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Conventional wheat-breeding programs involve crossing parental lines and subsequent
selfing of the offspring for several generations to obtain inbred lines. Such a breeding
program takes more than 8 years to develop a variety. Although wheat-breeding
programs have been running for many years, genetic gain has been limited. However,
the use of genomic information as selection criterion can increase selection accuracy
and that would contribute to increased genetic gain. The main objective of this study was
to quantify the increase in genetic gain by implementing genomic selection in traditional
wheat-breeding programs. In addition, we investigated the effect of genetic correlation
between different traits on genetic gain. A stochastic simulation was used to evaluate
wheat-breeding programs that run simultaneously for 25 years with phenotypic or
genomic selection. Genetic gain and genetic variance of wheat-breeding program based
on phenotypes was compared to the one with genomic selection. Genetic gain from the
wheat-breeding program based on genomic estimated breeding values (GEBVs) has
tripled compared to phenotypic selection. Genomic selection is a promising strategy for
improving genetic gain in wheat-breeding programs.

Keywords: wheat, genetic gain, genomic selection, stochastic simulation, genetic correlation

INTRODUCTION

Conventional wheat-breeding programs use phenotypic values for selection of best individuals.
Such programs are reported to yield yearly genetic gains that are lower than 1% (Godin et al.,
2012). The procedure in phenotype-based selection involves creating genetic variation by crossing
two parents followed by several rounds of selfing to create inbred lines. Resulting inbred lines are
tested for a range of phenotypic parameters. Besides the most important trait, grain yield, breeders
evaluate traits such as disease resistance, lodging, quality parameters, and a range of agronomical
traits. In the early generations, breeders “visual preference” which is based on previous experience
can also influence selection decisions. The aim of a breeding programs is to develop superior
cultivars and the phenotypes of all the traits of interest are used for all selection decisions. However,
it is the selection of individuals based on their breeding values, which would influence the response
to selection in the next generation of a breeding cycle (Akdemir et al., 2019). In addition, selection
of parental lines based on their breeding values will influence genetic gain in the subsequent
breeding cycles. With the advent of molecular markers, selection decision was made by integrating
information from both molecular markers and phenotypic data through marker-assisted
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selection (MAS) (Fujino et al., 2019). However, many complex
traits including yield is under the control of many genes with
small effects where MAS will be of a limited use due to low
statistical power to detect individual genes (Bernardo, 2008). For
many major crop plants, including wheat, many QTLs have been
identified for many different traits, but the practical application
of MAS faces many limitations (Bernardo, 2008) mainly because
the QTL identified only account for a limited fraction of the
genetic variance.

In contrast to MAS, genomic selection (GS) uses genome-wide
markers to capture both large and small effect QTL to predict
breeding values for complex traits (Meuwissen et al., 2001).
Genomic prediction of expected breeding values will have
advantages over phenotypic selection mainly because the
accuracy in estimating breeding value is higher when
genomic information is included for selection decision
(Daetwyler et al., 2013). Genomic estimated breeding values
(GEBVs) are calculated as the sum of effects related to genetic
markers in linkage disequilibrium (LD) with one or more QTLs
across the entire genome (Goddard and Hayes, 2007). Genomic
selection uses a prediction model that is first trained using
a population that contains both genotyped and phenotyped
individuals. The trained model is then used to predict true
breeding values of selection candidates. Such selection candidates
may have no phenotypes and then their performance will be
based on genomic information only. However, for selection
candidates that are phenotyped and genotyped accuracy of
prediction will improve due to optimal combination of genomic
and phenotypic information.

A number of studies have explored application of genomic
information in breeding programs for different plant species.
Bernardo and Yu (2007) reported a 43% increase in genetic gain
in a simulation study by integrating genomic information in
maize breeding program compared to a program based on
marker-assisted selection. A simulation study of Gaynor et al.
(2017) compared wheat-breeding programs with and without
genomic information and showed breeding program with
genomic information outperformed phenotype based breeding
program. A breeding program where selection decisions are
only based on phenotypes aims to select best lines from a
large segregating early generation and to evaluate fewer lines
with greater replication in advanced generations. Integrating
genomic selection in conventional wheat-breeding programs can
increase genetic gain by selecting superior inbred line with
higher selection accuracy (Bassi et al., 2015; Gaynor et al., 2017).
In this way, only few changes are required in an already
on-going phenotype-based wheat-breeding program. Generally,
conventional wheat breeding starts by crossing selected inbred
lines followed by several generations of selfing to get stable inbred
lines for yield evaluations.

The motivation of this study comes from the observation
that some of the simulation studies on genomic selection in
wheat-breeding program does not mimic the complexity of
actual wheat-breeding programs (Gaynor et al., 2017). In this
simulation, we used real wheat genome data and the performance
of genomic selection using real haplotype data would be closer
to what happens in actual wheat-breeding program. Heritability

of traits was based on real data study (Cericola et al., 2017). Plot
size and density, yield plot at preliminary yield trial and advanced
yield trial mimicked real wheat-breeding setup. In addition, the
different actions taken at each breeding cycle stage reflected
actual wheat-breeding programs. This was possible due to the use
of the complex stochastic simulation program ADAM (Liu et al.,
2019). The results of this study will contribute to the research on
plant breeding as well as serve as a clear guideline for the plant
breeding companies for implementation of genomic selection.

We applied genomic selection in conventional wheat-breeding
programs to investigate the expected change in genetic gain.
Stochastic simulation was used to quantify expected genetic gain
in conventional wheat-breeding programs when incorporating
genomic information in making selection decision. Stochastic
simulation allow to model breeding schemes that mimics an
actual breeding program on a very detailed level (Liu et al., 2019).
For instance, stochastic simulation can be used to simulate an
entire population of individual plants and it can accounts for the
change in allele frequencies caused by selection. It also allows
simulation of many rounds of selection and results in a more
accurate estimate of genetic variance and response to selection.
This makes stochastic simulation very precise in predicting
consequences of alternative breeding schemes. Studies have also
showed the benefit of stochastic simulation (Wensch-Dorendorf
et al., 2011; Gaynor et al., 2017).

In the present simulation work, we compared phenotype-
based selection programs with genomic-based selection
programs, where both selection criteria applied in conventional
wheat-breeding programs. To achieve this, phenotype and
genomic-based breeding schemes were simulated following
a standard commercial wheat-breeding program, where the
number of crosses, families, and single plants mimic real life
wheat-breeding program. The aims of this study are to (1)
investigate if incorporation of genomic information in wheat
breeding program increases genetic gain, (2) study the change
in genetic variance between phenotypic and genomic selection,
and (3) investigate accuracy of selection in phenotypic and
genomic selection.

MATERIALS AND METHODS

Simulation Design
A stochastic simulation model was used to simulate a
conventional wheat breeding strategy that run for 25 breeding
cycles. Simulations were carried out using ADAM software
(Liu et al., 2019). Two different wheat breeding strategies were
simulated, (1) phenotypic selection and (2) genomic selection.
Phenotypes and underlying genotypes were simulated including
both QTL and markers. Based on phenotypic (and marker)
information (G)EBV were predicted using a linear model.

A new breeding cycle was initiated every year and the breeding
cycles, therefore, were overlapping (Figure 1). A breeding cycle
represent eight generations from initial crossing until final elite
line selection. A breeding cycle starts with parental lines (P),
followed by generation F1 up to F8, where the number represent
the generation in which they are generated (Figure 1). Since the
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FIGURE 1 | Structure of simulated wheat breeding program running over 25 years. Every year a new breeding cycle is initiated. For the first 7 years parents (P with
orange box) are selected from the base population and after year 7 parents (P with blue box) is selected from previous cycles. For genomic selection the first 8 years
are burn-in period.

breeding cycles are overlapping, in a given year, events (selection
or mating) on eight different cycles were simulated. This allowed
movement of information between cycles every year.

In a practical genomic wheat-breeding program, genomic
selection would be implemented in an on-going phenotypic
selection program. To mimic this, from the simulated 25 years
of breeding program for genomic selection, the selection in the
first 8 years was based on phenotypes. This means genomic
information was introduced on the ninth year of the breeding
program. This burn-in stage has also served to create differences
between breeding cycles.

Simulation of Founder Population
The genome for the founder population was generated from
a realized wheat genome data set (Cericola et al., 2017) that
were read into ADAM software. The genome data set represents
commercial wheat lines obtained from three breeding cycles
and includes 988 F6 lines. In the first generation of founder
population, all SNPs are evenly distributed across the total (21)
chromosomes and every Nth locus harbors a QTL that code
for a trait under selection and the remaining loci are genetic
markers. Thus from the total 9582 markers, 1039 loci were
randomly chosen across the genome was assumed as QTLs while
the remaining 8543 loci were assumed as anonymous markers.

The extent of linkage disequilibrium in the genome data set
is explained in Cericola et al. (2017). The average r2 within
chromosomes was 0.05, indicating the presence of low LD decay.
The average r2 for the genome A, B, and D was 0.05, 0.05, and
0.11, respectively. The average distance of markers with r2 > 0.5
was 9.47, 8.38, and 7.73 cM for genome A, B, and D, respectively.

Simulation of Base Population
A base population of 480 lines were generated from the founder
population. The genotype of each line was sampled from a
pool of chromosomes of the founder population. Each line
was generated by, for each chromosome 1 to 21, randomly
sampling one chromosome without replacement from the pool of
chromosomes. Then the second chromosome is set to be identical
to the first one to generate a fully inbred line.

Parental lines were chosen from the base population for the
first seven breeding cycles. The breeding program was run in
parallel, meaning that a new breeding cycle was started every year.
After this stage, parents were selected randomly from F6, F7, and
F8 of the previous breeding cycles.

Simulation of Phenotypes
Three traits for selections were simulated and these were breeder’s
visual preference (BVP), yield at preliminary yield trial (PYT)
and yield at advanced yield trial (AYT). The observation of the
traits were realized at the different stages of a breeding cycle,
breeder’s visual preference (BVP) at F2 and F4 generation, yield
at preliminary yield trial (PYT) at F5 and yield at advanced
yield trial (AYT) at F6 and F7 generations. AYT was also applied
for family selection at F3. The preliminary yield trial represents
un-replicated plot with limited amount of seeds sown sparsely.
Whereas advanced yield trial is a standard yield plot with normal
seed density and plots replicated three times in three different
locations. The phenotype, y, was calculated as, y = g + e, where
g is the true additive-genetic value and e is residual value.
True breeding values (TBVs) of the traits were determined by
summing the allelic effects of its QTL. The QTL effects

(
a
′

j

)
was sampled from multivariate normal distribution, that is aj =

aij ×

√
σ2
qtl∑n

k 2pk(1−pk)a
′2
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, where subscripts k and j denote the QTL

k and QTL j, pk and pj are the minor allele frequencies of QTL
k and QTL j, a

′

k and a
′

j are the substitution effect of QTL k and
QTL j before being scaled. When simulating correlation between
traits, additive genetic variance and heritability of each trait was
specified along with the genetic and residual correlations between
traits. The additive genetic covariance matrix was then derived
from the additive genetic variances and the additive genetic
correlation matrix (Faux et al., 2016). The genetic variance for
each trait was set to 1 (standardized unit) in the base population.
The residual effect (e) for each individual is sampled from a
normal distribution N ∼

(
O,σ2

e
)
. The residual was simulated

independently assuming phenotypic correlation from genetic
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correlation. Heritability (h2) for BVP was set 0.1 and calculated

h2
=

σ2
g

σ2
g+σ2

e
. Plot heritability

(
h2
plot

)
for yield at PYT and AYT

were 0.2 and 0.3, respectively, based on results of Cericola et al.
(2017) which was based on results from a large commercial wheat
population. In order to achieve targeted plot heritability for yield
trait, the value for residual variance

(
σ2
e
)

was calibrated following
this equation derived from Falconer and Mackay (1996) under
the assumption of Hardy-Weinberg Equilibrium.

σ2
e =

2NpHσ2
g

(
1− h2

plot

)
h2
plot

− (1−H) σ2
g

Where H is expected frequency of homozygosity in the
generation, σ2

g is genetic variance, σ2
e is residual variance.

Statistical Model
Breeding value estimation was done using multi-trait BLUP
model in DMU software (Madsen and Jensen, 2013). For genomic
selection a GBLUP model was implemented. y1

y2
y3

 =
 11 0 0
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µ1
µ2
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+
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Where

 y1
y2
y3

 is the vector of traits BVP, PYT and AYT, and

11, 12 and 13 are the identity matrices,

µ1
µ1
µ1

 is the vector of

population means of BVP, PYT and AYT,

 a1
a2
a3

 is the vector

of additive genetic effects of the three traits. Z1, Z2 and Z3 are
the design matrices that associate breeding values with BVP, PYT

and AYT and

 e1
e2
e3

 is the vector of residual errors of BVP, yield

at PYT and AYT. It is assumed that

 a1
a2
a3

 ∼ N (O, G⊗ G0)

where GO is

 σ2
a1 σa12 σa13

σa21 σ2
a2 σa23

σa21 σa32 σ2
a3

 when genomic information is

used and

 p1
p2
p3

 ∼ N (O, I ⊗ I0) where I0

 σ2
p1 σp12 σp13

σp21 σ2
p2 σp23

σp31 σp32 σ2
p3


when phenotypic information is used.

 e1
e2
e3

 ∼ N (O, I ⊗ R),

where R is the residual variance covariance matrix of the three
traits. The three traits are measured on different lines and

different years meaning the residual variance is independent and
have value of zero.

Breeding Schemes
Phenotypic Selection (PS) Breeding Scheme
A breeding program running for 25 years was simulated
following a conventional winter wheat breeding structure
(Figure 1). Every year in the breeding program a new
breeding cycle starts.

Parents (P): For the first seven breeding cycles, 60 parental
lines were chosen randomly from the base population while
for the rest of 18 breeding cycles parents were selected
based on their breeding values from F6, F7, and F8 of the
previous breeding cycles and this allowed elite lines to be
used for crossing (Figure 2). Each parental line was used for
a maximum of six crosses and from the total 1770 possible
crosses, 100 crosses were randomly chosen.

F1: One hundred F1 plants were generated and each F1 was
allowed to produce 30 (F2) seeds. Families from F2 to F4 share
a common ancestor (F1), thus families from F2 to F4 were
referred as F1 families.

F2: In total, there were 100 plots and each F2 plot had 30 plants.
With-in each F1 family eight highest-ranking single plants
were selected based on their breeding value for trait 1 (BVP).
Heritability of 0.1 was assigned for the trait BVP. Selected eight
single plants from each family were advanced to the next stage
in the breeding program.

F3: Each F1 family was planted in three plots and evaluated
based on yield performance. The plot set up was similar as in
AYT. Out of the 100 families, 75 highest ranking families based
on their breeding values were advanced to the next stage.

F4: The advanced 75 F1 families were planted in un-replicated
field trials. Ten single plants per family were selected based
of BVP in order to form individual lines based on single
seed descent. Selected 750 lines were advanced to preliminary
yield trial (PYT).

F5: F5 lines were created by advancing selected F4 individuals
through single seed descent (SSD). A single plot was simulated
to generate 50 plants that were genetically identical. This
preliminary yield trial (PYT) is un-replicated and this step
is mainly done for the purpose of seed multiplication. Yield
recording was made on each plot. Plot mean was used to
select 150 best lines from the available 750 lines. Selected lines
were stored to be potentially used as parents in the proceeding
breeding cycles.

F6: The 150 lines selected from F5 were evaluated in advanced
yield trail (AYT), where plots and trials were replicated
three times across three different locations. However, yield
evaluation here was made based on the assumption that there
is no genotype by environment interaction and heritability is
chosen to reflect the part of additive genetic variance that is
common to different environments (Cericola et al., 2017). The
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AYT trait was set as a selection criteria. Thirty best lines were
selected from the 150 lines to be advanced to the next stage.
The selected lines will be added to a pool of potential parents.

F7: The selected 30 best lines were evaluated for yield and the
field trial setup was similar to the AYT in F6. Five best lines are
selected based on yield and were selfed to produce F8. Besides,
the selected lines will be stored to potentially become parents.
The best F8 lines are sent to an official yield trial test to be
released as varieties.

Genomic Selection (GS) Breeding
Scheme
The proposed genomic wheat-breeding program was designed
to introduce genomic selection starting from the preliminary
yield trial stage, F5 (Figure 2). The genomic breeding program
combines genotype and phenotype information to predict GEBVs

for yield. The first 8 years of the breeding program was a burn-in
phase which had similar set up as phenotypic selection described
earlier, which means genomic information was introduced in the
breeding program at year 9. The genomic breeding program from
year 9 to 25 is described as follows.

F4: For genomic selection breeding strategy, all selected 750
single plants were genotyped in each cycle. F4 genotypes
together with phenotypes for the targeted traits were added
yearly for building the reference population. The initial
reference population at year 16 (cycle 16) contained 750
genotypes. Every year the reference populations increased by
750 new genotypes.

F5: Each F5 plot had 50 plants descended from the single seed
and only one replicate was simulated. Yield was recorded on
all F5 plots in each F4-line. Line selection was done based on

FIGURE 2 | Breeding scheme for conventional phenotypic selection (PS) and genomic selection (GS) of wheat-breeding program. PS and GS breeding scheme has
similar setup until F4. For GS, GEBV was used for selection starting from F5. BVP = Breeders visual preference, PYT = preliminary yield trial, AYT = advanced yield
trial, GEBV = genomic estimated breeding value.
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plot yield performance of 750 F4-lines. The phenotypes and
genotypes of 750 F4-lines together with the existing reference
population were used to estimate breeding values of each lines
using GBLUP model (Madsen and Jensen, 2013). Thus, GEBVs
of PYT were used to select the highest ranking 150 lines to
be advanced to the next stage. The information of phenotypes
and genotypes in the current breeding cycle was stored to be
used for predicting breeding values in the next cycles. The
germplasm of the 150 selected lines were stored and potentially
become parental lines for the proceeding cycles.

F6: For each F6 line, nine replicates of plot was simulated. 150
F6 lines are phenotyped for yield for all the nine replicates
in an advanced yield trial. Each F6 plot had 1500 plants.

The phenotype of 150 lines combined with the genotype
information of their corresponding F4 genotypes were used
for prediction of breeding values. Based on GEBV of AYT,
the 30 highest-ranking lines were selected from 150 lines.
The selected lines were stored to be used as parents in the
proceeding breeding cycles.

F7: The advanced 30 lines were evaluated for yield on
all the nine replicates similar to F6. Each plot had 1500
plants. The average yield performance of each plot was
recorded. The phenotype and genotype of the 30 lines together
with the existing reference population was used to estimate
breeding values. Five lines out of 30 lines were selected
based on their GEBVs.

FIGURE 3 | Genetic gain for the final product (F8) for PYT and AYT for genomic and phenotypic selection. The five levels of correlation (Y0.1, Y0.3, Y0.5, Y0.7, and
Y0.9) between PYT and AYT, and correlation of BVP with PYT and AYT (B0.1) is shown.
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For both GS and PS, five scenarios were simulated with five
different levels of genetic correlation between PYT and AYT. The
correlation levels are 0.1, 0.3, 0.5, 0.7, and 0.9. The correlation of
BVP with PYT and AYT was 0.1 for all the five scenarios. Each
scenario in the simulation was replicated 10 times.

Additive Genetic Variance
Additive genetic variance was computed in generation F5 as the
variance of mean TBVs of all the individuals in each breeding
cycle. Generation F5 is the breeding cycle stage where there is
highest selection intensity.

Prediction Accuracy
Selection accuracy for phenotypic selection and genomic
selection was evaluated as a correlation between predicted
breeding values and TBVs in each cycle. For phenotypic selection,
accuracy was calculated as a correlation between plot phenotype
and TBVs while for genomic selection it was a correlation
between plot GEBVs and TBV.

Comparison of Breeding Strategies
The expected genetic gain was quantified from each simulated
breeding strategy. Genetic gain comparison on F8 generation
was done by plotting the mean of true breeding values
(TBVs) of F8 individuals against time. For the comparison
of conventional and genomic breeding strategies, data from
years 9 to 25 was used in the analysis. The annual genetic
gain was computed for each scenario by regressing TBVs of
AYT on time with the assumption of linear response from
years 9 to 25 within 10 replicates. The standard deviation
of genetic response for AYT is estimated as a measure
of uncertainty of the breeding program. The development
of genetic variance over several rounds of selection was
compared between genomic and phenotypic selection. Genetic
variance per breeding cycle (F1–F8) is plotted over time. The
change in genetic variance for all scenarios at the end of
breeding cycle is presented. Plotting and calculation was done
using R statistical programming language and environment
(R Core Team, 2019).

RESULTS

Genetic Gain
Genetic gain from phenotypic selection and genomic selection
was compared based on their mean breeding values over
the period of 25 years. The comparison was done for trait
PYT and AYT of the F8 generations since they were the
end product in the current simulation. Our simulation result
showed that the breeding program that uses genomic information
generated significantly higher genetic gain than the breeding
program with only phenotypic selection (Figure 3). The change
in genetic gain when GS is introduced at year nine to an
already ongoing PS can be clearly seen in Figure 3. There
is a high jump in genetic gain at year nine in GS compared
to PS. The trend in genetic gain was increasing at higher
rate over time in GS compared to PS. The difference in

genetic trends can also be seen among different level of
genetic correlations between PYT and AYT within both PS and
GS (Figure 3).

Genetic gain within PS and GS was also compared based
on the level of genetic correlation between PYT and AYT
and there were five level of genetic correlations (0.1, 0.3, 0.5,
0.7, and 0.9). According to the level of genetic correlations
between traits there were a difference in mean breeding value
with-in each selection criteria (PS and GS). The difference in
genetic gain for the different levels of correlation can be clearly
seen for PYT than AYT. The reason for this is that AYT was
considered as the breeding goal and thus economic weight was
assigned to AYT. This means genetic responses for PYT depends
on the level of correlation with AYT for GS, the higher the
correlation with AYT the higher genetic gain for PYT. This
happened because of the genetic correlation between PYT and
AYT as well as the genomic information available from the
previous cycles are used for prediction. In addition, selection
intensity at PYT is higher than AYT. However, the highest
genetic gain is realized for AYT. The different levels of genetic
correlation for AYT did not show significant differences among
the different correlations. The standard deviation (SD) of the
different scenarios for PS and GS breeding schemes tells the
uncertainty of the breeding program. The SD of the individual
estimates for AYT ranged 0.310–0.378 for PS whereas for GS the
range is 1.127–1.143 (Table 1).

Annual Genetic Gain
Annual genetic gain represents how much genetic gain have been
obtained from each breeding cycle. Annual genetic gain for PS
and GS was compared and the result for the five tested scenarios
of PS and GS is presented in Table 1. Breeding programs that use
genomic information has higher genetic annual genetic gain in
all the tested scenarios than breeding program with phenotypic
information only. For PS, annual genetic gain range from 0.035
to 0.049 while for GS the range was from 0.183 to 0.186 genetic
standard deviation. Compared to PS, GS breeding scheme has
tripled genetic gain. This increase in genetic gain when using GS
was seen across the different levels of genetic correlations between
traits. However, there was no significant differences of among the
different levels of genetic correlations with in GS as well as PS.

TABLE 1 | Rate of genetic gain (1G) for AYT in genetic standard deviation with
standard errors in brackets from year 9 to 25 and for 10 replicates and standard
deviation (SD) of AYT for PS (phenotypic selection) and GS (genomic selection).

1G SD

Scenario PS GS GS PS

B0.1_Y0.1 0.035(0.001) 0.186(0.004) 1.141 0.310

B0.1_Y0.3 0.041(0.001) 0.185(0.002) 1.138 0.345

B0.1_Y0.5 0.044(0.001) 0.186(0.002) 1.143 0.356

B0.1_Y0.7 0.045(0.001) 0.183(0.002) 1.127 0.348

B0.1_Y0.9 0.049(0.001) 0.183(0.003) 1.127 0.378

The five level of correlation (Y0.1, Y0.3, Y0.5, Y0.7, and Y0.9) between PYT and
AYT, and correlation of BVP with PYT and AYT (B0.1).

Frontiers in Genetics | www.frontiersin.org 7 December 2020 | Volume 11 | Article 578123

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-578123 December 4, 2020 Time: 13:15 # 8

Tessema et al. Genomic Selection in Wheat

FIGURE 4 | Genetic variance for AYT (advanced yield trial) in a singe breeding cycle from F1 to F8 at year 9 and 18 for genetic correlation of 0.1 and 0.9 between
PYT and AYT.

Genetic Variance per Cycle
Genetic variance per cycle was measured and this shows
how much of the genetic variance created by crossing and
recombination is reduced along the different stages of selection
within a breeding cycle. Genetic variance for trait AYT was
measured within a breeding cycle for PS and GS breeding
schemes and the result is shown in Figure 4. The figure shows
what happens in a single breeding cycle (F1 to F8) that started
in the year 9 and 18 of the breeding program as an example
for both PS and GS breeding schemes. In both year 9 and 18 of
the breeding programs, an increase in genetic variance happened
from F1 to F5 due to recombination. This trend is seen for both
PS and GS breeding schemes. Genetic variance at F1 is 0.5 which
is half of parent’s variance and this is expected since the parents
are inbred and Mendelian sampling is 0. The decline in genetic

variance after F5 comes as a result of selection. After selection
only the best lines are kept to proceed to the next breeding stage.
In GS, the change in variance after F5 shows a sharp decline due
to selection when compared to PS due to more accurate predicted
breeding values.

Genetic Variance Across Breeding
Cycles
The development of genetic variance over the period of 25 years
was measured and the result is present in Figure 5. The figure
shows mean genetic variance for the trait AYT for the genetic
correlation 0.1 and 0.9 over the period of 25 breeding cycles for
generation F5. The variance at F5 shows how much variance is
available for subsequent selection. The change in genetic variance
for AYT was different between genomic and phenotypic breeding
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FIGURE 5 | The change in genetic variance over the period of 25 years measured at generation F5 for AYT for GS (Genomic selection) and PS (Phenotypic selection)
for genetic correlation of 0.1 and 0.9 between PYT (preliminary yield trial) and AYT (advance yield trial). The first 8 years for GS is burn-in and similar to PS.

programs. In both PS and GS variance is 1 at year 5, however the
change in the level of genetic variance is higher for GS than PS in
the subsequent period of selection. This shows the loss in genetic
variance is higher for GS than PS. By the end of the breeding
program, PS has genetic variance about 40% more than GS when
the correlation was 0.9.

At the end of the breeding program, the change in genetic
variance for both genomic and phenotypic selection for grain
yield measured for AYT for F5, F6, F7, and F8 at the end of
the breeding cycle (25th year) together with the corresponding
breeding values is shown in Table 2. The table shows mean
genetic gain for PS and GS and it is significantly different between
PS and GS. By the end of the breeding program GS has produced
about 300% more gentic gain than PS. The loss in genetic variance
was higher in genomic selection than phenotypic selection in all
teseted scenarios.

Predicition Accuracy
Predicition accuracy of breeding value was computed as
correlation between TBV and predicted breeding values. The
mean predicition accuray of plot yield for PYT and AYT
from year 9 to 25 for generation F6, F7, and F8 is presented
in Table 3. In all the three generations GS had higher
predicition accuracy than PS. For PS, accuracy was 0.269,
0.76, and 0.755 for F6, F7, and F8, respectively, while for GS
the accuracy was 0.397 for F6, 0.992 for F7 and 0.966 F8.
Among the generations, F7 and F8 has the highest accuracy for
both PS and GS.

DISCUSSION

The current wheat breeding simulation study was done to test
a hypothesis that genomic selection can increase genetic gain
compared to phenotypic selection. For testing this hypothesis,

a wheat breeding program was simulated for both genomic and
phenotypic selection. The breeding program ran for 25 years.
Within PS and GS breeding programs, different level of genetic
correlation between PYT and AYT was tested. Our result
confirmed the hypothesis that wheat-breeding program that used
genomic information has tripled genetic gain compared to the
conventional phenotypic selection.

Genetic Gain
Genomic selection breeding schemes has outperformed
phenotypic selection for genetic gain. The increase in genetic
gain that was brought by adding genomic information in
conventional wheat breeding program was 3-fold. The main
advantage of using genomic selection was increasing selection
accuracy which inturn increased genetic gain, which was
cosistent with the finding of Gaynor et al. (2017). Our result have
shown that selection accuracy was higher in GS than PS. The use
of genomic information to select parental lines has been shown
to contribute to an increase in genetic gain through enhancing
selection accuracy (Gaynor et al., 2017). In our simulation, lines
that were selected based on their breeding values were stored to
be used potentially as parents in the preceding cycles. However,
parents were selected randomly from the stored line for the
subsequent cycle. In crop breeding, selection of parents are one
of the most important steps as it determines the direction of
change in the genetic improvement (to bring genetic progress)
(Akdemir et al., 2019).

In the current study, the increase in genetic gain was about
300% more when genomic information was used for selection.
Previous study (Gaynor et al., 2017) has reported about 1.21 times
more genetic gain when using genomic information in wheat
breeding program. However, in our study GS had produced
more genetic gain than reported by Gaynor et al. (2017).
This huge difference was because genetic gain reported for
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TABLE 2 | Genetic gain and genetic variance for AYT for generation F5, F6, F7, and F8 at the end of the breeding program (year 25) for phenotypic (PS) and genomic
selection (GS) of each scenario.

Genetic gain Genetic variance

GS PS GS GS

Scenario Generation mean(se) mean(se) mean(se) mean(se)

F5 3.07(0.03) 0.74(0.07) 0.68(0.03) 0.97(0.04)

F6 3.35(0.07) 0.61(0.05) 0.62(0.04) 0.96(0.05)

F7 4.11(0.07) 0.84(0.06) 0.15(0.02) 0.94(0.07)

F8 4.48(0.09) 1.00(0.18) 0.11(0.01) 0.69(0.14)

B0.1_Y0.3 F5 3.14(0.03) 0.74(0.06) 0.61(0.01) 0.96(0.03)

F6 3.40(0.04) 0.84(0.10) 0.57(0.04) 1.01(0.05)

F7 4.16(0.05) 1.04(0.10) 0.17(0.01) 0.99(0.05)

F8 4.46(0.09) 1.05(0.08) 0.08(0.01) 0.77(0.16)

B0.1_Y0.5 F5 3.15(0.03) 0.87(0.06) 0.68(0.01) 0.98(0.06)

F6 3.41(0.08) 0.96(0.09) 0.51(0.02) 0.95(0.05)

F7 4.15(0.05) 1.15(0.09) 0.16(0.01) 0.96(0.10)

F8 4.50(0.09) 1.28(0.10) 0.12(0.02) 0.82(0.17)

B0.1_Y0.7 F5 3.15(0.03) 0.89(0.07) 0.61(0.01) 0.93(0.02)

F6 3.47(0.05) 0.88(0.05) 0.60(0.03) 1.01(0.04)

F7 4.18(0.04) 1.10(0.10) 0.18(0.02) 0.88(0.08)

F8 4.46(0.08) 1.30(0.12) 0.12(0.02) 0.75(0.14)

B0.1_Y0.9 F5 3.14(0.04) 1.03(0.08) 0.67(0.01) 0.93(0.04)

F6 3.36(0.04) 1.08(0.07) 0.55(0.02) 0.97(0.03)

F7 4.24(0.04) 1.44(0.10) 0.19(0.01) 0.99(0.07)

F8 4.52(0.07) 1.19(0.15) 0.11(0.01) 0.56(0.09)

The five levels of correlation (Y0.1, Y0.3, Y0.5, Y0.7, and Y0.9) between PYT and AYT, and correlation of BVP with PYT and AYT (B0.1).

phenotypic selection in the current study was very much lower
than what was reported by Gaynor et al. (2017) while for GS
we did not observe huge difference in reported genetic gain
with their studies.

Rate of genetic gain is used to compare an outcome from
different breeding schemes that will help in designing a new
breeding program (Rutkoski, 2019). Our study showed that
the increase in genetic gain that came by adding genomic
information at the preliminary selection stage could help a
wheat breeder for practical decision making to switch to GS
breeding program. This study can provide a guideline on how to
apply genomic selection starting from the preliminary yield trial.
Preliminary yield trial (PYT) is un-replicated and limited amount
of seed is available for each selection candidate. However, this
selection step strongly influences the subsequent advanced yield
trial (AYT), which are commonly tested in multiple locations
(Poland et al., 2018). In addition, GS at PYT allows for early
elite parental selection for the next breeding cycles. In the current
study, we assumed no genotype by environmental interactions
in the advanced yield trial and this might overestimate the
advantage of GS over PS.

Additive Genetic Variance
Selection causes changes in variances, allele frequencies, and
LD relationships between markers and QTL (Bulmer, 1971;
Muir, 2007). In our simulation study, the change in genetic
varaince over time had a different trend for genomic selection
and phenotypic selection. The loss in genetic variance over

time was higher for genomic selection than for phenotypic
selection. A similar result where genomic selection decreases
genetic variance in wheat breeding prgram more than phenotypic
selection was reported by Gaynor et al. (2017). By the end of
the breeding program (year 25), about 66 % of genetic varaince
was available for GS when the correlation between PYT and AYT
is 0.9 while for PS it was about 90%. However, Gaynor et al.
(2017) showed that about 33% genetic varaince was available for
conventional genomic selection program. This difference could
be related to the number of years of the breeding program, the
current study is 25 years while in Gaynor et al. (2017) breeding
programs runs for 40 years with 20 years of burn-in period. In
addition, the number of lines for AYT is higher (150) in the
current study while in Gaynor et al. (2017) which was 50 lines.

The change in genetic variance within a breeding cycle at
the eary stage (year 9) and later stage (year 18) of the breeding
program clearly showed differences in genetic varaince between

TABLE 3 | The mean (se) accuracy of F6, F7, and F8 across the entire breeding
cycle for cor(PYT,AYT) = 0.9 scenario.

Accuracy

Generation PS GS

F6 0.269(< 0.001) 0.397(< 0.001)

F7 0.763(< 0.001) 0.992(< 0.001)

F8 0.755(< 0.001) 0.966(< 0.001)
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GS and PS. Genetic varaince within a breeding cycle is produced
through recombination until F5, after this stage varaince starts
to decline faster because of selection. At the early stage of the
breeding program (year 9), more genetic varaince was available
for GS, however, as selection continues variance starts to decline
for as seen in year 18. It also showed that the loss in genetic
varaince is accelerated in GS than PS.

In our study, the change in genetic variance depending on the
genetic correlation between PYT and AYT was not significantly
different from each other. Additive genetic variance plays an
important role in predicting the change in the population mean
due to selection (Bernardo, 2010). That means if there are more
variance present in a population, more genetic improvement in
a population is possible. The current simulation assumes closed
breeding program, which might exacerbate the loss of genetic
variance. In real breeding program, breeders exchange breeding
materials that will help introduce genetic variance to the on-going
breeding program. Thus introducing breeding materials from
outside can help in reducing the faster decline of genetic variance.
Furthermore, the increased rate of decline in genetic variance
when applying genomic selection calls for more measures to
ensure sufficient genetic variance in future generations of parents.
Including methods of optimum contribution selection should be
investigated as means of controlling the loss of genetic variance in
future generations of parents (Cowling et al., 2017; De Beukelaer
et al., 2017; Gorjanc et al., 2018).

This study has shown considerable advantage of genomic
selection over conventional phenotypic selection for winter
wheat-breeding programs by drastically improving genetic gain.
Generating more genetic gain implies additional revenue,
although generating additional revenues may add additional
costs such as genotyping. Accuracy in GS, dependes on the size
of the training population which are required to be genotyped
which may add extra cost. Thus, it is important to determine
the optimum training population size without compromizing the
selection accuracy. However, genotyping costs are decreasing and
this makes GS a more efficient tool to bring genetic improvement
in cereal breeding than PS (Robertsen et al., 2019).

This simulation was done following commercial wheat
breeding schemes, including the number of families and single
plants meaning the result easily can be translated into practical
wheat-breeding programs. Genomic selection has increased

response to selection with better estimates of breeding values and
more accurate selection of future parents. We believe this study
will help in desicion making process for a wheat breeder to switch
to genomic selection. In addition to implementing genomic
selection to increase genetic gain, accelerating the breeding cycle
through speed breeding is also a promising approach to increase
genetic gain that needs further investigations.

CONCLUSION

The current study shows that incorporation genomic information
in conventional wheat-breeding program can increase genetic
gain. Besides, using genomic selection for a conventional wheat-
breeding program requires a minimal change in an already
existing breeding program. The increase in genetic gain in GS
was mainly due to an increase in selection accuracy. Individuals
selected based on their GEBVs were stored to be used as a parents.
Genetic variance was reduced higher in GS than in PS, indicating
it is necessary to incorporated optimum contribution selection in
order to conserve genetic variation in the breeding program.
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