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Dry matter accumulation and partitioning during the early phases of development could
significantly affect crop growth and productivity. In this study, the aboveground dry
matter (DM), the DM of different organs, and partition coefficients of a maize association
mapping panel of 412 inbred lines were evaluated at the third and sixth leaf stages (V3
and V6). Further, the properties of these phenotypic traits were analyzed. Genome-wide
association studies (GWAS) were conducted on the total aboveground biomass and
the DM of different organs. Analysis of GWAS results identified a total of 1,103 unique
candidate genes annotated by 678 significant SNPs (P value < 1.28e–6). A total of
224 genes annotated by SNPs at the top five of each GWAS method and detected by
multiple GWAS methods were regarded as having high reliability. Pathway enrichment
analysis was also performed to explore the biological significance and functions of these
candidate genes. Several biological pathways related to the regulation of seed growth,
gibberellin-mediated signaling pathway, and long-day photoperiodism were enriched.
The results of our study could provide new perspectives on breeding high-yielding
maize varieties.

Keywords: pathways, GWAS, seedling stage, dry matter accumulation, maize

INTRODUCTION

Maize (Zea mays L.) is an important food staple and feed crop in the world, and the stability of its
production is of great significance. Due to continuing population growth and energy insufficiencies,
the global demand for food has increased, and thus improvements in maize productivity and
quality through breeding are vital (Tester and Langridge, 2010). Plant dry matter is an essential
index for evaluating plant growth and development. Dry matter accumulation and partitioning
during the early phases of development significantly affect crop growth and yield formation. In
maize, dry matter accumulation during the early stages of growth is positively correlated to floret
number per ear row (Gonzalez et al., 2019). Therefore, evaluation of the genetic basis of dry matter
accumulation and distribution in maize seedlings could explain the genetic mechanism of dry
matter accumulation and guide strategies of improving maize yield via breeding.

The third and sixth leaf stages (V3 and V6, respectively) are the critical vegetative growth phases.
Prior to V3, the seed is the primary nutrient source, and thus seed quality and germination ability
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affect plant growth, along with the soil temperature and
wetness conditions. Once the seedling passes the V3 stage, it
transitions from autotrophic to heterotrophic nutrition, and
internode elongation begins at the V6 stage. Since the leaf
is the primary organ for photosynthesis and transpiration in
plants, leaf development affects dry matter accumulation and
yield performance (Wang et al., 2011). The maize leaf sheath
wraps around the stem and provides strength for the growth and
development of the leaf blade (Dong et al., 2019). Prior to V3, the
combined strength of leaf sheaths layered on top of one another
maintains the upright posture (Lori et al., 2011). Therefore,
plant growth and dry matter distribution patterns established
at the early stage affect morphogenesis and the photosynthetic
competence of the plant at later stages.

Dry matter accumulation is affected by many factors, such
as fertilizer, irrigation, and meteorological conditions, among
others. However, dry matter accumulation and partitioning in
the various organs are quantitative traits controlled by multiple
genes. Since the first report on the construction of a genetic
linkage map in maize by Helentjaris et al. (1986), many other
quantitative trait loci (QTLs) in maize have been identified,
including for plant height, ear height, flowering time, and yield-
related traits (Wang et al., 2006; Cui et al., 2017). Compared
to other crops such as rice and alfalfa, genetic analysis of
dry matter-related traits in maize is less reported. In rice, for
instance, Li et al. (2008) mapped the QTL controlling dry matter
accumulation and partitioning and observed that the traits were
controlled by different QTLs at different growth stages. Zhao
et al. (2005) identified main-effect QTLs controlling seedling dry
matter, seedling height, and 1,000-seed weight. Adhikari et al.
(2019) reported QTL associated with spring flowing time and
biomass yield of alfalfa. The above studies provide insights into
the genetic architecture of dry matter accumulation of maize
plants at the seedling stage.

Due to the rapid development of high-density single-
nucleotide polymorphism (SNP) assays and associated statistical
methods in recent years, genome-wide association studies
(GWAS) have become a useful adjunct to classical genetic
mapping of quantitative traits in plants (Huang et al., 2010). In
maize, GWAS has been successfully used to identify numerous
candidate loci/genes controlling various morphological and
metabolic traits, such as drought tolerance (Liu et al., 2013; Kang
et al., 2015), plant height (Weng et al., 2011; Yang et al., 2014;
Wang et al., 2019), ear height (Yang et al., 2014; Farfan et al.,
2015), husk traits (Cui et al., 2016), flowering time (Hung et al.,
2012; Yang et al., 2014; Li et al., 2016b), mitogen-activated protein
kinase cascades (Kong et al., 2013), starch content (Liu et al.,
2016), stalk cell wall components (Li et al., 2016a), and many
other traits of significant research interest. However, previous
studies on the maize plant have focused on the later stages, and
GWAS for dry matter accumulation and partition at the seedling
stage has been less reported.

The present study examined the total aboveground and
organ’s dry matter traits of a maize association mapping
panel consisting of 412 inbred lines at V3 and V6 stages.
Then, GWAS was conducted to identify the SNPs associated
with each phenotypic trait. In total, 1,103 unique candidate

genes annotated by 678 significant SNPs (P value < 1.28e–
6) for dry matter traits were identified. Among these, 224
genes annotated by SNPs that are at the top five of each
GWAS method and detected by multiple GWAS methods
were regarded as of high reliability. To determine the
biological significance and functions of candidate genes, pathway
enrichment analysis was also carried out. The differentially
expressed genes (DEGs) enriched in various biological pathways
related to regulation of seed growth, gibberellin-mediated
signaling pathway, and long-day photoperiodism. The results of
our study could provide novel targets for breeding high-yielding
maize varieties.

MATERIALS AND METHODS

Plant Materials, Growth Conditions, and
Sample Collection
In this study, 412 lines that belonged to the maize association
mapping panel described by Yang et al. (2011) were used, which
were classified into four subgroups based on population structure
Q matrix: Stiff stalk (SS) with 27 lines, non-stiff stalk (NSS)
with 123 lines, tropical–subtropical (TST) with 165 lines, and
admixed group with 97 lines. The plants were planted at the
Beijing Academy of Agriculture and Foresting Science, Beijing,
China. Maize seeds were planted manually at a depth of 5 cm on
17 May 2019. Each inbred line was planted in two rows of seven
plants each. The soil was tilled to a depth of 15 cm before sowing,
and the soil texture was loamy sand with a field capacity of 32%
in the plow layer. Other chemical properties of the plow layer are
as follows: 27.2 g/kg organic matter, 1.34 g/kg total N, 37.6 mg/kg
available phosphorus, 91 mg/kg ammonium acetate extractable
potassium, and pH 7.6.

Maize growth stages from emergence (VE) to physiological
maturity (R6) were recorded. At V3 and V6 stages, three maize
plants with uniform growth were sampled by hand and taken
to the laboratory to measure dry matter. First, the plants at
the V3 stage were divided into leaves and sheaths, while those
at the V6 stage were divided into leaves, sheaths, and stalks.
Second, the samples were enzymatically deactivated at 105◦C
for 30 min, oven-dried at 75◦C for 72 h, and then weighed
(to determine the dry matter). The organ’s dry matter partition
coefficient was calculated as the organ’s dry matter divided by
the total aboveground dry matter. The dry matter was obtained
from the mean of three replicates. Moreover, each phenotypic
mean was regarded as the trait and used as the phenotypic
data for GWAS.

ANOVA and Heritability Analysis
Differences between the subpopulation mean of total
aboveground dry matter, organ’s dry matter, and organ’s
dry matter partition coefficient were assessed by analysis of
variance (ANOVA) using the SPSS software version 22.0.

Heritability refers to the percentage of genetic variation
(VA) that accounts for the total phenotypic variation, generally
denoted by H2. It can be used to evaluate the correlation between
the genetic (σA

2) and environmental (σe
2) factors of a specific

Frontiers in Genetics | www.frontiersin.org 2 January 2021 | Volume 11 | Article 571236

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-571236 January 2, 2021 Time: 14:59 # 3

Lu et al. GWAS of Maize Dry Matter

phenotypic variation (Vp). Heritability (H2) was calculated for
each trait as follows:

H2
=

VA

Vp
=

σ2
A

σ2
A + σ2

e

The above analysis was performed in ASReml-R version 4.0
using the “asreml” function of R package asreml (Butler, 2009).

Genome-Wide Association Study
Genotype data were downloaded from the Maizego platform1.
The SNP data were filtered with a minimum allele frequency
(MAF) greater than 0.05 and a call rate greater than 0.01.
A total of 779,855 SNPs were retained to conduct the association
analysis with phenotypic traits. The population structure was
estimated by the STRUCTURE program version 2.3.4 (Hubisz
et al., 2009), and the relative kinship was calculated by TASSEL 5
(Bradbury et al., 2007) using 779,855 SNPs. For GWAS, a multi-
locus random-SNP-effect mixed linear model tool (R package
“mrMLM” version 4.0) (Zhang et al., 2019b) was used on the
dry matter phenotypic traits separately to test the statistical
association between trait and genotypes separately. Population
structure and relative kinship were taken into account in these
models. The six ML-GWAS methods (mrMLM, FASTmrMLM,
FASTmrEMMA, ISIS EM-BLASSO, pLARmEB, and pKWmEB)
were included in the “mrMLM” function. All of these six GWAS
methods were done in two steps. In the first step, the P value was
set as 1.28e–6 (P ≤ 1/N, where N is the total number of genome-
wide SNPs). A default P value of 0.0002 was used as the filter
threshold for the second step to declare the significance of SNPs
associated with a particular trait. The SNP that satisfied all the
above methods were regarded as significant SNPs associated with
phenotypic traits, and loci that overlapped in multiple methods
were considered more reliable. ANNOVAR (Wang et al., 2010),
an efficient software tool that utilizes update-to-date information
to functionally annotate genetic variants detected from specific
genome, was used to complete the annotation of SNPs. All
candidate genes were annotated according to the latest maize B73
reference genome (B73 RefGen_v4) available in EnsemblPlants2

and NCBI Gene database3.

Functional and Network Analysis
Pathway enrichment analysis was performed by the PlantRegMap
database (Jin et al., 2015) and the DAVID online tool (Dennis
et al., 2003). The input data consisted of all candidate genes
annotated by the significant SNPs associated with dry matter
phenotypic traits. Gene Ontology (GO) (Ashburner et al.,
2000) terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways (Kanehisa, 2002) with P value < 0.05 were
regarded significant.

The Cytoscape v3.7.2 open-source software platform
(Shannon et al., 2003) was used to visualize the complex trait–
gene network and integrate the input data by their attribute
information.
1www.maizego.org/Resources.html
2http://plants.ensembl.org/Zea_mays/Info/Index
3https://www.ncbi.nlm.nih.gov/gene

RESULTS

Phenotypic Variations of Measured
Quantitative Traits
The dry matter accumulation and partition traits followed a
normal distribution (Supplementary Figures 1, 2). Extensive
phenotypic variations were observed for dry matter traits at V3
and V6 stages in this maize panel, as shown by the descriptive
statistics in Table 1. The total dry matter and organ’s dry matter
at V3 and V6 had a higher phenotypic variation, with the variable
coefficients ranging from 0.43 to 0.55. Meanwhile, the partition
coefficients of dry matter at V3 and V6 had a lower variable
coefficient, ranging from 0.04 to 0.27.

The results of population structure and kinship analysis were
in line with a previous study (Yang et al., 2011), and the proposed
classification of population structure was learned from our study
and also as a basis for further analysis of phenotypic data. Based
on the dry matter phenotypic indicators and the organ’s dry
matter partition coefficients at V3 and V6, an ANOVA was done
to evaluate for differences among the four subpopulations in the
panel. For dry matter accumulation at V3, the leaf dry matter
in NSS was significantly lower than the TST subpopulation.
There were no significant differences in total dry matter and
sheath dry matter among subpopulations (Figure 1). At V6,
the total aboveground, leaf, sheath, and stalk dry matter of
Mixed, NSS, and SS subpopulations were significantly higher
than in the TST subpopulation, suggesting that maize inbred
lines from tropical or subtropical origin tend to grow slower.
The differences among the Mixed, NSS, and SS subpopulation
for total aboveground, leaf, sheath, and stalk dry matter were not
significant (Figure 2).

Evaluation of the organ’s dry matter partition coefficient
at V3 showed that the leaf dry matter partition coefficient
in NSS subpopulation was significantly lower than that in
the TST subpopulation. Meanwhile, the sheath dry matter
partition coefficient in the NSS subpopulation was substantially
higher than that in the TST subpopulation (Figure 3). At
V6, there were no significant differences in leaf and sheath
dry matter partition coefficient among the four subpopulations.
However, the stalk dry matter partition coefficient of NSS
was significantly higher than in the Mixed, SS, and TST
subpopulations. There were no significant differences for stalk
dry matter partition coefficient among the Mixed, SS, and TST
subpopulation (Figure 4).

Heritability Analysis
The heritability of a trait is one of the key parameters considered
in designing and selecting plant breeding schemes (Chen and
Lübberstedt, 2010; Holland et al., 2010). As shown in Figure 5,
the total aboveground dry matter, the dry matter of the different
organs (leaf, sheath, and stalk), and the partition coefficient
showed different heritability patterns, ranging from 0.261 to
0.591. The total aboveground dry matter and organ’s dry matter
had heritability coefficients greater than 0.4, while the heritability
of the partition coefficients of different organs was less than
0.4. It could be clearly seen that the variability in organ’s dry
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TABLE 1 | Descriptive statistical analysis of dry matter-related traits in this study1).

Traits Growth stage Organ2) Min (g) Max (g) Mean ± SD (g) CV

Dry matter V3 Total DM 0.0367 0.3233 0.1142 ± 0.0495 0.43

Leaf DM 0.0200 0.1933 0.0603 ± 0.0296 0.49

Sheath DM 0.0117 0.1600 0.0539 ± 0.0261 0.48

V6 Total DM 0.42 8.33 3.15 ± 1.36 0.43

Leaf DM 0.31 6.32 2.45 ± 1.06 0.43

Sheath DM 0.07 1.62 0.54 ± 0.25 0.46

Stalk DM 0.01 0.58 0.16 ± 0.08 0.55

Partition coefficient V3 Leaf PC 0.21 0.84 0.53 ± 0.11 0.2

Sheath PC 0.16 0.78 0.47 ± 0.11 0.23

V6 Leaf PC 0.63 0.87 0.78 ± 0.03 0.04

Sheath PC 0.09 0.32 0.17 ± 0.03 0.17

Stalk PC 0.01 0.09 0.05 ± 0.01 0.27

1)SD, standard deviation; CV, coefficient of variation.
2)DM, dry matter; PC, partition coefficient, as the ratio of organ’s dry matter to total aboveground dry matter.

FIGURE 1 | Boxplot of the total aboveground dry matter and organ’s dry matter of different subpopulations at the V3 stage. * denotes significant differences between
subpopulations at P ≤ 0.05. (A–C) represent the Total aboveground dry matter, Leaf dry matter and Sheath dry matter of different subpopulations respectively.

matter was greatly affected by genetic factors. However, the
partition coefficient calculated from this set of data in our
study did not show that it is largely affected by genetic factors.

Therefore, according to the heritability values, three traits (total
aboveground dry matter, leaf dry matter, and sheath dry matter)
at V3 and four traits (total aboveground dry matter, leaf dry
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FIGURE 2 | Boxplot of the total aboveground dry matter and organ’s dry matter in different subpopulations at the V6 stage. ** denotes significant differences
between subpopulations at P ≤ 0.01, * denotes significant differences between subpopulations at P ≤ 0.05. (A–D) represent total aboveground dry matter, Leaf dry
matter, Sheath dry matter and Stalk dry matter in different subpopulations respectively.

matter, sheath dry matter, and stalk dry matter) at V6 were used
for subpopulation variation analysis and SNP identification.

Significant SNPs Obtained by GWAS
This study used multi-locus random-SNP-effect mixed linear
models in the R package “mrMLM” (version 4.0) for genome-
wide association analysis of dry matter accumulation and
partition traits. The model identified a total of 678 significant
SNPs (P value < 1.28e–6) associated with target traits. Because
these results were a collection of six GWAS methods, the top
five most significant SNPs obtained by each method and the
SNPs validated by two or more methods were considered as
highly significant results. Thus, the reliability of these results
could be higher than that of the others. Consequently, 129
highly significant associated SNPs were filtered for all dry matter
traits. Among them, 22, 14, and 20 highly significant SNPs were

identified for the leaf dry matter, sheath dry matter, and total
aboveground dry matter of V3, respectively. Additionally, 27, 22,
21, and 25 highly significant SNPs were detected for the leaf dry
matter, sheath dry matter, stalk dry matter, and total aboveground
dry matter of V6, respectively. The detailed statistical results are
shown in Table 2.

Identification and Annotation of
Candidate Genes
All candidate genes were annotated according to the latest
maize B73 reference genome (B73 RefGen_v4) available in
EnsemblPlants and NCBI Gene databases. In total, 1,103 unique
candidate genes were annotated by the 678 significant associated
SNPs. The number of genes annotated by SNPs listed in both the
top five of the results of each method and results validated by
multiple methods was 224 (Table 2). Among them, the numbers
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FIGURE 3 | Boxplot of the different organ’s dry matter partition coefficients in different subpopulations at the V3 stage. * denotes significant differences between
subpopulations at P ≤ 0.05. (A) Leaf dry matter partition coefficient. (B) Sheath dry matter partition coefficient.

FIGURE 4 | Boxplot of the different organ’s dry matter partition coefficients in different subpopulations at the V6 stage. ** denotes significant differences between
subpopulations at P ≤ 0.01. * denotes significant differences between subpopulations at P ≤ 0.05. (A) Leaf dry matter partition coefficient. (B) Sheath dry matter
partition coefficient. (C) Stalk dry matter partition coefficient.

of genes associated with each V3 trait were 32 (V3 Leaf DM),
25 (V3 Sheath DM), and 38 (V3 Total DM). Besides, at V6, the

corresponding gene numbers were 49 (V6 Leaf DM), 39 (V6
Sheath DM), 35 (V6 Stalk DM), and 44 (V6 Total). It could be
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FIGURE 5 | The broad-sense heritability (H2) of dry matter related traits at the V6 stage.

TABLE 2 | Statistics and summary of significant loci obtained by GWAS for each trait.

Trait1) No. of
significant

SNPs

Gene no. of
significant SNPs

located

No. of significant SNPs listed in
the top 5 and validated by

multiple methods

Gene no. of significant SNPs
listed in the top 5 and validated

by multiple methods

Chromosomes of SNPs listed in
the top 5 and validated by

multiple methods

V3 Leaf DM 289 492 22 32 1, 3, 5, 7, 8, 9, 10

V3 Sheath DM 230 384 14 25 1, 2, 3, 4, 5, 7, 8, 9

V3 Total DM 32 57 20 38 1, 2, 3, 4, 5, 6, 7, 8, 10

V6 Leaf DM 59 105 27 49 1, 2, 3, 4, 5, 7, 8, 10

V6 Sheath DM 34 60 22 39 1, 2, 3, 4, 5, 6, 7, 9, 10

V6 Stalk DM 41 70 21 35 1, 2, 3, 4, 5, 8, 9

V6 Total DM 47 85 25 44 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Summary 678 1,103 129 224

1)V3 Leaf DM, V3 Sheath DM and V3 Total DM: the dry matter of leaf, sheath and total aboveground dry matter at V3 stage; V6 Leaf DM, V6 Sheath DM, V6 Stalk DM,
and V6 Total DM: the dry matter of leaf, sheath, stalk, and total aboveground dry matter at V6 stage.

seen that dry matter traits did not have overlapping candidate
genes. Subsequently, the 224 highly significant candidate genes
were further annotated using the NCBI database, after which
158 genes with detailed functional descriptions were obtained
(Supplementary Table 1). The 158 genes were found to be
distributed in 10 chromosomes. Detailed information of each

gene and its related trait is presented in Supplementary Table 1.
Out of these, 18 genes (GRMZM2G105571, Zm00001d027469,
Zm00001d043622, GRMZM2G353553, GRMZM2G167856,
GRMZM2G171373, GRMZM2G092120, CKX10,
GRMZM2G035217, GRMZM2G128644, GRMZM2G314064,
GRMZM2G407825, GRMZM6G865522, GRMZM2G045732,
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pco092737, Zm00001d002111, GRMZM2G042412, and
GRMZM2G061537) were associated with a minimum of
two traits. In addition, some of them [GRMZM2G105571
(Li et al., 2018), GRMZM2G167856 (Li et al., 2016),
GRMZM2G171373 (Aguilera-Alvarado et al., 2019), CKX10
(Smehilova et al., 2009), GRMZM2G128644 (Song et al., 2016),
GRMZM2G314064 (Jiang et al., 2012), GRMZM2G407825 (Yan
et al., 2017), etc.] had been reported by previous studies of maize
seed and leaf, which was consistent with our study. In terms of
this, nearly half of the genes obtained in this study were proofed
by previous researches, indicating the reliability of our results.
Therefore, the new genes identified by our analysis process could
also become a powerful reference for peer research.

An additional 57 genes identified by multiple GWAS
methods are shown in Supplementary Table 1 (marked
as “Y”). Since these genes were annotated by the top five
SNPs of each methods and then validated by multiple
methods, their reliability is considered higher than that
of other genes. Among these 57 genes, 43 were only
related to one phenotypic trait. For V3, GRMZM2G340279,
GRMZM2G347808, GRMZM2G018782, GRMZM2G099678,
GRMZM2G153127, Zm00001d042998, GRMZM2G064437, and
GRMZM2G030284 were associated with leaf dry matter. The
candidate genes of sheath dry matter were GRMZM2G147917,
GRMZM2G164088, GRMZM2G138770, GRMZM2G032163,
GRMZM2G077004, GRMZM2G092616, GRMZM5G884544,
GRMZM2G004119, and GRMZM2G152815. For V6, only
two genes (Zm00001d043484 and GRMZM2G074689) were
associated with leaf dry matter, while GRMZM2G086707,
GRMZM2G148706, GRMZM2G448701, GRMZM2G166718,
GRMZM2G166776, GRMZM2G016393, Zm00001d020588,
and Zm00001d020589 were related to sheath dry matter.
Meanwhile, the V6 candidate genes of stalk dry matter were
GRMZM2G107838, GRMZM2G050845, GRMZM2G085509,
GRMZM2G160136, GRMZM2G397759, GRMZM2G026892, and
GRMZM2G060349.

Pathways Enriched by Functional
Enrichment Analysis
Functional enrichment analysis was conducted to further
explore the function of genes associated with dry matter traits.
After uploading the candidate gene IDs of all dry matter
traits to PlantRegMap and DAVID, a total of 87 GO terms
and two KEGG pathways (P value < 0.05) were enriched
(Figure 6). Among them, 52 terms were GO BP (Biological
Process) terms. Two GO BP terms “regulation of seed growth”
(GO:0080113, P value= 0.0021) and “seed growth” (GO:0080112,
P value = 0.003) both contained genes GRMZM2G035156
and GRMZM2G042101 and were obtained with the highest
significance. Strikingly, several gibberellin-related terms
enriched by GRMZM2G120320 and GRMZM2G348238 were
obtained with a high significance (P value < 0.05), such as
“gibberellic acid mediated signaling pathway” (GO:0009740),
“gibberellin mediated signaling pathway” (GO:0010476),
“cellular response to gibberellin stimulus” (GO:0071370), and
“response to gibberellin” (GO:0009739). Besides, the effect

of light on dry matter accumulation was found remarkable.
Notably, four GO BP terms enriched by GRMZM2G139038
and GRMZM2G348238 were related to photoperiodism,
and three of them were about long-day photoperiodism.
These terms were “regulation of long-day photoperiodism,
flowering” (GO:0048586), “long-day photoperiodism, flowering”
(GO:0048574), “long-day photoperiodism” (GO:0048571), and
“regulation of photoperiodism, flowering” (GO:2000028). In
addition, two interesting GO BP terms involved in the regulation
of timing of phase transition were obtained, namely, “regulation
of timing of meristematic phase transition” (GO:0048506)
and “regulation of timing of the transition from vegetative
to reproductive phase” (GO:0048510). In addition, the two
significant KEGG pathways “RNA transport” (zma03013,
P value = 0.0341) and “Zeatin biosynthesis” (zma00908, P
value= 0.0434) were enriched by DAVID (Figure 6D).

Trait–Gene Network Visualization
A complex network consisting of dry matter traits and their
candidate genes was constructed by Cytoscape v3.7.2 (Figure 7).
The network contained 7 large nodes (phenotypic traits) and
1,103 small round nodes (candidate genes), and 1,253 edges
(the interactions between traits and genes). V3 and V6 traits
were marked blue and green, respectively, to make a distinction
between two vegetative stages. Candidate genes with different
colors represented the diversity of interactions. Among these,
the 158 genes with detailed functional descriptions were labeled
as large round nodes, with colors corresponding to their related
traits. The other genes were shown as small round nodes, and the
colors indicated different meaning. The gray nodes represented
genes that correlate with one specific trait, and the pink and
red ones indicated two-trait shared genes and three-trait shared
genes, respectively. It was apparent that many genes were shared
between traits at the same stage, suggesting that the growth
and development of various organs at the same stage was a
collaborative process. However, there were also 19 shared genes
among traits at different stages, with the possibility of regulating
the aboveground dry matter accumulation process of maize
during the entire seedling stage.

DISCUSSION

Maize is originated from tropical regions and subsequently
adapted into subtropical regions, so population structure may
have imposed effects on maize growth and development
(Camus-Kulandaivelu et al., 2006). Several research achievements
employing the maize association panel used in this study have
been reported. These studies include grain regulation network
(Jin et al., 2016; Liu et al., 2016), flowering date (Yang et al.,
2013, 2014), husk traits (Cui et al., 2016), forage quality (Wang
et al., 2016), yield-related traits (Yang et al., 2014; Liu et al.,
2015), disease resistance (Chen et al., 2015; Ding et al., 2015),
and drought tolerance (Liu et al., 2013; Mao et al., 2015; Zhang
et al., 2016), among others. However, genetic analysis of dry
matter accumulation for this association panel has been less
reported. According to the information of population structure
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FIGURE 6 | Functional enrichment results of all candidate genes. Panels (A–C) represent GO BP, GO CC, and GO MF terms, respectively. GO terms are shown on
the left. Different colors indicate the significance of GO terms. The length of each bar represents the gene numbers enriched in each term. Panel (D) illustrates KEGG
pathways. Pathways are shown on the left. Different colors indicate the significance of pathways. The size of the dot represents the number of genes enriched in
each pathway.

in a previous study (Yang et al., 2011), phenotypic variation of
dry matter accumulation and partition among subpopulations
was compared and differences were identified (Figures 1–4).
In this study, the difference between subpopulations was not
significant, except that the leaf dry matter in TST was higher
than that in NSS at the V3 stage. However, the total aboveground
dry matter and different organs’ dry matter in NSS, SS, and
Mixed subpopulations were significantly higher than that of
the TST subpopulation at V6. The results of this study suggest
that genotype differences in dry matter accumulation may not
be substantially expressed at the V3 stage, and genetic effects
increase with the development process. Also, the results of
this study indicate that TST maize grew slower than NSS,
SS, and Mixed subpopulations at the seedling stage. Wang
et al. (2019) also reported that TST maize grows slower and
is shorter than TEM (temperate lines) maize, from sowing to
the V12 stage. Photoperiod is an important factor affecting
plant development. The tropical–subtropical line is sensitive
to photoperiod. The longer sunshine in temperate regions
may be the reason that leads to slower growth of tropical–
subtropical lines. In addition, several GO terms including
photoperiodism were enriched by the candidate genes related to
the traits in our study.

Proper plant growth and development during the early stages
is of significance, as it establishes the normal plant structure
at later stages. Besides, it ensures that the plant can carry out
all physiological and metabolic processes to obtain maximal
yield. Previous research has shown that seed germination
and plant development are affected by plant hormones, such
as gibberellin and abscisic acid, and environmental factors
such as light, water, and temperature. In this study, functional
enrichment of all candidate genes related to dry matter traits
identified several biological pathways related to seed growth and
development, gibberellin, photoperiodism, and temperature.
In total, three GO BP terms were enriched, “regulation of

seed growth” (GO:0080113, P value = 0.0021), “seed growth”
(GO:0080112, P value = 0.003), and “regulation of seed
development” (GO:0080050, P value = 0.0139) containing
GRMZM2G035156 and GRMZM2G042101. GRMZM2G035156
and GRMZM2G042101 were detected as candidate genes
for V6 Leaf DM and V3 Sheath DM, respectively. These
findings indicate that genes related to seed growth and
development are involved in the growth and development of
multiple organs during the maize seedling stage. Additionally,
several gibberellin-related GO terms were enriched by
GRMZM2G120320 and GRMZM2G348238. Gibberellin is a
key plant hormone that regulates the developmental switch
between seed dormancy and germination, juvenile and adult
growth phases, and vegetative and reproductive development.
Gibberellins occur in seeds, young leaves, and roots. It has been
reported that gibberellin/abscisic acid balance could govern
germination versus maturation pathways in maize (White et al.,
2000). In our study, GRMZM2G120320 was found in GO terms
“gibberellic acid-mediated signaling pathway” (GO:0009740),
“gibberellin mediated signaling pathway” (GO:0010476),
“cellular response to gibberellin stimulus” (GO:0071370), and
“response to gibberellin” (GO:0009739). This result suggests that
GRMZM2G120320 is involved in gibberellin-related pathways
and could play various roles in plant growth, organ development,
and response to environmental stimuli. GRMZM2G120320 is a
gene of the WRKY transcription factor family. Accumulating
evidence suggests that WRKY proteins play significant roles
in response to biotic and abiotic stresses and in development
(Eulgem et al., 2000; Ulker and Somssich, 2004; Zhang and
Wang, 2005). GRMZM2G120320 has been reported in a study
of root phenotype and dynamic transcriptome analysis in maize
and was found to be mainly associated with drought response by
the primary root (Zhang et al., 2019a). Notably, the present study
identified GRMZM2G120320 as a candidate gene regulating V3
leaf dry matter and was annotated by the top five SNPs listed
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FIGURE 7 | Trait–gene network of dry matter traits. The trait–gene network constructed by dry matter traits and their related genes. Traits and genes are shown in
different shapes and sizes. Of the seven large octagon nodes, the three blue nodes represent stage V3 traits (V3 Leaf DM, V3 Sheath DM, and V3 Total DM), and the
four green nodes represent stage V6 traits (V6 Leaf DM, V6 Sheath DM, V6 Stalk DM, and V6 Total DM). Genes are represented by round nodes, and different colors
and size indicate different attributes. The 158 genes with detailed functional descriptions were labeled as large round nodes, with colors corresponding to their
related traits. The gray small nodes represent genes that correlate with only one specific trait, and the pink and red nodes (both large and small ones) indicate
two-trait shared genes and three-trait shared genes, respectively.

in our results. Hence, we infer that this gene is involved in the
growth and development of the maize leaf and has an influence
on the accumulation of leaf dry matter during the V3 stage. The
gene, GRMZM2G348238, is also a candidate for V3 leaf DM. In
addition to the gibberellin-related pathways, GRMZM2G348238
also appeared in long-day photoperiodism and temperature-
related pathways. Although the specific function of this gene is
obscure, these results suggest that GRMZM2G348238 is sensitive
to environmental changes, such as light and temperature,
and participates in leaf growth and dry matter accumulation
at the V3 stage.

GRMZM2G332390 [16-auxin-responsive SAUR (small auxin
up-regulated RNA) family member] was annotated by the top five
SNPs listed in the GWAS results and was identified as a candidate
gene of V3 sheath DM. Interestingly, the gene was also detected
in a genome expression profile analysis of the maize sheath and is
involved in the resistance of maize plants to Rhizoctonia solani
infection (Gao et al., 2014). This report by Gao et al. (2014)
is consistent with our GWAS results that GRMZM2G332390
controls sheath-related traits. Based on this result, we infer that
GRMZM2G332390 is a credible candidate gene of sheath dry
matter during the V3 stage.

For the V6 stage, CKX10 (cytokinin dehydrogenase 10) was
found as a candidate gene of leaf dry matter with high reliability,
for it was not only annotated by the top five SNPs of each GWAS
method but also validated by multiple methods. CKX10 is a
member of the CKX gene family. Plenty of research work on this
gene family has been done in Poaceae (Mameaux et al., 2012),
including several studies in maize. In maize leaves, for instance,
the expression of CKX10 in young leaves is high but markedly
downregulated in senescent tissues (Smehilova et al., 2009). Also,
a transcriptome analysis of maize identified CKX10 as one of
the DEGs related to hormone metabolism (Zheng et al., 2020).
It can be seen that CKX10 is a gene related to the growth and
development of maize leaves. In this study, it is exactly identified
as a candidate gene of leaf dry matter. Therefore, we could infer
that CKX10 plays a key role in maize leaves at seedling stage.

The number of studies on the topic of maize GWAS has
increased year by year, and the number of articles published in
the past 5 years has increased dramatically. It shows that GWAS
has been widely used in the genetic research of maize and has
gradually become an important means to explore the genetic
mechanism of maize agronomic traits and key phenotypes (Xiao
et al., 2016; Zhang et al., 2016; Zhou et al., 2016; Dai et al., 2018;
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Owens et al., 2019). Yang et al. (2014) conducted GWAS on 17
agronomic traits in 513 maize inbred lines with 500,000 high-
quality SNP markers by using mixed linear model and a new
method [Anderson–Darling (A–D) test]. The trait-related SNPs
and candidate genes obtained in this study provided abundant
resources for maize genetic breeding. In the future, researchers
can utilize QTL, qRT-PCR, and other methods to verify the SNPs
and candidate genes identified by GWAS, which can enhance the
reliability of research results and enrich the findings of maize
genetics. In addition, the combination of phenomics and GWAS
will break the existing phenotypic bottleneck and greatly advance
the genetic research process of maize.

Our study provides a credible list of candidate genes related
to dry matter traits in maize seedlings for peer research.
Additionally, multiple methods were used to conduct GWAS.
On the one hand, it could make up for the deficiencies between
various methods and help us obtain abundant genetic loci. On
the other hand, it could increase the credibility of the results
that have been identified by multiple methods. The present study
mainly focused on the weight of maize dry matter at the seedling
stage. Our next study will explore other phenotypic traits such
as leaf morphology and plant 3D morphology at the seedling
stage and evaluate the genetic mechanisms of maize growth and
development at an early stage.
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