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INTRODUCTION

Small Open Reading Frames (small ORFs/sORFs/smORFs) are important sources of putative
peptides previously dismissed as being non-functional or junk DNA, as determined by early gene
prediction methods. In fact, smORFs of<100 codons are possible coding sequences but sufficiently
small to occur very frequently and randomly in genomes; thus, the detection of their coding
potential and functional assessment is similar to a walk in the dark. Furthermore, while dozens
of smORF peptides have been recently described as essential players in biological processes, many
are reported to be potential non-functional products of junk DNA under pervasive translation,
leading to the question: from what perspective is this lack of function assessed? In this context,
it was recently suggested that non-functional smORF peptides might play a major role during de
novo protein coding gene birth, but the evolutionary mechanism is still unclear. Thus, the role
of pervasive translation of smORFs in molecular evolution remains puzzling. Here, we present
interesting questions for debate and further investigation about the perspective of non-functional
smORF peptides as underappreciated hotspots of molecular evolution in eukaryotes.

SMALL OPEN READING FRAMES: A SUBTOPIC IN THE
DISCUSSION OF JUNK DNA FUNCTION

With respect to the evolution of molecular function, part of the DNA elements accumulate
mutations by genetic drift; thus, the evolution of these elements is non-adaptive and neutral (Ohta,
2002). In some cases, the amount of neutrally evolving elements in junk DNA are analogous to the
items on a menu available to natural selection (Knibbe et al., 2007; Faulkner and Carninci, 2009;
Lynch et al., 2011). Interestingly, it was reported by the ENCODE consortium (the Encyclopedia
of DNA Elements) that most of the human junk DNA exhibits some type of biochemical activity
(ENCODE Project Consortium, 2012), but lacking adaptive relevance and selective pressure
(Doolittle, 2013; Graur et al., 2013). Importantly, junk DNA represents 75–90% of the human
genome (Graur, 2017).

Part of the junk DNA menu is composed of neutrally evolving smORF peptides. For instance,
thousands of non-coding RNAs are generated by the extensive transcription coverage on junk
DNA (ENCODE Project Consortium, 2007). Increasing evidence shows that thousands of smORFs
undergo pervasive translation in transcripts annotated as non-coding or in untranslated regions
(UTR) of mRNAs (e.g., Aspden et al., 2014; Ingolia et al., 2014). Interestingly, non-coding RNAs
and ORFs lacking homologs were reported to be candidates for de novo evolution of protein
coding genes (Tautz and Domazet-Lošo, 2011). Moreover, it was recently suggested that neutrally
evolving smORF peptides might play a major role in this process (Ruiz-Orera et al., 2018), but the
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evolutionary mechanism remains to be determined (Ruiz-Orera
et al., 2018; Singh and Wurtele, 2020). In this context, two
previously proposed concepts used to discuss molecular function
evolution are at the core of the junk DNA debate: “causal roles”
and “selected effects” (Doolittle and Brunet, 2017), which will
be discussed here in the context of smORFs and protein coding
gene birth.

The “causal role” describes the activity performed by
a neutrally evolving element by chance. For example, a
hypothetical genomic sequence generated by a random
nucleotide mutation to resemble a TATA box may be recognized
and bound by transcription factors but does not trigger gene
transcription (Griffiths, 2009; Graur et al., 2013). In other words,
“causal roles” are non-adaptive phenotypes, their emergence is
random, and they tend to rapidly disappear during evolution.
On the other hand, “selected effects” describe the acquisition of
adaptive phenotypes based on natural selection (Graur et al.,
2013), such as canonical TATA boxes or ORFs that are translated
into important proteins. In other words, “selected effects” are
functionally relevant for cells.

Importantly, while natural selection drives adaptive evolution
(selected effects), it is widely accepted that genetic drift drives
junk DNA evolution, as well as the synonymous modifications in
coding DNA sequences (CDS) andmutations in UTRs of mRNAs
(Ridley, 2004).

DISCUSSION

Applying the aforementioned evidence and concepts, we
discuss here a possible eukaryotic mechanism by which
neutrally evolving smORFs advance proteome evolution and the
evolutionary significance of smORFs.

Firstly, part of the roles performed by neutrally evolving
smORF peptides possibly transit from “causal roles” to “selected
effects” under environmental pressure, thereby exposing their
neutral phenotypes to natural selection and triggering the
evolution of new coding genes. Thus, when neutral smORF
peptides are selected, they are no longer neutral (Ruiz-Orera
et al., 2018). In other words, neutral smORF peptides may be
special entrees on the junk DNA menu that are available for
natural selection (Figure 1A).

Upon smORFs being selected for, they probably contain
low adaptive relevance due to their non-coding transcript
characteristics, such as low translation rate, lack of 3′-terminal
processing and other suboptimal coding features (non-coding
RNA features are reviewed in Quinn and Chang, 2016). This
hypothesis is based on the fact that hundreds of smORFs
are described as highly conserved but display low expression,
low translation efficiency and are observed in transcripts with
non-coding characteristics (Cabili et al., 2011; Aspden et al.,
2014; Bazzini et al., 2014). However, the nearly neutral theory
(Ohta, 2002) suggests that non-coding parts of fixed smORF
transcripts are modified by random genetic drift, in some cases,
producing small advantageous (or disadvantageous) adaptive
effects throughout evolution; thus, we propose that, at a certain
point, these modifications refine and elevate the coding potential

of smORF transcripts and consequently enhance the adaptive
relevance of their peptides, as seen in a large number of important
smORF peptides recently discovered (e.g., Magny et al., 2013;
Anderson et al., 2015; Lauressergues et al., 2015; Nelson et al.,
2016; Pengpeng et al., 2017; Kim et al., 2018; Polycarpou-
Schwarz et al., 2018; Chugunova et al., 2019; Tobias-Santos et al.,
2019; Pang et al., 2020; Vassallo et al., 2020). Importantly, the
acquisition of several optimal coding features might be favored
after the smORF has been selected for, because modifications
driven by genetic drift could be fixed by natural selection if
they improve the translation efficiency of the newly selected
smORF. Before the smORF has been selected for, eventual
optimal coding features acquired in the nucleotide sequence
could rapidly disappear during genetic drift evolution without
fixation. Alternatively, nucleotide changes may negatively affect
the coding potential and silence a gene. Optimal coding features
include structural stabilization, emergence of Kozak consensus,
internal ribosome entry sites (IRES), coverage by enhancers and,
in some cases, the elongation of coding smORFs to enlarge
the CDSs (Figure 1B). Recently, Couso and Patraquim (2017)
proposed that at least a portion of functional smORFs are
potential de novo precursors of large CDSs via a stop codon
mutation pattern called “CDS elongation.”

Considering the supposition that the action of evolution is
gradual, we propose that the aforementioned process be called
“coding potential maturation” (Figure 1B). For example, smORF
translation is widely reported in transcripts with long non-coding
RNA (lncRNA) characteristics (Crappé et al., 2013; Ingolia et al.,
2014; Ji et al., 2015; Mackowiak et al., 2015; Li et al., 2018;
Lu et al., 2019). These lncRNAs exhibit smORF conservation
in divergent species, hinting at natural selection fixation and
indicating coding immaturity.

Another potential pathway of coding gene generation occurs
via alternative smORFs in UTRs or overlapping the reference
CDS of canonical mRNAs. In this scenario, alternative smORFs
undergo pervasive translation or the act of translation itself
is important for cis-regulatory purposes (Vanderperre et al.,
2013; Wu et al., 2020). If the “causal roles” performed by
neutrally evolving smORF peptides become “selected effects,”
the alternative smORFs would generate independent gene units
by retrotransposition, or they would be fixed as alternative
smORFs in the original transcripts (Figure 1B). Hence, during
retrotransposition events, at least a portion of the transcripts
investigated on the basis of pseudogenization may, in fact,
represent the maturation of new coding genes, as suggested by a
report that pseudogenes can be translated into highly conserved
smORF peptides (Ji et al., 2015).

smORFs might be sequence reservoirs potentially activated
during the evolution of new phenotypic variations, especially
during speciation. Importantly, speciation events have been
associated with the evolution of new molecular phenotypes
and new relationships with the environment (Bao et al.,
2018). Thus, the amount of junk DNA and lncRNAs in cells
deserves investigation not only as a random accumulation
of sequences and translational noise but also as a repository
of substrates to advance the evolution of new coding genes.
Interestingly, polyploidization, or whole genome duplication
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FIGURE 1 | Phenotype selection and coding potential maturation of smORF transcripts. (A) Transition of smORF peptides from “causal roles” to “selected effects”

after pervasive translation events. Pervasive translation of neutrally evolving smORFs possibly advances proteome evolution by exposing neutral

(Continued)
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FIGURE 1 | phenotypes to natural selection under environmental pressure. (B) Scheme for coding potential maturation, a hypothetical mechanism that increase the

translation efficiency of a mRNA after a smORF has been selected for (selected effect) in a transcript with suboptimal coding features. On the left, coding potential

immaturity; in the middle, coding potential maturation; on the right, coding potential maturity. During the coding potential immaturity phase, newly selected smORFs

are observed in transcripts with suboptimal coding features, either in long non-coding RNAs or as alternative smORFs in canonical mRNAs. Although canonical

mRNAs exhibit optimal coding features, alternative smORFs are usually secondarily or pervasively translated; thus, some alternative smORFs may reside in suboptimal

coding regions. During the coding potential maturation phase, natural selection and genetic drift may act in different parts of a transcript. While natural selection acts

by fixing the selected parts, genetic drift acts by changing the non-coding parts of a transcript, as postulated by the nearly neutral theory (Ohta, 2002). Natural

selection promotes fine-tuned adjustments to the selected phenotypes, such as synonymous mutations and CDS modifications. Genetic drift can establish adaptive

mutations in a transcript by evolving sequences that potentially increase smORF translation, such as the Kozak consensus, regulatory upstream ORFs, internal

ribosome entry sites (IRES) and increases in GC content. Additionally, other adaptive modifications not directly related to sequence mutations in transcripts might

increase smORF expression, such as the 5′ cap, 3′ poly(A) tail, cis-regulatory elements in the genome and, in the case of alternative smORFs, independent gene unit

generation by retrotransposition. Importantly, the acquisition of optimal coding features might be favored after the smORF has been selected for, because

modifications driven by genetic drift could be fixed by natural selection if they improve the translation efficiency of the newly selected smORF. Before the smORF has

been selected for, eventual optimal coding features acquired could rapidly disappear during genetic drift evolution without fixation. Alternatively, mutations evolved by

genetic drift can silence the gene. Finally, smORFs reach the coding potential maturity phase when optimal coding features are acquired and translation efficiency

increases. Consequently, the translation rate of smORF peptides is largely increased upon completion of the described process, contributing to the establishment of

molecular innovations and protein coding gene birth.

(WGD) events, have been correlated with an increase in the
adaptive potential of cells and organisms exposed to stressful
conditions (Van De Peer et al., 2017). Unfortunately, thus far,
studies ofWGD have neglected the role and retention of smORFs
during evolution, probably due to methodological difficulties in
smORF identification.

However, the sequencing of several genomes based on
comparative approaches has recently opened new avenues for
smORF research. For instance, recent evolutionary studies
performed by our group on the smORFs in the mille-
pattes/tarsalless/polished rice (mlpt) gene, the most well-known
smORF-containing gene in insects (Savard et al., 2006; Kondo
et al., 2007; Pueyo and Couso, 2008, 2011; Cao et al., 2017;
Ray et al., 2019), showed that a new ∼80 amino acid smORF
(smHemiptera) appeared during Hemiptera evolution (Tobias-
Santos et al., 2019). Thus, this smORF in the polycistronic mlpt
mRNA has been conserved for over 250 million years in the
group, and it is not present in the genomes of other insect orders.
We expect that new comparative analyses of genomes in the
future will yield additional examples of order-specific smORFs,
which might constitute an underappreciated reservoir of new
genes and evolutionary innovations.

In summary, the study of smORFs has been considerably
increasing during the last 5 years because of recent discoveries
of important smORF peptides. Accordingly, the advent
of ribosome profiling has allowed the discovery of many
neutrally evolving and potentially non-functional smORFs
undergoing pervasive translation, whose significance remains

to be determined (Crappé et al., 2013; Aspden et al., 2014;

Bazzini et al., 2014; Olexiouk et al., 2016). In this context,
the intriguing question is posed: why would cells spend
energy on transcription and translation of neutral and non-
functional elements? There is probably more than one answer;
however, considering the subjects discussed in this paper,
we propose the following perspective: what if the pervasive
translation of neutrally evolving smORF peptides composes
an elegant mechanism to advance proteome evolution,
especially during speciation events? If it does, then non-
functional smORF peptides display an important function in
an evolutionary sense. Based on this discussion, we suggest
that the concept of functionality be revised in the context
of smORFs.
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