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Copy number variations (CNVs) are significant causes of many human cancers and

genetic diseases. The detection of CNVs has become a common method by which

to analyze human diseases using next-generation sequencing (NGS) data. However,

effective detection of insignificant CNVs is still a challenging task. In this study, we

propose a new detection method, RKDOSCNV, to meet the need. RKDOSCNV uses

kernel density estimation method to evaluate the local kernel density distribution of

each read depth segment (RDS) based on an expanded nearest neighbor (k-nearest

neighbors, reverse nearest neighbors, and shared nearest neighbors of each RDS)

data set, and assigns a relative kernel density outlier score (RKDOS) for each RDS.

According to the RKDOS profile, RKDOSCNV predicts the candidate CNVs by choosing

a reasonable threshold, which it uses split read approach to correct the boundaries of

candidate CNVs. The performance of RKDOSCNV is assessed by comparing it with

several current popular methods via experiments with simulated and real data at different

tumor purity levels. The experimental results verify that the performance of RKDOSCNV

is superior to that of several other methods. In summary, RKDOSCNV is a simple and

effective method for the detection of CNVs from whole genome sequencing (WGS) data,

especially for samples with low tumor purity.

Keywords: copy number variation, next-generation sequencing, kernel density estimation, split read, biological

meanings

INTRODUCTION

With the rapid development of next-generation sequencing (NGS) technology, many sequencing
data sets that are used to detect and characterize human genome variation have been produced
(Medvedev et al., 2009). Copy number variation (CNV) is one of the important forms of
genome structural variation (Freeman et al., 2006). It has been reported that many human
cancers and diseases are caused directly or indirectly by CNVs (Zhao et al., 2013). It is
therefore necessary for humans to accurately detect CNVs using NGS data to effectively
discover disease-causing genes and develop targeted drugs (Yuan et al., 2018). The workflow
of the general CNV detection method includes the following steps: (1) comparing reads to a
reference genome (Metzker, 2010) and generating a SAM file with BWA (Li and Durbin, 2010);
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(2) obtaining a read count (RC) profile using SAMtools (Li
et al., 2009); (3) binning the RC profile (Chiang et al., 2009)
and obtaining the read depth (RD) profile; (4) preprocessing
the RD profile [eliminating GC bias, removing mappability bias
(Dohm et al., 2008), and denoising the data (Cai et al., 2018)];
(5) modeling and forecasting CNVs. In recent years, many CNV
detection methods have been developed based on this process.
According to the number of entered samples, the CNV detection
methods can be divided into three categories, namely those that
use multiple samples, matched case-control samples, and a single
sample, respectively.

Many detection methods have been developed based on
multiple samples as inputs, such as cn.MOPS (Povysil et al.,
2017), RDXplorer (Yoon et al., 2009), CoNIFER (Krumm et al.,
2012), XHMM (Fromer et al., 2012), and CODEX (Jiang et al.,
2015). The cn.MOPS method assumes that the RD at each
location is subject to a hybrid Poisson model that is used
to predict CNVs. RDXplorer detects CNVs using an event-
wise testing method, namely significance testing based on
preprocessed RDs of coverage. CoNIFER uses singular value
decomposition to detect CNVs and discover genotype copy
number polymorphic loci. XHMM is a statistical tool that uses
principal component analysis to preprocess RD profiles, and
establishes a hidden Markov model to announce CNVs. CODEX
builds a Poisson latent factor model to normalize RDs, and uses
a Poisson likelihood-based recursive segmentation procedure to
declare CNVs. Multiple sample-based methods are suitable for
the detection of the driver genes of cancer in the same diseased
group, which is conducive to the development of some targeted
drugs for clinical treatment. Via the preceding analysis, it is clear
that most CNV detection methods based onmultiple samples use
a distribution model to fit the RD signals. However, in practical
applications, RD signals do not obey the assumed distribution
due to data noise, sequencing errors, and sample contamination,
which leads to inaccurate test results. In daily life, doctors often
encounter patients with different diseases who require different
treatment plans. Therefore, the development of single sample-
based methods is imperative.

Some popular methods based on matched case-control
samples have been developed in recent years, and include
XCAVATOR (Magi et al., 2017), SeqCNV (Chen et al., 2017),
BIC-seq (Xi et al., 2010), CNAnorm (Gusnanto et al., 2012),
and CNAseg (Ivakhno et al., 2010). XCAVATOR uses a two-
step procedure in which RC biases are removed to identify the
absolute copy number and a shifting-level model method is
used to predict CNVs. SeqCNV comprises a maximum penalized
likelihood estimation method to calculate the copy number
ratio and detect CNVs. BIC-seq adopts the minimization of the
Bayesian information criterion method to identify CNVs based
on RD information. CNAnorm calibrates contamination with
normal cells and assesses the ploidy to calculate the copy numbers
of detected areas. CNAseg adopts flowcell-to-flowcell variability
in case and control samples to reduce the false positive rate and
identify CNVs. The matched case-control sample-based methods
are suitable for detection in individual patients, and can be used
to identify germline and somatic CNVs. These methods can
detect disease-causing genes associated with cancer and identify

the difference between the normal and abnormal tissues of a
single patient, and can effectively identify somatic CNVs using
targeted NGS data, which is very important especially in clinical
examination and cancer research. However, these methods also
have some limitations and a control sample of a patient is
required, the collection and production of which are relatively
expensive. Via the preceding analysis, it is evident that the paired
sample-based methods are suitable for the detection of disease
in niche people or for conducting experimental research that
requires specific clinical needs.

Due to the needs of practical applications, single sample-
based CNV detection methods emerged. In contrast to the two
other types of methods, these methods only require a sample
as the input, which reduces the cost of patient testing. For
example, as compared with the paired sample-based methods,
the cost of patient testing is reduced by about half because
the provision of a control sample is not required. In recent
years, many single sample-based methods have been developed,
most of which use depth of coverage (DOC) information to
establish a model and forecast CNVs; the basic principle is that
the RC of each location of a reference genome is proportional
to the copy number of each location (Yoon et al., 2009). In
theory, DOC-based methods can detect CNVs of any size; thus,
the vast majority of existing methods have been developed
based on DOC technology, and include ReadDepth (Miller
et al., 2011), CNVnator (Abyzov et al., 2011), GROM-RD
(Smith et al., 2015), iCopyDAV (Dharanipragada et al., 2018),
FREEC (Boeva et al., 2011), and CNV_IFTV (Yuan et al.,
2019). ReadDepth employs preprocessed RD information to fit a
negative binomial distribution and circular binary segmentation
to forecast CNVs; it is suitable for the detection of high-purity
tumor samples, though its accuracy is relatively low. CNVnator
uses the mean-shift method with GC content correction and
multiple-bandwidth partitioning to discover CNVs; it is not
suitable for testing low-purity samples or the investigation of
short CNVs, and, while it can achieve a high recall rate, it has
low precision. GROM-RD corrects repeat deviations and adopts
a two-pipeline masking approach to discover CNVs in duplicate
and complex areas; however, its performance is limited to the
detection of low-purity tumor samples, and the false positive
rate of test results is relatively high. iCopyDAV is an integrated
software platform composed of the detection, annotation, and
visualization of CNVs, and is suitable for testing samples with
high purity and medium coverage. FREEC preprocesses the RD
with GC content and uses GC content profiles for segmentation,
which is used to allocate copy numbers for each area. Its
performance is more balanced, and it achieves high recall and
precision. CNV_IFTV calculates the anomaly score for each area
with the isolation forest method and employs a total variation
model to smooth the anomaly score profile, based on which a
gamma distribution is established to predict CNVs. It achieves
a better tradeoff between recall and precision as compared to
the other previously mentioned methods, but it has a higher
time complexity. Via the analysis of these methods, it is evident
that the development of some new methods with complete
functions based on a single sample is necessary. The existing
methods mainly have the following limitations. (1) The general
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FIGURE 1 | Overview of the workflow of RKDOSCNV. It is mainly composed of four parts, namely input file preparation, data preprocessing, relative kernel density

outlier score calculation, and CNV prediction.

methods assume that the RD information follows a certain
distribution, such as a negative binomial distribution or a mixed
Poisson distribution. In actual experiments, it is found that the
distribution of RD signals deviates from the assumption, which
is caused by sequencing errors, GC-content bias, mappability
bias, and experimental noise. (2) Most methods only use RD
information to build models and predict CNVs. In theory, these
methods can detect CNVs of any size and type, but cannot
accurately detect the boundaries of variation regions. (3) It is very
difficult for most methods to detect the hemizygous loss regions,
the copy numbers of which are one. The regions can easily be
regarded as normal areas with copy numbers of two. Therefore, it
is necessary to adopt reasonable strategies and reduce the impact
on the test results.

Based on the previously discussed considerations, a novel
method, called RKDOSCNV (local kernel density estimation-
based approach for CNV detection), is developed in this study
to predict CNVs from single tumor samples via the use of whole
genome sequencing (WGS) data. A kernel density estimation
(KDE) method is adopted to evaluate the distribution of the local
kernel density (LKD) for each read depth segment (RDS) based
on the extended nearest-neighbor data set, which is composed
of the k-nearest neighbors (KNNs), reverse nearest neighbors

(RNNs), and shared nearest neighbors (SNNs) of each RDS (Tang
and He, 2017). After the calculation of the LKD of RDSs, the
relative kernel density outlier score (RKDOS) is evaluated for
each RDS, which can indirectly reflect the degree of deviation of
each RDS as compared to its three types of nearest neighbors.
By choosing a suitable threshold θ, the RKDOS of each RDS
is compared with θ. For example, if the RKDOS of an RDS is
greater than θ, it is considered as a candidate CNV. Based on the
prediction results, the boundaries of candidate CNVs are more
precisely refined using split read (SR) approach. The performance
of the proposed RKDOSCNV is estimated based on simulated
data sets and compared with the performances of several popular
methods. To further verify the validity of RKDOSCNV, it is
used to detect real tumor samples, and it is found that some
CNVs are associated with cancers and diseases, thus proving the
effectiveness of the method.

METHOD AND MATERIALS

Overview of RKDOSCNV
RKDOSCNV is developed based on the DOC and SR methods,
and is applied to detect single tumor samples without the
provision of a matched control sample. Figure 1 describes in
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detail the overall workflow of RKDOSCNV, which is composed
of the following four steps. First, the sequenced sample (Fastq)
and reference genome (Fasta) are offered as inputs. Many of
the reads that come from the Fastq file are compared to the
reference genome (e.g., HG19), which can generate a SAM file
using BWA (Li andDurbin, 2010). The SAMfile can be converted
to a BAM file, and the RC profile is extracted from the SAM
file with SAMtools (Li et al., 2009). The positions, alignment
information, and base sequences of SRs are further collected from
BAM files. The second step mainly includes defining the bins,
filtering anomalous bins, calibrating the GC bias, noise reduction,
balancing RD signals, and converting the dimensions of RD data.
The third step, RKDOSCNV calculates the RKDOS for each
RDS based on the extended nearest-neighbor data set (Tang and
He, 2017). Finally, RKDOSCNV reports candidate CNV regions
whose RKDOSs are > θ, which is a set threshold, and applies
the SR approach to further refine the boundaries of the candidate
CNV regions. The RKDOSCNV software is developed in the R
and Python languages. It can be downloaded from https://github.
com/gj-123/RKDOSCNV/releases, and is easy to install and use
after reading the user manual.

Data Preprocessing
The sequenced sample is compared to the reference genome by
BWA, which obtains the SAM file from which the RC profile
is extracted with SAMtools. The reference genome is composed
of many “A,” “T,” “G,” “C,” and “N,” of which “N” represents
the positions of the reference genome that are missing in the
sequencing process. When reads compares to positions of “N,”
which will cause the RCs to be equal to zero at these positions
(Yuan et al., 2018). To obtain a reasonable RC profile, the
following strategies are adopted to solve this problem. A bin
is defined, which is a continuous and non-overlapping sliding
window. In this study, the bin size was set to 2000 bp. If a bin
contains positions of “N,” it will be filtered as an abnormal bin.
An RD is defined as a numerical value that can be determined by
calculating the RC mean of a bin. Based on this processing, the
GC bias is caused by the PCR amplification that is calibrated by
Equation (1) (Yoon et al., 2009):

RD
′

i =
RD · RDi

RDgc
, (1)

where RD
′

i represents the RD of the i-th bin after correction, RD
represents the mean of all RDs, RDi represents the RD of the i-
th bin, and RDgc denotes the mean of RDs that have the same
GC content.

The noise of RDs severely affects the accuracy of CNV
detection; the noisy data is directly used to detect CNVs, which
results in inaccurate detection results. Therefore, the elimination
of noise is a critical step in the CNV detection process. In this
study, a total variation method is adopted, which can reduce
noise, segment, and smooth one-dimensional discrete signals
based on the regularized total variation (Condat, 2013) and least-
squares approaches (Duan et al., 2013). With the RDS profile,
the RDS signals are asymmetric because the copy number gains

and losses are asymmetric as compared with the normal copy
number. If the model is based on asymmetric RD signals, some
insignificant CNVs will be easily overlooked. Here, Equation (2)
is used to adjust the symmetry of RD signals (Yuan et al., 2018):

RDS
′

i =

∣

∣

∣

∣

RDSmin

RDSmax

∣

∣

∣

∣

· (RDSi − RDSM) , (2)

where RDS
′

i denotes the RD of the i-th segment after equalization,
RDSmin denotes the minimum value of the RDSs, RDSmax

denotes the maximum value of the RDSs, RDSi denotes the RD
of the i-th segment, and RDSM denotes the mode of the RDSs.
Based on the balanced RDS profile, the one-dimensional RDS
profile is converted into a two-dimensional profile RDSs, which
are described in detail by Equations (3–5), respectively.

RDSx =
RDSi

RDS
(3)

RDSy = (4)
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m i = 1
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j=1
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i+m
∑

j=i+1
|RDSx[i]−RDSx[j]|

i+m−1 1 < i ≤ m
i−1
∑

j=i−m
|RDSx[i]−RDSx[j]|+

i+m
∑

j=i+1
|RDSx[i]−RDSx[j]|

2m m < i ≤ |RDSx| −m
i−1
∑

j=i−m
|RDSx[i]−RDSx[j]|+

|RDSx |−1
∑

j=i+1
|RDSx[i]−RDSx[j]|

|RDSx |−i−1+m |RDSx| −m < i ≤ |RDSx| − 1
i−1
∑

j=i−m
|RDSx[i]−RDSx[j]|

m i = |RDSx|

RDSs = {RDSx,RDSy} (5)

In Equation (3), RDSi represents the RD of the i-th segment,
RDS represents the mean of all the RDSs, and RDSx represents
the ratio between RDSi and RDS, which indirectly reflects the
distribution of the copy number at each location. In Equation
(4), |RDSx| represents the number of elements in the RDSx. RDSy
represents the difference between an RDS and the surrounding
RDSs in a certain depth of exploration (m), which is helpful
for the detection of insignificant CNVs in the local range. Here,
the default value of m is set to 10. In Equation (5), RDSs
represents a two-dimensional data set that is composed of RDSx
and RDSy, and each element of it is treated as an object (O). The
main purpose of this step is conducive to the capture of local
insignificant CNVs, and provides an effective data set for the
calculation of the RKDOSs presented in the subsequent section.

Calculation of Relative Kernel Density
Outlier Scores
Based on the RDSs profile, RKDOSCNV uses the KDE approach
to evaluate an LKD distribution, and assigns the RKDOS that
can reflect the degree of isolation of an object as compared
with its three types of nearest neighbors for each RDS (Tang
and He, 2017). This is different from the traditional RD-based
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CNV detection methods, which generally build statistical models
according to the approximate distribution of RDSs and choose
an appropriate significance level to predict CNVs. Here, the LKD
distribution function is defined using Equations (6–9).

f (O) =
1

n

n
∑

i=1

1

σ d
K(

O− Oi

σ
) (6)

K(
O− Oi

σ
) =

1

(2π)
d
2

e
(−

||O−Oi ||
2

2σ2
)

(7)

In Equation (6), O represents any element in the RDSs, Oi

represents the i-th element in the RDSs, σ represents the
bandwidth of the kernel function, d represents the dimension
of RDSs, and K(O−Oi

σ
) represents a multivariate Gaussian kernel

function and is defined in Equation (7). ||O − Oi||
2 represents

the Euclidean distance between and Oi.To accurately calculate
the LKD of O, its three types of neighbor relations (KNNs,
RNNs, and SNNs) are calculated, and are used as kernels in
the Gaussian kernel function and represented with three sets
(RDSs−knn, RDSs−rnn, and RDSs−snn), which are described in
detail by Equations (8–11).

RDSs−knn(O) = (RDSs−knn[1],RDSs−knn[2], ...,

RDSs−knn[k]) (8)

RDSs−rnn(O) = (RDSs−rnn[1],RDSs−rnn[2], ...,RDSs−rnn[i])

or∅ (9)

RDSs−snn(O) = (RDSs−snn[1],RDSs−snn[2], ...,

RDSs−snn[j])or∅ (10)

RDSs−u(O) = RDSs−knn(O) ∪ RDSs−rnn(O) ∪ RDSs−snn(O)

1 ≤ i ≤ k, 1 ≤ j ≤ k, i, j ∈ N (11)

In Equation (8), O represents any object in the RDSs,
RDSs−knn(O) represents the set of the KNNs of O. Here, the
default value of k is set to 60. In Equation (9), RDSs−rnn(O) is
a set that is composed of the RNNs of O, which are defined as
the objects, the KNNs of which include object O. In practical
applications, the RNNs of O may or may not exist. In Equation
(10), RDSs−snn(O) represents the SNNs set of O, which is defined
as the objects that have the same nearest neighbors as O.
Similarly, the SNNs of O may or may not exist. In Equation
(11), RDSs−u(O) represents the union of three types of nearest
neighbors, based on which the proposed method can detect not
only an isolated anomalous individual, but also a cluster of local
insignificant anomalous individuals. The Equation (12) is used to
calculate the LKD of O:

f (O) =
1

|RDSs−u(O)|

∑

Oi∈RDSs−u(O)

1

σ d
K(

Oi − O

σ
), (12)

where |RDSs−u(O)| represents the number of elements in the
RDSs−u(O). Based on Equation (12), the calculation of the

RKDOS for O is described by Equation (13):

RKDOS(O) =

∑

Oi∈RDSs−u(O)

f (Oi)

|RDSs−u(O)|f (O)
, (13)

where RKDOS(O) is defined as the ratio between the average of
the LKD of the three types of nearest neighbors ofO and the LKD
of O.

Declaring CNVs
Based on the RKDOS of each object, the degree of anomalies
is progressively analyzed, and a threshold θ is chosen as the
cutoff for those abnormal objects. The threshold θ is a constant
that is determined by users according to their own application
scenarios. In this work, the θ is set to 1.1. The basic judgment
principle is as follows. (1) If the RKDOS of an object is > θ,
it is considered as a candidate CNV area. (2) If the RKDOS
of an object is ≤θ, it is considered as a candidate normal
area. Structural variants (SVs) is an important manifestation
of human chromosome variation, which includes the tandem
amplification, interspersed amplification, deletion, insertion, and
rearrangements (translocation and inversion) of DNA fragments
(Stankiewicz and Lupski, 2010; Guan and Sung, 2016; Yuan
et al., 2020). The SR-based SV and CNV detection methods
can accurately detect the boundaries of the mutation areas, and
reduce false positives and false negatives in the test results (Ye
et al., 2009; Abyzov and Gerstein, 2011; Rausch et al., 2012;
Layer et al., 2014). In this study, the SR approach is used to
determine the locations of the breakpoints of candidate CNVs.
Three features (the POS, CIGAR, and sequence) of SRs are
extracted from BAM files (Li et al., 2009). The POS indicates the
position of the leftmost first base of an SR sequence aligned to
the reference genome. The CIGAR indicates the state of an SR
aligned to the reference genome. It is a string, which is composed
of numbers,M and S. Here, the type of CIGAR that only includes
M and S is extracted, and is described by Equation (14):

CIGAR =

{

mMnS m, nǫN,m+ n = Rl,
nSmM ditto

(14)

where M represents an exact match, S represents no match,
m indicates that the m bases of an SR completely match the
reference genome, n indicates that the n bases of an SR cannot be
completely matched to the reference genome, and Rl represents
the length of an SR, which is generally set to 100 bp. Here,
a CIGAR with a value of n >10 is chosen. If the mismatch
length of an SR is too small, it may be caused by sequencing
errors. The sequence represents the base sequence of an SR. Most
SRs are useless for boundary detection; therefore, conditions
must be set to filter out effective SRs. Here, the search step
size is set to the length of n bins (L). The starting point and
endpoint indexes of a candidate CNV region that represent the
leftmost position and rightmost position of a candidate CNV are
respectively used as search centers according to which forward
and backward searches are performed; This step forms two search
ranges where those SRs are recorded. Figure 2 depicts an example
of exploration process of SRs. The n SRs (from SR1 to SRn) and
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FIGURE 2 | An example of the search SRs method. The black arrow represents the split reads (SRs) that fall into the areas of length 2L and are extracted from BAM

files. The red arrow represents the forward search direction, and the yellow arrow represents the backward search direction. L represents the depth of the search. The

blue area represents the candidate CNV area, and the gray area represents the expanded parts of the candidate CNV area, which constitute an expanded CNV region.

FIGURE 3 | An example of the boundary detection method in the gain area.

The split reads (SRs) come from a sequenced sample and contain breakpoint

information, such as SR (mSnM). M represents the matched part of the SR,

while S represents the unmatched part. Moreover, m represents the length of

M, and n represents the length of S. TheM and S of the SR are mapped on the

reference genome. POSM and POSS represent the alignment positions of the

first base at the left ends of M and S, respectively. The red area represents an

expanded gain, the boundary of which is represented by GREGs and GREGe.

n SR’s (from SR′
1 to SR′

n) fall into the detection range centered
on start and end, length of which are 2L, respectively. Based
on the extracted SRs and SR’s, the boundary of the candidate
CNV (blue area) is corrected in the expanded CNV (Blue area
plus two gray areas). Next, the SRs that contain a substantial
amount of breakpoint information are used to accurately define
the boundaries of the mutated regions. According to the type
of mutation zone, the correction procedure is composed of
two parts. (1) The first part of the correction procedure is the
correction of the candidate gain regions. The SM-type SRs are
extracted in the gain region, which must meet the following
conditions: a number of SRs greater than or equal to two, and
a length of S that is the largest, which is perfectly matched in
the expanded gain region. The SM-type SRs are used to calculate
the starting point of the mutation region (GREGs) and the
endpoint of the mutation region (GREGe), which are expressed

by Equations (15, 16), respectively:

GREGs = POSM , (15)

GREGe = POSS + n− 1, (16)

where POSM indicates the alignment position of the first base
at the left end of M, POSS indicates the alignment position of
the first base at the left end of S, which can be calculated using
the string-matching method, and n indicates the length of S. An
example of the boundary correction process of the CNV gain
area is described in detail in Figure 3. An SR is split into two
parts (M and S) from the breakpoint. M and S are compared to
the expanded gain (red area), and their length (m and n) and
position (POSM and POSS) are used to correct the boundary of
the expanded CNV (GREGs and GREGe). (2) The second part
of the correction procedure is the correction of the candidate
loss regions. The MS-type SRs and SM-type SRs are extracted
in the candidate loss regions. If the overlap between a MS-type
SR and a SM-type SR exceeds 60%, this pair of SRs is considered
to contain the same breakpoints. Moreover, the number of pairs
of SRs is guaranteed to be more than two, and those SRs with
the greatest length of S are chosen. A dynamic programming
algorithm is adopted to calculate the overlapping ratio. MS-type
SRs are used to calculate the starting point of the mutation region
(LREGs), and SM-type SRs are used to calculate the endpoint
of the mutation region (LREGe) (Wu et al., 2013), which are
respectively described by Equations (17, 18):

LREGs = POS+m, (17)

LREGe = POS′ − 1, (18)

where POS indicates the alignment position of the first base at
the left end ofM of the MS-type SR,m indicates the length ofM,

and POS
′
indicates the alignment position of the first base at the

left end of M of the MS-type SR. An example of the boundary
correction process of the CNV loss area is described in detail
in Figure 4. SR and SR’ are split into two parts (M and S) from
the breakpoint, respectively. The Ms and Ss are compared to the
expanded loss (blue area), and their length (m, m’, n, and n’) and
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FIGURE 4 | An example of the boundary detection method in the loss area.

The split reads (SRs) come from a sequenced sample, and contain breakpoint

information, such as SR (mMnS) and SR’(n’Sm’M). M represents the matched

part of SR and SR’, and S represents the unmatched part. Moreover, m and

m’ represent the length of M of SR and SR’, and n and n’ represent the length

of S. This pair of SRs contains the same breakpoint, and their M and S are

mapped on the reference genome. POS and POS’ represent the alignment

positions of the first base at the left ends of M of SR and SR’, respectively. The

blue area represents an expanded loss, the boundary of which is represented

by LREGs and LREGe.

position (POS and POS’) are used to correct the boundary of the
expanded CNV (LREGs and LREGe).

RESULTS AND DISCUSSION

To evaluate and verify the performance of RKDOSCNV, it was
tested using both simulated and real data. In the simulated data
experiment, the proposed method was evaluated by comparing it
with four published algorithms (CNV_IFTV, CNVnator, FREEC,
and SeqCNV). Three performance indicators (recall, precision,
and F1-score) were adopted to assess the performance of each
method. In the real data experiment, three types of data (three
real samples from the 1,000 Genomes Project, two ovarian
cancer samples and one breast cancer sample) were used to test
RKDOSCNV. The CNVs of three real samples from the 1000
Genomes Project were provided in the Database of Genomic
Variants, which was used as the ground truth file to calculate
the recall, precision, and F1-score of each method to evaluate
their performances. Via the analysis of the real data samples,
it was found that RKDOSCNV detected that some CNVs have
important biological significance, which can provide powerful
assistance for cancer prevention and targeted drug development.

Simulated Data Experiments
The simulated data sets were generated by IntSIM software (Yuan
et al., 2017). Before using the software, the following settings
were made for the reference genome as input, tumor purity
(TP), and sequencing coverage (SC). Chromosome 21 of hg19
was chosen as the reference genome, the TP was set to 0.1
or 0.2, and the SC was set to 30×. The ground truth file was
composed of six gains, four hemizygous losses (hemi-losses)
and four homozygous losses (homo-losses). Under each set of
settings, 50 simulation samples were generated.

FIGURE 5 | The performance of five methods was evaluated on two sets of

simulated data sets. The F1-score of each method was calculated as the

evaluation indicator of performance. Black curves indicate F1-score levels that

are harmonic means of recall and precision. The equations on the left and right

sides of the comma represent the tumor purity (TP) and sequencing coverage

(SC), respectively.

Based on these simulated data sets, the performances
of RKDOSCNV and four published methods (CNV_IFTV,
CNVnator, FREEC, and SeqCNV) were tested to calculate
their recall, precision, and F1-score. Recall is defined as the
ratio between the number of CNVs correctly detected by a
method and the total number of CNVs in the ground truth
file. Precision is defined as the ratio between the number of
CNVs correctly detected by a method and the total number
of CNVs detected by the method. The F1-score is defined as
the harmonic mean of precision and recall. The comparison
results are presented in detail in Figure 5, from which it
is evident that the overall trend of performance changes of
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FIGURE 6 | Histogram of the number of hemizygous loss (hemi-loss) and

homozygous loss (homo-loss) for each method under two different sets of

conditions. The equations on the left and right sides of the comma represent

the tumor purity (TP) and sequencing coverage (SC), respectively.

each method increased along with the increase in TP. For
example, the smallest F1-score was close to 0.1 when the TP
was set to 0.1, and the largest F1-score was >0.9 when the
TP was set to 0.2. Under each set of conditions, RKDOSCNV
achieved the best F1-score, followed by CNV_IFTV, FREEC,
SeqCNV, and finally CNVnator. CNVnator achieved the lowest
precision under each set of conditions; it detected many long
CNVs, most of which were false positives. SeqCNV achieved
the lowest recall but higher precision, which demonstrates that
the detection of this method was more conservative than the
other methods. The performance of FREEC was better than
those of CNVnator and SeqCNV. Its performance improved by
nearly 0.3 when the TP was increased from 0.1 to 0.2, which
demonstrates that it is not sufficiently sensitive to detect samples
with extremely low purity. CNV_IFTV achieved a better tradeoff
between recall and precision than these three methods. Of all
the tested methods, RKDOSCNV achieved both the highest
recall and precision. Via the preceding analysis and discussion,
it is proven that RKDOSCNV is an effective and reliable CNV
detection method.

To verify this conclusion, the detection power score (P-score)
of each method was detected in the regions of insignificant
variation (hemi-loss regions) where the copy number is one,

which can easily be mistakenly detected as normal areas. The
P-score is expressed as follows:

P − score = Ln ·
Ln

Ln + Lfp
(19)

where Ln represents the number of correctly detected loss areas
(hemi-loss or homo-loss) and Lfp represents the number of
false positive loss areas; the higher the P-score, the better the
detection power. Moreover, the numbers of homo-loss regions
were also counted. Four methods (RKDOSCNV, CNV_IFTV,
CNVnator, and FREEC) were chosen for comparison, and
SeqCNV was not included because it did not detect any loss
areas. The P-scores of each method in both regions are described
in detail in Figure 6, where it is evident that the P-score of
each method presented an increasing trend with the increase
of the TP from 0.1 to 0.2. The P-score of homo-loss of each
method was higher than the P-score of hemi-loss of each
method under all settings, which demonstrates that homo-loss
can be more easily detected than hemi-loss. When the TP was
equal to 0.1, the score of hemi-loss of RKDOSCNV was far
superior to those of the other methods, which demonstrates
that it is a reliable tool for the detection of insignificant CNVs.
CNV_IFTV achieved higher P-scores and ranked second among
all methods. FREEC achieved lower P-scores of hemi-losses than
RKDOSCNV and CNV_IFTV, and did not detect any hemi-loss
when the TP was equal to 0.1. CNVnator did not detect any
hemi-loss under two sets of conditions. Overall, RKDOSCNV
achieved the highest P-score, followed by CNV_IFTV, FREEC,
and CNVnator, which is consistent with the conclusion of the
simulation experiment.

As a supplement to these experiments, the correctness of the
boundaries of correctly detected CNVs was further evaluated.
The correctness of boundary (COB) is defined as the number
of the boundary of correctly detected CNVs, the starting and
ending points of which are consistent and compared with the
ground truth file. As presented in Figure 7, that COB of each
method is described using box plots under each set of simulation
conditions, which includes 50 simulated samples. Figure 7 shows
that the COBs exhibited an increasing trend with the increase of
TP. RKDOSCNV achieved the highest average COB value under
each set of conditions. The COB of CNV_IFTV was better than
that of FREEC when TP was equal to 0.1; on the contrary, the
COB of FREEC was better than that of CNV_IFTV when TP
was equal to 0.2. Their COB values were relatively close under
two sets of conditions. Both CNV_IFTV and FREEC get a higher
COB than the othermethods, but their average COB is lower than
RKDOSCNV. CNVnator detected fewer correct CNVboundaries
as compared to the above three methods, and SeqCNV could not
detect the correct CNV boundaries under each set of conditions.
Via the analysis and discussion of these experiments, it is evident
that the performance of RKDOSCNV was the best among all
compared methods, which fully verifies that it is a reliable and
effective CNV detection tool.
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FIGURE 7 | Box plots of the correctness of boundary (COB) of each method

under two different sets of conditions.

Detection of Real Samples From the 1,000
Genomes Project
To validate the proposed RKDOSCNV method, it was applied
to the analysis of three real sequencing samples (NA12878,
NA12891, and NA12892), which were downloaded from
published article(Yuan et al., 2019). It was compared with three
other single sample-based methods (CNV_IFTV, CNVnator, and
FREEC). The test results of the three samples are recorded in
the DGV database, by which the recall, precision, and F1-score
of each method can be roughly calculated. The comparison
results are described in detail in Figure 8. For the NA12878
sample, RKDOSCNV achieved the highest precision and a
moderate recall. FREEC achieved a better recall and the lowest
precision because it detected many false positives. CNV_IFTV
achieved a better balance between recall and precision, and
CNVnator achieved a lower precision and the highest recall.
For the NA12878 sample, RKDOSCNV achieved the best F1-
score, followed by CNV_IFTV, CNVnator, and FREEC. For
the NA12891 sample, RKDOSCNV achieved the best F1-
score, followed by CNV_IFTV, CNVnator, and FREEC. For
the NA12892 sample, the F1-score of CNV_IFTV ranked first,
followed by those of RKDOSCNV, CNVnator, and FREEC.
Overall, from the results of the compared methods on the three
samples, RKDOSCNV achieved a superior trade-off between
recall and precision as compared to the other three methods. The

FIGURE 8 | The performances of four methods were evaluated on three real

data samples (NA12878, NA12891, and NA12892). Black curves indicate

F1-score levels that are harmonic means of recall and precision.

preceding analysis and discussion demonstrate that RKDOSCNV
is a relatively reliable CNV detection tool.

Detection of Two Ovarian Cancer Samples
We used RKDOSCNV to detect the genome-wide data
of two ovarian cancer samples (EGAR00001004838 and
EGAR00001004839), which can download at published article
(Yuan et al., 2018). Here, 22 autosomes of each sample are used
for analysis. RKDOSCNV was compared with the other two
methods (CNV_IFTV and FREEC). Number of overlapping
events and Number of predicted events of each method are
recorded in detail in Table 1. FREEC gets the most overlapping
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TABLE 1 | Number of overlapping events and predicted events for each method

on three real datasets.

Sample ID Type RKDOSCNV CNV_IFTV FREEC

EGAR00001004838 Number of overlapping

events

10,912 2,319 11,529

Number of predicted

events

56,110 15,985 619,312

EGAR00001004839 Number of overlapping

events

10,537 2,200 11,422

Number of predicted

events

22,764 17,308 625,767

PD4192a Number of overlapping

events

4,128 3,376 5,230

Number of predicted

events

16,672 13,848 306,257

TABLE 2 | Summary of ODS for each method on three real datasets.

Sample ID RKDOSCNV CNV_IFTV FREEC

EGAR00001004838 4,874 441 1,155

EGAR00001004839 7,177 432 1,982

PD4192a 1,739 1,279 725

events, but it detects the most non-overlapping events. The
number of overlapping events detected by RKDOSCNV is
slightly less than FREEC. It detects a moderate number of non-
overlapping events. CNV_IFTV Obtain the least overlapping
events and non-overlapping events in each sample. In order
to further compare the performance of each method, we use
Equation (20) to calculate the overlapping density score (ODS)
(Yuan et al., 2019) of each method.

ODS = Mo ·Mp, (20)

Where Mo represents the mean of the number of overlapping
events (the mean of the intersection between one method and
the other methods), Mp represents the ratio between Mo of the
method and number of events predicted by it.

The corresponding comparison results are listed in Table 2.
RKDOSCNV get the highest ODS in each sample. In Table 1,
FREEC detected the most overlapping events, but its ODSs are
lower than RKDOSCNV. This is because it detects a large number
of non-overlapping events. CNV_IFTV gets the lowest ODSs in
two samples. In conclusion, RKDOSCNV predicted a moderate
amount of CNV events in these samples and showed a relatively
high overlapping density compared to other methods.

Detection of a Breast Cancer Sample
To further validate RKDOSCNV, it was applied to the detection
of CNVs in a breast cancer whole-genome sample (PD4192a),
which was downloaded from published article (Li et al., 2019).
The 22 autosomes of the breast cancer sample were extracted
by SAMtools (Li et al., 2009). CNV_IFTV and FREEC were
selected for comparison with RKDOSCNV. The experimental

results were described in detail in Tables 1, 2. FREEC predicts
the most CNV events and overlapping events, but it gets lowest
ODS. It detected a large number of CNV events, most of
which were long CNVs and proved to be false positives in the
previous experiments. CNV_IFTV detects the fewest CNV events
and overlapping events, and gets ODS between FREEC and
RKDOSCNV. RKDOSCNV predicts the moderate number of
CNV events and overlapping events, and it gets the highest ODS
in all methods. Figure 9 presents an overview of the detected
CNV distribution of the 22 autosomes, which is composed
of four rings. From the outside to the inside, the first ring
represents the distribution and length of the 22 autosomes, and
the second, third, and fourth rings represent the detection of the
gain and loss regions by FREEC, CNV_IFTV, and RKDOSCNV,
respectively. The red and blue dots represent gain areas and
loss areas, respectively. It was found that FREEC detects a
large number of CNVs in each chromosome. CNV_IFTV did
not detect any CNVs in chromosomes 6, 10, and 22, whereas
the other two methods did detect CNVs. It shows that the
detection of this method is more conservative than the other two
methods. RKDOSCNV detected a moderate number of CNVs,
and relatively more gain areas than loss areas.

Based on the preceding analysis, the biological meanings of
detected CNVs were further investigated, many of which are
associated with cancer or complex diseases. For example, the
CNV gains at 1p11.2 (Jiang et al., 2011), 11q21 (Kazantseva
et al., 2016), 16q11.2 (Savelyeva et al., 1994), and 17q11.1 are
associated with breast cancer and are detected by each method,
which is described in Figure 9. Those at 14q11.2 (Kawasaki et al.,
2007) and 16p11.2 (Weiss et al., 2008) are respectively related
to lung cancer and autism, that at 10q11.21 (Rees et al., 2016)
is associated with schizophrenia, those at 1q21 (Grzasko et al.,
2012) and 2q12.3 (Erickson et al., 2014) are associated with
multiple myeloma, and those at 14q11.1 (Thean et al., 2018)
and 18q21.1 (Druliner et al., 2018) are associated with colorectal
cancer. CNV loss at 20q13.2 (Hidaka et al., 2000) is associated
with colorectal cancer, that at 14q32.33 (Ledet et al., 2013) is
associated with prostate cancer, that at 4q13.2 (Yang et al., 2008)
is associated with osteoporosis, and that at 3q29 (Biamino et al.,
2016) is related to autism. Via the preceding analysis, it is found
that the four methods are very effective and can detect some
valuable CNVs, and can therefore provide great assistance for
clinical treatment and drug development.

DISCUSSION AND CONCLUSION

In this study, a new method called RKDOSCNV was presented
for CNV detection via the use of NGS data. RKDOSCNV was
developed based on DOC and SR methods and uses a local
perspective to detect CNVs, which replaces general methods
that use global modeling to predict CNVs. RKDOSCNV is
a single sample-based CNV detection method, and does not
require the provision of paired samples. Via the verification
of experiments on simulated and real data, it was proven
that RKDOSCNV can detect many meaningful CNVs, and can
provide effective assistance for the development of targeted drugs
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FIGURE 9 | The Circos plot shows that the detected CNVs of each method are distributed in the 22 autosomes of a breast cancer sample. The red and blue dots

represent gain areas and loss areas, respectively. The outermost ring describes the distribution of 22 autosomes. From the outside to the inside, the second, third,

and fourth rings present the test results of FREEC, CNV_IFTV, and RKDOSCNV, respectively. The innermost ring corresponds to the four cytobands (1p11.2, 11q21,

16q11.2, and 17q11.1) detected by each method, which are associated with breast cancer.

and cancer prediction. It is unique as compared to traditional
detection methods that build statistical models based on global
data and use hypothesis testing methods to predict CNVs. The
three characteristics of RKDOSCNV are defined as follows.
(1) Unlike traditional methods, RKDOSCNV does not need to
make assumptions about the distribution of RD signals, and
discerns the difference of RD signals from a local perspective.
(2) By calculating the three types of neighbor relations of RDS
signals, RKDOSCNV can successfully detect many insignificant
CNVs. (3) Based on detected candidate CNVs, RKDOSCNV
uses the SR approach to further determine the boundaries of
candidate CNVs.

The effectiveness of RKDOSCNV was verified using both
simulated and real data sets. In the simulated data experiment,
RKDOSCNV was compared with four existing algorithms, and
three performance indicators (recall, precision, and F1-score)
of each method were analyzed to measure their performances.
The ability of each method to detect insignificant CNVs
and correctly identify the number of CNV boundaries was

further evaluated. The experimental results demonstrate that
RKDOSCNV achieved the best performance in terms of the
F1-score, P-score, and COB. In the real data experiments,
the performance of RKDOSCNV was evaluated using six real
samples, and the biological significance of the detected CNVs
was analyzed and discussed. Overall, RKDOSCNV is an effective
and reliable CNV detection tool, especially for tumor samples of
low purity.

During the experiment, some shortcomings were discovered.
For example, the selection of the number of neighbors (k) is a
critical step in the proposed method; it is set as an empirical
value with reference to the traditional outlier detection methods
(Breunig et al., 2000; Jin et al., 2006; Tang and He, 2017), which
meets the needs of most situations, but may not be suitable in
extreme cases. The threshold (θ) setting also has a great influence
on the accuracy of the detection results. Based on applications in
different scenarios (Tang and He, 2017), a moderate baseline was
chosen to meet the application needs. The proposed method does
not support detection of interspersed amplification, which is an
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important form of mutation. We will expand the functionality of
the method so that it can detect multiple types of mutations. The
CNVs detected by RKDOSCNV includes germline and somatic
CNVs, but it cannot distinguish between the two variant types. If
a control sample is input, our method can identify germline and
somatic CNVs. Currently, there is no matched control sample, so
the detection result is a mixture of two types of variants. In this
study, the methods compared by RKDOSCNV detect all CNVs
(germline and somatic CNVs). In future work, these problems
will be addressed to improve the performance of RKDOSCNV,
and reasonable methods will be developed to automatically
select the optimal parameters and effectively identify other types
of mutations. Based on the existing methods, other distance
measurement methods and density evaluation methods will be
chosen to further improve the performance of RKDOSCNV in
the accurate and effective identification of CNVs.
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