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RNA-binding proteins (RBPs) interacting with target RNAs play essential roles in RNA
metabolism at the post-transcription level. Perturbations of RBPs can accelerate cancer
development and cause dysregulation of the immune cell function and activity leading
to evade immune destruction of cancer cells. However, few studies have systematically
analyzed the potential prognostic value and functions of RBPs in squamous cell
carcinoma of head and neck (SCCHN). Here, for the first time, we comprehensively
identified 92 differentially expressed RBPs from The Cancer Genome Atlas (TCGA)
database. In the training set, a prognosis risk model was constructed with six RBPs,
including NCBP2, MKRN3, MRPL47, AZGP1, IGF2BP2, and EZH2, and validated by the
TCGA test set, the TCGA all set, and the GEO data set. In addition, the risk score was
related to the clinical stage, T classification, and N classification. Furthermore, the high-
risk score was significantly correlated with immunosuppression, and low expression of
EZH2 and AZGP1 and high expression of IGF2BP2 were the main factors. Thus, the
risk model may serve as a prognostic signature and offer highlights for individualized
immunotherapy in SCCHN patients.

Keywords: squamous cell carcinoma of head and neck, RNA binding proteins, differentially expressed genes,
prognosis, tumor immunity

INTRODUCTION

Globally, squamous cell carcinoma of head and neck (SCCHN) represents the sixth most common
malignancy, with increasing incidence and over 300,000 deaths annually (Ferlay et al., 2015; Siegel
et al., 2020). The major causes of SCCHN include alcohol consumption, tobacco use, and human
papilloma virus (HPV) infection (Hill and D’Andrea, 2019). Despite advances in multimodal
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treatments, including surgery, chemotherapy, and radiotherapy,
the 5-year survival rate has not notably improved (Cramer
et al., 2019). Hence, new reliable and prospective biomarkers
are urgently required for efficient diagnosis and prognosis
assessment and the development of therapeutic strategies to
decrease the mortality rates of SCCHN patients.

RNA-binding proteins (RBPs) serve as post-transcriptional
regulators interacting with target RNAs. Because RBPs play
essential roles in RNA stability, alternative splicing, modification,
translation, translation, and degradation, they impact the
function and destiny of transcripts in the cell and maintain
cellular homeostasis (Anantharaman et al., 2002; Mitchell
and Parker, 2014; Pereira et al., 2017). Previous studies
have shown that dysfunction of RBPs can eventually lead
to multiple diseases ranging from hereditary diseases to
cancers (Chelly and Mandel, 2001; Chénard and Richard,
2008; Neelamraju et al., 2018). In all, 1542 human RBPs,
accounting for 7.5% of all protein-coding genes, interacting
with all known RNA types have been identified utilizing deep-
sequencing approaches (Gerstberger et al., 2014; Beckmann
et al., 2015), which provide a rare opportunity for systematic
analysis of RBP genes in cancers. However, few studies
have comprehensively analyzed the relationship between RBPs
and the prognosis of squamous cell carcinoma of head
and neck (SCCHN).

Here, to comprehensively analyze the prognostic value and
potential function of RBPs in SCCHN, we obtained gene
expression profiles of SCCHN patients from The Cancer Genome
Atlas (TCGA) database to construct a prognosis risk model.
Interestingly, our study showed that the high-risk score was
associated with immunosuppression.

MATERIALS AND METHODS

Data Sets
The RNA sequencing (RNA-Seq) data and clinical information
were downloaded from the TCGA database1 of 500 SCCHN
patients with 44 adjacent normal samples. For TCGA data, we
selected 498 SCCHN patients with follow-up data and randomly
divided them into two groups: the TCGA training set (n = 298,
Supplementary Table 1) and the TCGA test set (n = 298,
Supplementary Table 2). Additionally, the GSE65858 data set
was downloaded from the Gene Expression Omnibus (GEO)
database2, as an external independent verification set with RNA-
Seq data and clinic information. We performed data analysis
utilizing R project (version 3.6.3)3. Clinical features of HNSCC
patients of TCGA and GEO databases were shown in Table 1.

Identification of Differentially Expressed
Genes (DEGs)
The differentially expressed RBPs (DERBPs) between SCCHN
and normal samples were evaluated utilizing the Wilcoxon

1https://portal.gdc.cancer.gov/
2https://www.ncbi.nlm.nih.gov/geo/
3https://www.r-project.org/

TABLE 1 | Clinical characteristics of SCCHN patients in TCGA and GEO data sets.

Clinical characteristics TCGA GEO (GSE65858)

n = 499 % n = 270 %

Age

<60 219 43.9 153 56.7

≥60 280 56.1 117 43.3

Gender

Female 132 26.5 47 17.4

Male 367 73.5 223 82.6

Histologic grade

G1–2 359 71.9

G3–4 121 24.2

Gx 16 3.2

NA 3 0.6

Stage

I–II 95 19.0 55 20.4

III–IV 337 67.5 215 79.6

NA 67 13.4

T classification

T1–2 177 35.2 115 42.6

T3–4 267 53.5 155 57.4

Tx 33 6.6

NA 22 4.4

N classification

N0 170 34.1 94 34.8

N+ 236 47.3 176 65.2

Nx 69 13.8

NA 24 4.8

M classification

M0 185 37.1 263 97.4

M1 1 0.2 7 2.6

Mx 61 12.2

NA 252 50.5

Vital status

Deceased 218 43.7 94 34.8

Living 281 56.3 176 65.2

test by limma R package. We determined cutoff values
according to the false discovery rate (FDR) (Nakamura et al.,
2010) and defined RBPs with FDR < 0.05 and | logFC| > 1
as significant DERBPs. Subsequently, we constructed a
heat map by the pheatmap R package and a volcano plot
to show the DERBPs. The distributions of DERBPs on
chromosomes were displayed using the OmicCircos R package
(Hu et al., 2014).

GO and KEGG Pathway Analyses
To analyze the function of DERBPs, Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were performed by the enrichplot R package
(Yu et al., 2012). GO terms included biological process (BP),
cellular component (CC), and molecular function (MF). For the
analysis results, both P-value and FDR < 0.05 were defined as
statistical significance.
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Protein–Protein Interaction (PPI)
Network Construction
We constructed the PPI network of DERBPs to investigate
protein interactions using STRING (version 11.0)4 (Szklarczyk
et al., 2019) according to a combined score >0.4. Then, the
PPI network was visualized by Cytoscape software (version
3.7.1) (Smoot et al., 2011). Furthermore, the Molecular Complex
Detection (MCODE, version 1.6.1) (Bader and Hogue, 2003)
plug-in in Cytoscape was utilized to screen the key modules
based on Degree Cutoff = 2, Node Score Cutoff = 0.2,
K-Core = 2.

Construction of a Prognostic Risk Model
To identify overall survival (OS)-associated DERBPs, we
performed univariate Cox regression analysis. We chose the

4https://string-db.org/

candidate prognostic genes according to P-value < 0.05.
Subsequently, the multigene prognostic risk model was
constructed by Lasso regression analysis in the TCGA training
set. We calculated the risk score of each patient using the
regression coefficients of each candidate gene according to the
following computational formula:

Riskscore =
n∑

k=1

Coef
(
genek

)
∗ Expk

Here, n is the number of the candidate genes of the
prognostic risk model, genek is the kth candidate gene,
Coef is the estimated regression coefficient of the candidate
genes from the Lasso regression analysis, and Expk is
the mRNA expression level of the kth candidate gene.
Then, we clustered the SCCHN patients into high-risk
and low-risk groups with the median the risk score of the

FIGURE 1 | Differential expression of RNA-binding proteins (RBPs) and six RBPs of prognostic risk models in SCCHN samples. (A) Ninety-two differential expression
of RBPs (DERBPs) displayed by the heat map. (B) Seventy-four upregulated and eighteen downregulated DERBPs shown by the volcano plot (FDR < 0.05 and
| logFC| > 1). (C) Characteristics of six risk DEARGs in the prognostic risk model exhibited by the forest plot.
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TCGA training set. The association between the candidate
genes and risk scores were shown using the hierarchical
cluster heat map.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) is an analytical
method used to estimate significant differences between
two biological conditions to determine specific functional gene
sets (Subramanian et al., 2005). In our research, GSEA was
performed utilizing GSEA (version 4.0.3)5 with the Molecular
Signatures Database (MSigDB) (Liberzon et al., 2011). C2
curated gene sets, and a list of significantly different gene sets
between the high-risk and low-risk groups was generated. Gene
sets, performed 1,000 times for each analysis, with p < 0.05 and
FDR < 0.25 were defined as significantly enriched.

Evaluation of Immune Scores and
Immune Cell Infiltration
The ESTIMATE (Estimation of Stromal and Immune cells in
Malignant Tumor tissues using Expression data) algorithm is
a method used to calculate the immune and stromal scores of
tumor samples. The immune and stromal scores of SCCHN
samples TCGA data set was calculated by the estimate R package
(Yoshihara et al., 2013).

5https://www.gsea-msigdb.org/gsea/downloads.jsp

In addition, we assessed the composition fraction of
tumor-infiltrating immune cells of each SCCHN sample by
CIBERSORT6. CIBERSORT is an algorithm used to characterize
the cell composition of complex tissues according to gene
expression profiles (Newman et al., 2015).

Statistical Analysis
All statistical analyses were performed utilizing R project (version
3.6.3). Wilcoxon rank-sum test was a non-parametric statistical
hypothesis test mainly used for comparisons between two groups
and Kruskal–Wallis test was suitable for two or more categories.
Survival analysis was estimated using the Kaplan–Meier curve
with the log-rank test. The diagnostic values of the risk score
and other clinical factors were evaluated utilizing ROC curve
analysis. The correlation between the variables was identified
by Spearman’s rank correlation test. P < 0.05 was identified as
statistically significant.

RESULTS

Analysis of Differentially Expressed
RBPs in SCCHN Samples
We analyzed the expression profiles of 1,542 human RBPs
(Supplementary Table 3), distributed on all chromosomes,

6http://cibersort.stanford.edu/

FIGURE 2 | Functional enrichment analysis of DERBPs in SCCHN of the TCGA data set. (A–C) The top 10 enriched GO terms of biological process (A), cell
component (B), and molecular function (C) for DEUPSGs shown using a scatter diagram. (D) The enriched KEGG pathways also demonstrated using a scatter
diagram. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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including sex chromosomes X and Y (Supplementary Figure 1),
in 498 SCCHN with 44 normal tissues in the TCGA data set.
Then, we identified 92 differentially expressed RBPs (DERBPs),
including 74 upregulated and 18 downregulated DERBPs
(FDR < 0.05 and |logFC| > 1). The DERBPs are listed in
Supplementary Table 4 and are visualized by the heat map
(Figure 1A) and the volcano plot (Figure 1B).

Function Analysis of DERBPs in the
TCGA Data Set
The potential function of DERBPs in the TCGA data set
was analyzed utilizing GO and KEGG pathway enrichment
analyses. The top 10 enriched GO terms of BP, CC, and
MF for DERBPs were displayed using the scatter plot
(Figures 2A–C). The most significant enriched terms of

BP, CC, and MF were associated with defense response to
virus, cytoplasmic ribonucleoprotein granule, and catalytic
activity, acting on RNA, respectively. The enriched pathways
of KEGG pathway analysis were also demonstrated with
the scatter plot (Figure 2D). The results showed that the
DERBPs might be related to measles, influenza A, hepatitis
C, RNA transport, Epstein–Barr virus infection, mRNA
surveillance pathway, cytosolic DNA-sensing pathway, RIG-
I-like receptor signaling pathway, and RNA degradation. The
functional analyses revealed that the DERBPs are mainly related
to RNA metabolism.

PPI Network Construction
The PPI network of DERBPs was constructed using STRING
according to combined scores > 0.4, and then the results

FIGURE 3 | PPI network construction. (A) PPI network constructed with the DERBPs of the TCGA data set. (B,C) The top two modules (>5 nodes), module 1 (B)
and module 2 (C), in the PPI network.
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were visualized by Cytoscape software (Figure 3A), in order to
better understand the potential interactions among DERBPs. In
addition, the key modules of the PPI network were screened
utilizing MCODE and two modules were selected (Figures 3B,C).

Identification of a Prognostic Risk Model
in the TCGA Training Set
To identify prognostic DERBPs of SCCHN patients, the
expression profiles of the 92 DERBPs in the TCGA training
set were analyzed using univariate Cox regression analysis.
Moreover, six prognosis-associated DERBPs, including NCBP2,
MKRN3, MRPL47, AZGP1, IGF2BP2, and EZH2, of the TCGA
training set are exhibited by forest plot (Figure 1C). Then, a
prognostic risk model of six prognosis-associated DERBPs was
constructed utilizing LASSO regression analysis (Supplementary
Figure 2). The information and the coefficient values of the
six genes are shown in Table 2. The prognostic risk score of

TABLE 2 | The list of the six RBP genes of the prognostic risk model in SCCHN.

ENSG ID Symbol Location Expression
status

Coefficient

ENSG00000114503 NCBP2 Chromosome 3 Upregulated 0.0215

ENSG00000179455 MKRN3 Chromosome 15 Upregulated 0.3196

ENSG00000136522 MRPL47 Chromosome 3 Upregulated 0.0086

ENSG00000160862 AZGP1 Chromosome 7 Downregulated −0.0301

ENSG00000073792 IGF2BP2 Chromosome 3 Upregulated 0.0013

ENSG00000106462 EZH2 Chromosome 7 Upregulated −0.0842

each SCCHN patient was calculated according to the following
formula:

Risk score = NCBP2∗ 0.0215 + MKRN3 ∗ 0.3196 + MRPL47
∗ 0.0086 + AZGP1 ∗ (−0.0301) + IGF2BP2∗ 0.0013 + EZH2 ∗
(−0.0842)

The SCCHN patients in the TCGA training set were divided
into low-risk and high-risk groups according to the median cutoff
value of risk scores (0.2962). Survival analysis demonstrated that
the overall survival (OS) of the high-risk group was significantly
worse than that of the low-risk group (P < 0.0001, Figure 4A).
The receiver operating characteristic (ROC) curve analysis
showed that the area under the ROC (AUC) value was 0.712,
higher than other clinical factors (Figure 4B). The risk scores
and survival status of SCCHN patients in the training set were
ranked with dot plots (Figures 4C,D). The expression patterns
of six genes in the high-risk and low-risk groups of the training
set are demonstrated using the heat map (Figure 4E), which
indicated that high expressions of NCBP2, MKRN3, MRPL47,
and IGF2BP2 serve as risk factors associated with the high-
risk score, while high expressions of AZGP1 and EZH2 act as
protective factors associated with the low-risk score.

Verification of the Prognostic Risk Model
in the TCGA Data Sets
To validate the prognostic risk model, independent validation
data sets were used to test. According to the risk model from the
training data set, all SCCHN patients in the TCGA test data set
were also segregated into high-risk and low-risk groups. Kaplan–
Meier curve analysis showed the survival of the high-risk group

FIGURE 4 | Construction of the prognostic risk model of SCCHN patients in the TCGA training set. (A) Kaplan–Meier survival curve with OS of SCCHN patients in
the high-risk and low-risk groups in the TCGA training set. (B) ROC curve demonstrating AUC value of the risk score and other clinical parameters of SCCHN
patients. (C) The risk plot distribution of SCCHN patients with high-risk and low-risk scores. (D) The survival status of SCCHN patients. (E) The expression patterns
of the six genes of the risk model in TCGA training set.
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was worse than that in the low-risk group (P < 0.001, Figure 5A).
The AUC value of the risk score in the TCGA test set was
0.626 using the ROC curves analysis, higher than other clinical

parameters (Figure 5B). The association between the expression
patterns of the six risk genes and the risk score was consistent
with the training set (Figure 5C). A similar analysis also was

FIGURE 5 | Verification of the prognostic risk model in the TCGA data sets. (A) The OS of SCCHN patients in the risk subgroups showed by the Kaplan–Meier curve
in the TCGA test set and the TCGA all set, respectively. (B) The AUC value of risk score and other clinical parameters in the TCGA test set using the ROC curve
analysis. (C) The risk plot distribution, survival status, and expression patterns of risk genes of SCCHN patients in the TCGA test set. (D–F) A similar analysis
performed in the TCGA data set corresponding to the TCGA test set.
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performed in the TCGA data set; the results were also consistent
with the training set (Figures 5D–F).

Verification of the Prognostic Risk Model
in the GEO Data Set
Further, the GEO data set (GSE65858) with 270 SCCHN patients
was used as an external independent data set to validate the risk
model. The patients in the GEO test set were also classified into
high-risk and low-risk groups, and the prognoses of the high-
risk group were also significantly worse than those of the low-risk
group (P < 0.0001, Figure 6A). The AUC value of the risk score
was 0.602, also higher than other clinical parameters, except for
T classification (Figure 6B). The risk scores and survival status of
SCCHN patients were also shown with dot plots (Figures 6C,D).
The association between the expression profiles of the six genes
and the risk score in the GEO data set was also in line with the
training set (Figure 6E).

Association Between the Risk Score and
the Clinical Parameters of SCCHN
Patients
The clinical parameter subgroup analysis of the risk score was
shown (Figures 7A–E and Table 3), and the results revealed
that the risk score of SCCHN patients with stages III–IV, T3–4,
and N + were higher than that with stages I–II, T1–2, and N0,
respectively (P < 0.0001, P < 0.01, and P < 0.05, respectively).

However, the risk scores between the subgroups of grade and
M classification were not statistically significant (P = 0.147 and
P = 0.347, respectively). In addition, we analyzed the association
between the risk score and other clinical parameters using logistic
regression in the TCGA data set (Table 4). The level of risk
score was significantly associated with clinical stage (P < 0.01), T
classification (P< 0.05), and N classification (P< 0.05). However,
it was not correlated with other clinical parameters, including age
(P = 0.817), gender (P = 0.234), histological grade (P = 0.344), and
M stage (P = 0.347). These results suggested that the risk score
was closely associated with the progression of SCCHN.

GSEA Analysis of the Risk
Score-Associated Signaling Pathway
GSEA analysis was performed to unravel significantly enriched
pathways of the high-risk and low-risk groups in the TCGA
data set. The top 10 enriched pathways of the high-risk group
and thirty enriched pathways of the low-risk group were
demonstrated (Supplementary Table 5). Enriched pathways with
significant differences (FDR < 0.25, NOM p< 0.05) were selected
(Table 4). The results demonstrated that protein degradation
and export related pathways were significantly enriched in the
high-risk group (Figure 8A); however, immune, inflammatory
response and fatty acid metabolism were significantly enriched
in the low-risk group (Figures 8B–D). Intriguingly, the B
cell receptor signaling pathway and T cell receptor signaling

FIGURE 6 | Validation of the risk model in GEO (GSE65858) data set. (A) Kaplan–Meier survival curve with OS of SCCHN patients in the risk subgroups of the
GSE65858 (GEO) data set. (B) ROC curve showing the AUC value of the risk score and other clinical factors of SCCHN patients in the GSE65858 data set. (C) The
risk score distribution of SCCHN patients in the high-risk and low-risk groups. (D) Scatter plot showing the survival status of SCCHN patients. (E) The expression
patterns of risk genes of SCCHN samples in the GSE65858 data set.
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FIGURE 7 | Association between the risk score and clinical characteristics of SCCHN patients. (A) Subgroup analysis of pathology grade (Grades 1–2 vs. Grades
3–4). (B) Subgroup analysis of clinical stage (Stages I–II vs. Stages III–IV). (C) Subgroup analysis of T classification (T1–2 vs. T3–4). (D) Subgroup analysis of N
classification (N0 vs. N+). (E) Subgroup analysis of M classification (M0 vs. M1).

pathway were enriched in the low-risk group (Figures 8E,F),
which indicated that the high-risk score may be associated with

TABLE 3 | Association analysis between the clinical factors and the risk score in
SCCHN patients of TCGA data set using logistic regression.

Clinical characteristics Total (N) Odds ratio in
the risk score

p-value

Age (≥60 vs. <60) 498 1.043
(0.731–1.487)

0.817

Gender 498 1.275
(0.856–1.904)

0.234

Grade (G1–2 vs. G3–4) 478 0.819
(0.541–1.238)

0.344

Stage (I–II vs. III–IV) 430 2.185
(1.367–3.542)

0.001

T classification (T1–2 vs. 3–4) 442 1.633
(1.113–2.404)

0.012

N classification (N0 vs. N+) 404 1.515
(1.019–2.258)

0.041

immunosuppression. Other individual GSEA plots are shown in
Supplementary Figure 3.

Association Between the Risk Score and
Tumor Immunity
For the hint from the GSEA results that the high-risk score may
be associated with tumor immunosuppression, we performed
the ESTIMATE to identify the immune/stromal score of the
TCGA data set. Our results showed that tumor samples in the
low-risk group had higher immune scores than those in the
high-risk group (P < 0.0001, Figure 9A). In addition, the risk
score was significantly and negatively correlated with the immune
score in SCCHN samples by Spearman’s rank test (R = –0.16,
P < 0.001, Figure 9B), and there was no significant correlation
between the risk score and the stromal score in SCCHN samples
(Figures 9C,D).

Moreover, we identified the composition of infiltrating
immune cells of SCCHN samples in the TCGA data set using the
CIBERSORT to analyze immune cells between the risk subgroups
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TABLE 4 | Gene sets enriched in the high-risk and low-risk groups.

MSigDB collection Name NES ES NOM p-val FDR q-val

c2.cp.kegg.v7.1.symbols.gmt KEGG_PROTEASOME 1.950 0.724 0.004 0.079

KEGG_PROTEIN_EXPORT 1.733 0.632 0.019 0.214

KEGG_ARACHIDONIC_ACID_METABOLISM −2.141 −0.593 0.000 0.007

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY −2.083 −0.619 0.002 0.006

KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY −1.968 −0.544 0.002 0.029

KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY −1.924 −0.579 0.006 0.042

KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS −1.901 −0.521 0.004 0.046

KEGG_LINOLEIC_ACID_METABOLISM −1.880 −0.620 0.006 0.053

KEGG_CHEMOKINE_SIGNALING_PATHWAY −1.867 −0.517 0.010 0.052

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY −1.830 −0.526 0.018 0.058

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION −1.691 −0.462 0.024 0.099

KEGG_FATTY_ACID_METABOLISM −1.605 −0.523 0.035 0.129

(Figure 9E). Consistent with the GSEA results, the result revealed
that SCCHN samples in the high-risk group contained a lower
fraction of naïve B cells (P < 0.001), CD8 T cells (P < 0.01), and
follicular helper T (P < 0.05) compared with those in the low-
risk group. These results suggested that the high-risk score was
associated with immunosuppression.

Correlation of the Genes of the Risk
Model With the Three Immune Cell Types
In line with the association between the risk score and the
above three immune cell types (Figure 10A), we investigated
the association between three types of immune cells with the
expression levels of six genes in the risk model (Figures 10B–
G). Consistently with the expression patterns of the risk genes,
the reduction of naïve B cells was associated with the low
expression of EZH2 (P < 0.001) and AZGP1 (P < 0.001).
In addition, the decrease of CD8 T cells was related to the
low expression of EZH2 (P < 0.001) and the high expression
of IGF2BP2 (P < 0.01). Moreover, the asthenia of follicular
helper T cells was associated with the low expression of EZH2
(P < 0.001) and the high expression of IGF2BP2 (P < 0.01).
Hence, the risk genes EZH2, AZGP1, and IGF2BP2 play key roles
in immunosuppression of SCCHN.

DISCUSSION

Evasion of immune destruction of cancer cells is one key
hallmark of cancer (Hanahan and Weinberg, 2011), and RBPs
can regulate the function and activity of immune cells, which
eventually may be linked to immune surveillance evasion of
cancer cells through managing the RNA metabolism at the
post-transcription level (Kafasla et al., 2014; Pereira et al., 2017).
In addition, accumulating studies have reported that dysregulated
expression of RBP-facilitated cell proliferation, invasion, and
metastasis and pluripotency and stemness in multiple cancers
(Yu et al., 2007; Dong et al., 2019; Soni et al., 2019; Velasco
et al., 2019; Elcheva et al., 2020; Pascual et al., 2020). However,
few studies have analyzed the expression patterns and roles
of RBPs in SCCHN. In our study, for the first time, we

comprehensively analyzed the expression patterns and potential
functions of RBPs in SCCHN.

Here, we initially comprehensively analyzed the associations
between the prognosis of SCCHN and 92 differentially
expressed RBPs (DERBPs, Figures 1A,B). Subsequently,
we constructed a prognosis risk model in the training
set with six RBPs, including NCBP2, MKRN3, MRPL47,
AZGP1, IGF2BP2, and EZH2 (Figure 1C), which showed a
robust performance for predicting prognosis compared with
clinical parameters in training and multiple validation sets
(Figures 4–6).

In this prognostic risk model, AZGP1 and EZH2 served
as protective factors, while NCBP2, MKRN3, MRPL47, and
IGF2BP2 acted as risk factors. Low AZGP1 expression was
significantly associated with increased risk of biochemical
relapse in margin-positive localized prostate cancer (Yip et al.,
2011; Bruce et al., 2016). AZGP1 as a cancer suppressor
inhibited cell proliferation, migration, and invasion via TGF-β
and PTEN/Akt signaling pathways in pancreatic cancer and
hepatocellular carcinoma (Kong et al., 2010; Tian et al., 2017).
These studies consistently with our results suggested AZGP1
as an anticancer gene. Previous studies have shown that EZH2
silencing reduced cancer cell growth, migration and invasion in
SCCHN (Liu et al., 2013; Chang et al., 2016), but which lack
transgenic animal experiments and does not involve the influence
of EZH2 on tumor microenvironment regulation of tumor
genesis and development. IGF2BP2 overexpression was observed
in pancreatic cancer, colorectal cancer, and SCCHN, which
promoted cancer cell proliferation by activating the PI3K/Akt
signaling pathway (Ye et al., 2016; Wang et al., 2019; Xu et al.,
2019; Deng et al., 2020). These studies consistently with our
results suggested that IGF2BP2 served as an oncogene. However,
the roles of NCBP2, MKRN3, and MRPL47 in cancers are still
unclear. Our study was first to suggest that they can be acted as
risk factors in a prognostic risk model of SCCHN.

Interestingly, our GSEA results unveiled that the B cell
receptor (BCR) signaling pathway and the T cell receptor
(TCR) signaling pathway enriched in the low-risk group
(Figures 8E,F), which indicated that they may be asthenic in
the high-risk group. BCR and TCR signalings have been shown
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FIGURE 8 | GSEA-enriched pathways of the high-risk and low-risk groups. (A) Multiple GSEA-enriched pathways of the high-risk group: proteasome and protein
export. (B) Multiple GSEA for immune-related pathways of the low-risk group: B cell receptor signaling pathway, Fc gamma R-mediated phagocytosis, natural killer
cell mediated cytotoxicity, and T cell receptor signaling pathway. (C) Multiple GSEA for inflammatory response-related pathways of the low-risk group: chemokine
signaling pathway, cytokine–cytokine receptor interaction, and Fc epsilon RI signaling pathway. (D) Multiple GSEA for fatty acid metabolism-related pathways of the
low-risk group: arachidonic acid metabolism, fatty acid metabolism, and linoleic acid metabolism. (E) Single GSEA showing the B cell receptor signaling pathway of
the low-risk group. (F) Single GSEA showing the T cell receptor signaling pathway of the low-risk group.

pivotal for B cell and T cell proliferation and development
for adaptive immunity, and their abnormalities could lead to
immunodeficiency (Burger and Wiestner, 2018; Tan et al., 2019;
Berry et al., 2020; Takeuchi et al., 2020). Therefore, we identified

the correlation between the risk score and the immune score
and analyzed the composition of immune cells between the
risk subgroups in SCCHN samples of the TCGA data set.
As we confirmed, there was a negative correlation between
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FIGURE 9 | Association between the risk score and tumor immunity in the TCGA data set. (A) The immune score distribution in risk subgroups of SCCHN patients.
(B) Correlation of the risk score with the immune score in SCCHN samples. (C) The stromal score distribution in risk subgroups of SCCHN patients. (D) Correlation
of the risk score with the stromal score in SCCHN samples. (E) Comparison fractions of immune cells between the high-risk and low-risk groups.

the high-risk score and tumor immune score, and the high-
risk group contained lower fractions of naïve B cells, CD8 T
cells, and follicular helper T cells compared with the low-risk
group (Figure 9). Hence, the results revealed that the high-risk
score may be an essential factor for B and T cell growth and
differentiation leading to tumor immunosuppression, and the
low expression of EZH2 and AZGP1 and high expression of
IGF2BP2 were the main factors of tumor immunosuppression
in the risk model (Figure 10). During the humoral immune
response, EZH2 expression was remarkably elevated in the

B cells of the germinal center (GC) (Caganova et al., 2013;
Herviou et al., 2019), which directly inhibited cell cycle
inhibitors of B cells, including CDKN1A (Béguelin et al.,
2013, 2017). Similar to B cell development, EZH2 promoted
generation and differentiation of mature T lymphocytes via
preventing p53 stabilization to suppress CNKN2 (Jacobsen
et al., 2017). In addition, EZH2 depletion in CD8+ T cells
restrained the amplification of antigen-specific effector cells
after pathogenic microorganisms infection (Gray et al., 2017;
Chen et al., 2018). Albeit the roles of AZGP1 and IGF2BP2
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FIGURE 10 | Correlation of the genes of the risk model with the three immune cells in the TCGA data set. (A) Comparison of the three immune cells (naïve B cells,
CD8 T cells, and follicular helper T cells) between the high-risk and low-risk groups. (B–G) Distribution of the three immune cells in the subgroups with high or low
expression of EZH2, AZGP1, IGF2BP2, NCBP2, MKRN3, and MRPL47, respectively.

in the immune response have not been investigated, our
study was first to suggest that AZGP1 downregulation and
IGF2BP2 upregulation may act as suppressors in tumor immune
response in SCCHN.

Although we identified a prognostic risk model with six
RBPs and revealed that the high-risk score was significantly
associated with cancer immunosuppression, the results of
our study performed with bioinformatics analysis were not
robust enough needing to be confirmed utilizing experimental

approaches. Thus, multicenter studies with larger sample
sizes are required.

CONCLUSION

In summary, in our study, we developed a robust prognostic
risk model with six differentially expressed RBPs. The results
showed that the risk score has great potential as a prognostic
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and immunosuppression state biomarker in SCCHN patients.
Therefore, the risk model may act as a prognostic signature
and offer highlights for individualized immunotherapy
of SCCHN patients.
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