) 0.439 (0.066) 0.407 (0.071) 0.374 (0.060) 0.283 (0.072)

E3 0.384 (0.046) 0.384 (0.047) 0.381 (0.059) 0.359 (0.053) 0.318 (0.064) 0.267 (0.068)

E4 0.448 (0.051) 0.439 (0.05) 0.420 (0.048) 0.398 (0.053) 0.359 (0.050) 0.302 (0.053)

PMSE

E1 0.771 (0.074) 0.776 (0.047) 0.806 (0.075) 0.848 (0.085) 0.899 (0.086) 0.957 (0.088)

E2 0.751 (0.08) 0.761 (0.078) 0.782 (0.081) 0.809 (0.092) 0.834 (0.077) 0.891 (0.090)

E3 0.821 (0.085) 0.817 (0.082) 0.822 (0.098) 0.837 (0.087) 0.863 (0.087) 0.892 (0.090)

E4 0.802 (0.098) 0.811 (0.090) 0.827 (0.096) 0.844 (0.097) 0.873 (0.096) 0.912 (0.090)

σ̂2
ε

E1 0.523 (0.041) 0.572 (0.038) 0.656 (0.035) 0.733 (0.037) 0.819 (0.037) 0.890 (0.040)

E2 0.587 (0.039) 0.635 (0.041) 0.707 (0.036) 0.768 (0.037) 0.840 (0.041) 0.902 (0.046)

E3 0.602 (0.039) 0.691 (0.043) 0.768 (0.048) 0.823 (0.041) 0.877 (0.045) 0.930 (0.048)

E4 0.598 (0.046) 0.652 (0.044) 0.720 (0.040) 0.775 (0.041) 0.833 (0.038) 0.890 (0.044)

TIME (in seconds)

TE1 17 13.7 11 10.9 9.25 8.6

E2 17 13.7 11 10.9 9.25 8.6

E3 17 13.7 11 10.9 9.25 8.6

E4 17 13.7 11 10.9 9.25 8.6

Prediction of 20 random samples with 80% of observations in the training set and 20% in the testing set for single site models for the 5 cycles. The FGSE model with
the training set of size m = all and the % of variation retained of matrix K (ϕ) as ϕ = 100, and APSE for m = 264, m = 132, m = 72, m = 36, and m = 100 wheat lines
and ϕ = 98.6, ϕ = 95.8, ϕ = 95.6, ϕ = 88.8, and ϕ = 82.2. Average correlation between predictive and observed values (CORR). Predictive Mean Squared Error (PMSE),
and residual variance (σ̂2

ε ). Computing average time required including the time for preparing matrix K plus the time required for 20,000 iterations using the software R
package BGLR (standard deviations for CORR, PMSE, and σ̂2

ε in parentheses).

main effects and G × E effects. BGLR is very well documented
with a large number of clearly explained examples that can be
found in https://github.com/gdlc/BGLR-R.

Models were fitted and predictions were made using 20,000
iterations and discarding the first 3000 iterations and using a
thinning of 2. Initially the Raftery and Lewis (1992) criteria was
employed to determine the minimum of iterations, the “burn
in” and the “thin.” Also we made visual observations of graphs
representing the Monte Carlo Markov Chain to make sure a good
mixture was achieved.

Hardware
Computer 1 is a laptop with a processor intel R© Core i5TM i5-7300
HQ CPU@ 2.5 GHz 2.5 GHz, RAM 16 GB, Operative System of
64 bit, with processor x64.

Computer 2, vendor_id : AuthenticAMD, cpu family : 16,
model: 9, model name;: AMD Opteron(tm) Processor 6140,
stepping : 1, microcode : 0x10000c4, cpu MHz : 2600.185,
cache size : 512 KB.

Data Repository
The 5 phenotypic and genotypic data sets (cycle 13–14, cycle
14–15, cycle 15–16, cycle 16–17, and cycle 17–18) comprising
data set 1 can be downloaded from the following link: http:
//hdl.handle.net/11529/10548425. As already mentioned, data set
2 can be found in Crossa et al. (2010), or as an illustrative example

in the BGLR R package (de los Campos and Pérez-Rodríguez,
2018) or in a large number of other genomic-based studies that
have used this experimental data set.

RESULTS

Results of FGSE and APSE for Large
(Data Set 1) and Small (Data Set 2) Data
For large data set 1, Table 1 and Figure 2 show the prediction
accuracy of 20 random cross-validation partitions, where in each
sample, 20% of the wheat lines are predicted from a training set
of 80% of the total wheat lines for the 5 cycles. The first column
contains the results of the FGSE (model 3) using all wheat lines
in each cycle (m = all). It shows the average correlation (CORR)
of the 20 random samples of 20% of the wheat lines in the testing
set, as well as the mean of the 20 PMSEs and the mean of the
20 estimations of the residuals (σ̂2

ε ). Finally, it shows the TIME
invested in each sample of the training-testing combination for
20,000 iterations. Columns 2–6 in Table 1 provide the results of
CORR, PMSE, σ̂2

ε , and TIME for m = 4000, m = 2000, m = 1000,
m = 500, m = 100 wheat lines of APSE (model 4), randomly
selected in order to compute Km,m, and Kn,m.

The behavior of the cycles is similar for FGSE and APSE
for 4000 wheat lines for Km,m, Kn,m, but genomic-enabled
prediction values are lost as the number of lines included in the
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TABLE 3 | The models FGGE and APGE considering the size of m, as 25% of the
original training set.

Cycle Training CORR PMSE σ̂
2
ε TIME (h)

Data set 1 modelFGGE (using computer 2)

Cycle 2014_2015 Cycle 2013_2014 0.222 2.45 0.317 4.96

Cycle 2015_2016 Cycle 2013_2014 0.328 0.525 0.287 11.10

Cycle 2014_2015

Cycle 2016_2017 Cycle 2013_2014 0.328 0.480 0.275 23.72

Cycle 2014_2015

Cycle 2015_2016

Cycle 2017_2018 Cycle 2013_2014 0.426 NA NA NA

Cycle 2014_2015

Cycle 2015_2016

Cycle 2016_2017

Data set 1 model APGE (using computer 1)

Cycle 2014_2015 Cycle 2013_2014 0.206 1.08 0.363 0.68

Cycle 2015_2016 Cycle 2013_2014 0.347 0.408 0.309 2.80

Cycle 2014_2015

Cycle 2016_2017 Cycle 2013_2014 0.321 0.517 0.29 5.08

Cycle 2014_2015

Cycle 2015_2016

Cycle 2017_2018 Cycle 2013_2014 0.427 0.618 0.301 8.38

Cycle 2014_2015

Cycle 2015_2016

Cycle 2016_2017

Environment Training CORR PMSE σ̂
2
ε TIME (s)

Data set 2 model FGGE (using computer 1)

E1 E2 -0.166 1.520 0.532 175

E3

E4

E2 E1 0.511 0.912 0.600 178

E3

E4

E3 E1 0.469 0.879 0.577 180

E2

E4

E4 E1 0.311 .940 0.570 187

E2

E3

Data set 2 model APGE (using computer 1)

E1 E2 -0.188 1.54 0.607 70

E3

E4

E2 E1 0.491 0.942 0.71 72

E3

E4

E3 E1 0.445 0.887 0.70 73

E2

E4

E4 E1 0.281 0.960 0.651 82

E2

E3

Average correlation between predictive and observed values (CORR), Predictive
Mean Squared Error (PMSE), and residual variance (σ̂2

ε ). Computing average time
required including the time for preparing the matrices G, GE plus the time required
for 20,000 iterations using the software R package BGLR.

TABLE 4 | Estimated variance components for model APGE for data set 1 and
data set 2.

Testing Training σ̂
2
ε σ̂2

g σ̂2
ge

Data set 1

Cycle 2014–2015 Cycle 2013–2014 0.3624 0.4680 0.3300

Cycle 2015–2016 Cycle 2013–2014 0.3087 0.2638 0.3337

Cycle 2014–2015

Cycle 2016–2017 Cycle 2013–2014 0.2916 0.22705 0.2956

Cycle 2014–2015

Cycle 2015–2016

Cycle 2017–2018 Cycle 2013–2014 0.3019 0.1886 0.2962

Cycle 2014–2015

Cycle 2015–2016

Cycle 2016–2017

Data set 2

E1 E1 0.6070 0.3953 0.5576

E3

E4

E2 E1 0.7102 0.3183 0.1120

E3

E4

E3 E1 0.7001 0.3053 0.1356

E2

E4

E4 E1 0.6510 0.2981 0.1985

E2

E3

training set is reduced; this is reflected in the decrease of the
CORR, and the increase in PMSE and (σ̂2

ε ). For example, for cycle
2017_2018, FGSE with all observations had a CORR of 0.575,
a PMSE of 0.282, and an estimated σ̂2

ε of 0.247. Interestingly,
these results are similar to those found for the APSE when only
4000 wheat lines were used as training (55% of the total original
training set), with a CORR of 0.575, a PMSE of 0.282 and an
estimated σ̂2

ε of 0.250. Furthermore, when APSE used only 2000
wheat lines as training (28% of the total original training set),
the genomic-enabled prediction accuracy slightly decreased to
a CORR of 0.570, and the PMSE had a small increase with
PMSE = 0.254 as a result of a less fitted value σ̂2

ε = 0.262 (Table 1).
The genomic-enabled prediction decreases for smaller sample

sizes (m) of 1000, 500, and 100, where CORR takes values of
0.557, 0.534, and 0.46, respectively, increasing PMSE to 0.290,
0.300, and 0.336, as well as the estimated σ̂2

ε values to 0.275,
0.293, and 0.330, respectively. The computing TIME decreases
almost linearly (3931, 1710, 707, 345, 174, 47 seconds) for the
decreasing sample size (m). The results of the different sample
sizes of m and the correlations from Table 1 (data set 1) are also
displayed in Figure 1A where, for example, for cycle 2017–2018
for m/n = 0.22, the average correlation for the genomic-enabled
prediction is 0.570, whereas for m/n = 1.0, the average correlation
is 0.575. It is interesting to observe that the computational time
required decreases linearly as the size of m decreases in relation
to the size of n (Figure 1B).

The results of the small data set 2 shown in Table 2 and
Figure 3 have the same structure as those shown in Table 1 and
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FIGURE 1 | (A) Average correlation for 80% training and 20% testing for 20 random samples for data set1, versus the proportion of size m with respect to the total
number of observations (lines) n; (B) time in seconds for each sample versus the proportion of size of m over the total number of lines (n).

Figure 2 for data set 1; however, the results are different. These
data have 599 wheat lines all evaluated in 4 environments (E1,
E2, E3, and E4) (Crossa et al., 2010). Each of the 20 random
samples with 479 wheat lines in the training set and 120 lines
in the testing set had varying results; however, compared to the
results obtained with the large data set (data set 1), these results
are quite different. The first column shows the results of the full
genomic model (FGSE model 3) using all the data, and when
compared with the APSE (model 4) with m = 264 (55% of the
total training population), the CORR decreased slightly in 3 of
the 4 environments; for example, in E1 it decreased from 0.506 to
0.501, whereas in E2 went from 0.47 to 0.461, it stayed the same
in E3 and decreased in E4 from 0.448 to 0.439. Similar patterns
were found for PMSE and σ̂2

ε .
When m = 132 lines (28% of the total original size of the

training population), the decrease in CORR was severe in E1 and
E2, decreasing to 0.468 and 0.439, respectively, but less so in E3,
where it decreased to 0.381 as a consequence of a decrease in
the fit with σ̂2

ε of 0.656, 0.707, 0.766 and 0.720, respectively, in
E1, E2, E3 and E4. The decreasing trend in CORR increased as
m decreased; for example, in E1, when m = 74, or 36 or 15,
CORR was 0.425, 0.362 and 0.262, respectively, and σ̂2

ε increased
to 0.730, 0.819 and 0.890. However, in contrast to data set 1, the
mean computing time (TIME) for each of the 20 samples of the
random cross-validation did not decrease in the same proportion
as those due to the size of the sample.

Tables 1 and 2 and Figure 1 indicate that the differences
in genomic prediction with respect to the full models depend
more on the size of m, that is, the larger the m, the
smaller the differences with the full model (m = all). Another

important indicator is ϕ, because when ϕ > 98, the genomic-
enabled prediction accuracy of the approximate model is equal
to that of the full models; when ϕ < 98, the results of
the approximate models are less precise than those obtained
from the full model.

Results of FGGE and APGE for Large
(Data Set 1) and Small (Data Set 2) Data
Table 3 shows the genomic-enabled prediction accuracy for
models FGGE y APGE for the two groups of data. To predict
cycle 2017–2018 from data set 1 using the previous 4 cycles with
the full genomic GE model (FGGE, model 5), it is necessary
to manipulate two large covariance matrices, one for the main
effects of the genomic (G) model and another matrix for the
interaction (GE) of order 45099 × 45099. It was not possible
to manage this matrix size with the current conventional laptop
(computer 1) used to analyze these data; therefore, we used
the genomic-enabled prediction accuracy recently reported by
Pérez-Rodríguez et al. (2020) as a reference. The authors used
and reported a genomic prediction accuracy of 0.426 for cycle
2017–2018 using all the other cycles as a training set.

Using the approximate model APGE (model 6) and only
25% of the total training set, that is, m = 9021, such that
matrices Km,m, and Kn,m, are now of manageable sizes of
order 9021 × 9021 and 45099 × 9021, respectively, this gives a
genomic prediction accuracy of 0.427, with a residual variance
of 0.302, that is, there is no loss of genomic prediction accuracy
with respect to the full genomic models with GE (FGGE
model 5). The computing time required, including the time
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FIGURE 2 | Data set 1. Models FGSE (yellow, m = all lines) and APSE (blue, black, green, purple and orange that correspond to m = 4000, m = 2000, m = 1000,
m = 500, m = 100), (A) average correlation between observed and predictive values of FGSE and APSE models at different sizes of m; bars indicated 2 standard
deviations) (B) average prediction mean squared error (PMSE) values of FGSE and APSE models at different sizes of m, (C) error variance of FGSE and APSE
models (σ̂2

ε ) at different sizes of m, and (D) time in seconds to fit FGSE and APSE models at different sizes of m.

for preparing the matrices for the approximation method, and
the time for the eigenvalue decomposition and the 20,000
iterations, was 30,670 seconds. This was very similar for the
prediction of the other cycles, and the only differences were
in the computing time consumed between FGGE and APGE;
this difference exponentially increased with the total number
of training data.

When we used data set 2 to predict environment E4 using
environments E1, E2, and E3 as training and using FGGE, the
required covariance matrices were of order 2396 × 2396, which
does not pose any problems for their storage and manipulation.
The prediction accuracy achieved by the FGGE for the genomic-
enabled prediction of E4 was 0.311, with a PMSE of 0.94,
a residual variance σ̂2

ε of 0.57, and a duration time of 187
seconds. When using the approximate model APGE (model
6), we selected 25% of the training set (480 wheat lines) and
found a decrease in the genomic prediction accuracy of 0.281
compared to the FGGE, an increase in the PMSE of 0.960, and an
increase in the residual variance with respect to model FGGE of
σ̂2

ε = 0.651, with a faster computing time (82 seconds) than model
FGGE. When predicting the other environments, the results
were similar regarding the differences in the correlations between
models FGGE and APGE.

Table 4 shows the estimated variance components for model
APGE. It can be observed that for data set 1, the variance
components for the main effects and the interactions were of
similar magnitude, indicating the importance of both types of
effects. For data set 2, the interaction variance component is
relatively smaller than the main effects.

DISCUSSION

The main objective of this study was to show that the approximate
kernel method offers a good solution for the large data sets usually
encountered in genomic-enabled prediction when Bayesian
linear mixed models need to be fitted. The usual problem in
genomic prediction is that the number of markers (covariates, p)
is much larger than the number of observations (n). However,
the number of observations is also large, so performing matrix
decomposition requires very intense computing in terms of
time, storage capacity, etc. Approximate kernels allow matrix
manipulation and storage, thus saving storage resources and
computing processing time. In some cases, genomic prediction
accuracy does not decrease much, but in other cases, the loss of
precision is indeed important. This depends mainly on the size of
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FIGURE 3 | Data set 2. Models FGSE (yellow, m = all lines) and APSE (blue, black, green, purple and orange that correspond to m = 4000, m = 2000, m = 1000,
m = 500, m = 100), (A) average correlation between observed and predictive values of FGSE and APSE models at different sizes of m; bars indicated 2 standard
deviations) (B) average prediction mean squared error (PMSE) values of FGSE and APSE models at different sizes of m, (C) error variance of FGSE and APSE
models (σ̂2

ε ) at different sizes of m, and (D) time in seconds to fit FGSE and APSE models at different sizes of m.

m and on how fast the decrease in the eigenvalue decomposition
of kernel K occurred. A rapid decrease in the eigenvalues
indicates that with only a few singular values, a high percentage of
the important variation could be retained. The variance retained
using ϕ (Pocrnic et al., 2016) indicated the percentage of variation
retained for a certain number of eigenvalues.

Data sets 1 and 2 were fitted using the full genomic
(FG) method and the approximate model (AP) for the single-
environment model with certain percentages of the points
selected from the total training set similar in the two data sets
(55, 28, 14, 7, and 2% of the total training set). The size of m
influenced the precision of the predictions. In data set 1, the
genomic prediction accuracy was higher at 55 and 28% and slowly
declined as the size of m decreased; this decrease in the prediction
accuracy was smoother in data set 1 than in data set 2. One of
the reasons for these differences in prediction accuracy between
the two data sets could be due to the rank of kernel K . For
example, in data set 1 for cycle 2017–2018, kernel K (of order
9015 × 9015) had a rank of 7017, whereas for data set 2, the
rank of matrix K was 598; that is, data set 1 had more degrees
of freedom than data set 2. A common feature of both data sets
is the rapid decline in the singular values of their kernels; this is
measured by ϕ as the percentage of variance retained by K using
a certain number of singular values (size of m). The empirical

results suggested using ϕ > 98 to avoid losing precision. This
result is in agreement with that suggested by Misztal (2016). This
could be used as a rule of thumb to select the minimum size of m
that would return a ϕ > 98.

The rapid decline in the singular value of kernel K favors
the use of the approximate kernel Q, as suggested by Wang
et al. (2015). Therefore, the rapid decline in the singular value
of kernel K also favors the use of other methods that improve
the computer speed, such as principal component regression
using the original matrix K . However, if the data are large,
intense computational efforts are required to construct matrix
K , with an exponential requirement of computing capacity for
eigenvalue decomposition. On the other hand, the approximate
method requires a matrix of much lower order. When using an m
associated with ϕ > 98, we do not expect significant differences
in the prediction accuracy of the approximate model and the full
model; also, no differences between the approximate model and
the principal component regression model are expected using a
similar size of m; however, when ϕ� 98, more differences are
expected between the approximate model and the full genomic
models but less with the principal component regression model.

In relation with the necessary computing time, the AP method
applied to data set 1 showed that the saving of computing
time increases when the size of m decreases, whereas for data
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set 2, this also occurs but in different proportions because
the data are of much lower dimension than those in data
set 1. In general, the results of this study indicated that the
computing time used to fit the full model increases exponentially
with the number of observations n; this also applies to the
approximate models. These results are in agreement with those
of Wang et al. (2015), who commented that “most kernel-based
methods have a computational complexity of order O(n3). This
is prohibitive when we have large-scale training samples. The
low-rank spectral reconstruction of a kernel can be performed
by the Nyström method, which can speed up many regression-
oriented algorithms. The approximation quality of these methods
is protected by a reasonable and key assumption that the genomic
data, like most other large data, live in a lower dimension space
and the spectra of the kernel matrices often decay quickly.”

Figure 2A (data set 1) and Figure 3A (data set 2) display the
predictions of the different years (cycles) for the FGSE (yellow,
m = all lines) and APSE (blue m = 4000 lines; black m = 2000
lines; green, m = 1000 lines; purple, m = 500 lines and orange
m = 100 lines). The pattern of the predictions are kept similar (2
times the standard deviations) for both models, FGSE and APSE,
but changing the average correlations based on the size of m
indicating congruence among the predictions of the 20 samples
of different sizes of m that were randomly selected to form the
training set. Also, it can be observed that for FGSE and APSE
models, the sizes of m (yellow, blue and black, m = all lines
m = 4000 lines and black m = 2000 lines, respectively) did not
change the prediction accuracy of the unobserved wheat lines in
the testing set much. In addition, note that in Figures 2C, 3C, the
residual variance increased as the size of m decreased, indicating
that the AP model does not produce overfitting.

It is indeed in the GE models where approximate kernels could
have the greatest utility because the covariance matrix (G) of
the main effects of markers and the GE are, in general, large
matrices and the fit of the models is very slow computationally.
The fit of model APGE for data set 1(Table 3) did not lose
prediction accuracy when fitted with approximate kernels of
lower rank as compared with the ones required by the FGGE,
with an important reduction in the computing time. The APGE
reduced the time required to prepare the matrices and to fit the
model with 20,000 iterations to 8.5 h, when it takes days on a big
server. For data set 2, the results were not that good; nevertheless,
the precision did not decrease much, but the reduction in
time was important.

Table 4 shows the variance components of the two data sets
for model APGE. The magnitude of the variance components
shows that the model captured the main effects as well as the
interactions. Although ϕ is a good indicator for explaining
the relationship between the decay of the singular values,
unfortunately it is not always possible to estimate the decrease
in the prediction accuracy and the adequate size of m.

Using the approximate kernel of this study, authors like Seeger
et al. (2003); Snelson and Ghahramani (2006) and Titsias (2009)
show examples with large numbers of observations (n), while
the covariates (p) are continuous and of low dimensions. The
n� p implies the existence of redundant information (more
degrees of freedom available); this allows using approximate

kernels or a sparse Gaussian process (Rasmussen and Williams,
2006) in a very efficient manner. All these propositions
emphasize the size of m, but also indicate which observations
to choose. To deal with the selection of observations, some
authors propose selecting those that minimize the trace of
the matrix differences between the original matrix K and
the approximate matrix Q (Rasmussen and Williams, 2006).
Other authors propose maximizing the marginal likelihood based
on the variational inference (Titsias, 2009; Hensman et al.,
2013), where m observations are considered hyper-parameters.
Nevertheless, for the linear mixed models used in genomic
prediction, the high number of covariates (markers) may require
investing important additional computing time for selecting the
observations comprising m. On the other hand, empirical results
show that selecting the observations at random (Tables 1–3)
works all right because the main constraint is the size of m.
These results are in line with the approximate kernel developed in
animal breeding by means of pedigree and genomic selection for
determining the breeding values performance of large numbers
of animals (Misztal, 2016). However, in plant breeding, methods
for efficiently selecting the observations comprising m need to be
studied further, probably by selecting m lines using population
substructure and diversity criteria such as the ones proposed by
Akdemir (2014); Jeong et al. (2017).

CONCLUSION

The approximate kernel methods used in this study are
very promising because they allow a significant reduction in
computing time and data manipulation of large data sets, without
significant loss of prediction performance.

Results of model APSE for data set 1 show a good performance
on the genomic-enabled prediction accuracy compared with
the full models with APSE employing an important decrease
in computing time with respect to the full model. This can
be explained by the rapid decrease in the singular values and
their ability to capture important information, since with only
25% of the singular values, 98% of the total information was
retained. For data set 2, model APSE does not have the same
prediction performance as for data set 1. On average, genomic-
enabled prediction accuracies decreased rapidly when the size
of m decreased; however, the variability of the predictions was
maintained with respect to the full model. In data set 2, the
decay of the singular values was less rapid than that observed
for data set 1, that is, 25% of the singular values retained 95%
of the information.

For the very large data set 1, the results of model APGE
with the size of m representing only 25% of the total number
of lines gave an excellent correlation between predictive and
observed values, along with an important saving of computing
time. For the small data set 2, the APGE model gave better results
than model APSE, and the decrease in the correlation was less
compared to that of the full model when 25% of the total lines
were used in m. In both data sets, the APGE model with fairly
large G × E interactions of the variance components indicates
that this variability will indeed increase the genomic-enabled
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prediction accuracy with respect to models that only include
the main effects.

We also observed that the larger the data sets are, the more
benefits can be obtained from the approximate kernel methods.
However, for their successful implementation, two important
factors should be taken into account: (a) the number of lines
(m) that need to be used for approximating the kernel, and
(b) the amount of information that can be retained in the
approximate kernel (ϕ). According to our empirical study, we
observed that for large data sets, a ϕ > 98% and a size of
m> 50% of the total training observations are required for single-
environment analyses, and m > 25% for GE analyses prevent
important decreases in genomic-enabled prediction accuracy
while obtaining time savings in computing resources.

Results of this study indicated that the proposed
approximation could be an alternative to genomic prediction
when the number of observations is large and the construction
and storage of the large kernel matrices is difficult and it
takes excessive computing time to fit models FGSE and FGGE.
Regarding ϕ, although it is a good indicator of the variance
retained by the singular values and thus for determining the
adequate size of m, unfortunately, in practice it is not possible to
compute it. Therefore, further research on this subject is needed
for selecting the size of m. However, the results obtained are
promising because they provide a partial solution to an important
problem of genome-based prediction models.
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