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Genomic prediction using multi-allelic haplotype models improved the prediction
accuracy for all seven human phenotypes, the normality transformed high density
lipoproteins, low density lipoproteins, total cholesterol, triglycerides, weight, and the
original height and body mass index without normality transformation. Eight SNP sets
with 40,941-380,705 SNPs were evaluated. The increase in prediction accuracy due
to haplotypes was 1.86-8.12%. Haplotypes using fixed chromosome distances had
the best prediction accuracy for four phenotypes, fixed number of SNPs for two
phenotypes, and gene-based haplotypes for high density lipoproteins and height (tied
for best). Haplotypes of coding genes were more accurate than haplotypes of all
autosome genes that included both coding and noncoding genes for triglycerides
and weight, and nearly the same as haplotypes of all autosome genes for the other
phenotypes. Haplotypes of noncoding genes (mostly lncRNAs) only improved the
prediction accuracy over the SNP models for high density lipoproteins, total cholesterol,
and height. ChIP-seq haplotypes had better prediction accuracy than gene-based
haplotypes for total cholesterol, body mass index and low density lipoproteins. The
accuracy of ChIP-seq haplotypes was most striking for low density lipoproteins, where
all four haplotype models with ChIP-seq haplotypes had similarly high prediction
accuracy over the best prediction model with gene-based haplotypes. Haplotype
epistasis was shown to be the reason for the increased accuracy due to haplotypes.
Low density lipoproteins had the largest haplotype epistasis heritability that explained
14.70% of the phenotypic variance and was 31.27% of the SNP additive heritability,
and the largest increase in prediction accuracy relative to the best SNP model (8.12%).
Relative to the SNP additive heritability of the same regions, noncoding genes had the
highest haplotype epistasis heritability, followed by coding genes and ChIP-seq for the
seven phenotypes. SNP and haplotype heritability profiles showed that the integration
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of SNP and haplotype additive values compensated the weakness of haplotypes
in estimating SNP heritabilities for four phenotypes, whereas models with haplotype
additive values fully accounted for SNP additive values for three phenotypes. These
results showed that haplotype analysis can be a method to utilize functional and
structural genomic information to improve the accuracy of genomic prediction.

Keywords: genomic prediction, haplotypes, SNP, coding gene, non-coding gene, ChIP-seq, haplotype epistasis,
human phenotypes

INTRODUCTION

Genomic selection using genome-wide single nucleotide
polymorphism (SNP) markers has been widely used in livestock
and crop species (Meuwissen et al., 2016; Crossa et al., 2017), and
genomic prediction has been applied to the prediction of human
phenotypes (Maier et al., 2018; Lello et al., 2019). However, most
prediction models were SNP models fitting each SNP as a locus in
the mixed model without requiring information of SNP locations
or functions. In contrast, haplotype analysis has the potential
to use structural and function genomic information for more
accurate genomic prediction (Da, 2015). A number of studies on
haplotype genomic prediction have been reported (Calus et al.,
2008; Villumsen et al., 2009; Boichard et al., 2012; Cuyabano
et al., 2015; Hess et al., 2017; Jónás et al., 2017; Jiang et al., 2018;
Jan et al., 2019; Sallam et al., 2020; Won et al., 2020). Methods
used in these studies to define haplotype blocks for genomic
prediction include a fixed number of SNPs per haplotype block
(Calus et al., 2008; Villumsen et al., 2009; Jiang et al., 2018; Sallam
et al., 2020; Won et al., 2020), fixed block length (Hess et al.,
2017; Won et al., 2020), or linkage disequilibrium (LD) blocks
(Boichard et al., 2012; Cuyabano et al., 2015; Jónás et al., 2017;
Jan et al., 2019; Won et al., 2020). These haplotype studies had
mixed results ranging from decreases to substantial increases in
prediction accuracy due to haplotypes relative to SNP models,
but the reasons for the successes and failures of haplotype
genomic prediction were unknown.

To understand the performance of haplotype genomic
prediction, an empirical hypothesis postulates that a haplotype
additive value is the sum of all SNP additive values and an
epistasis value within the haplotype plus a potential haplotype
loss (Da et al., 2016). Under this hypothesis, haplotype epistasis is
responsible for the successes, and haplotype loss for the failures in
haplotype genomic prediction. However, estimates of haplotype
epistasis were unavailable and the reason for haplotype loss
was unknown. A multi-allelic haplotype method for genomic
prediction and estimation (Da, 2015) and a computing pipeline
named GVCHAP implementing this method (Prakapenka et al.,
2020) are helpful for estimating haplotype epistasis heritability
and for investigating the reason of haplotype loss. The multi-
allelic method is derived from the quantitative genetics theory
of genetic partition of genotypic values. An advantage of
this method is the readily available quantitative genetics
interpretations of SNP additive and dominance effects, values
and variances; haplotype additive and dominance effects, values
and variances; and SNP and haplotype additive and dominance
heritabilities. The SNP and haplotype heritability estimates can

be used to assess the contribution of haplotype epistasis to
the phenotypic variance, and to assess the relationship between
haplotype epistasis heritability and the increase in prediction
accuracy due to haplotypes. The multi-allelic haplotype method
has a unique feature for estimating the heritability of each SNP
and each haplotype block. The comparison of the profiles of
such SNP and haplotype heritability estimates may provide an
understanding about the nature of haplotype loss. The GVCHAP
computing pipeline has a main program calculating genomic
best linear unbiased prediction (GBLUP) of genetic values and
genomic restricted maximum likelihood (GREML) estimation of
variance components and heritabilities with a computing strategy
that greatly reduces the computing time for validation studies
and multiple traits, and has a set of utility programs from data
preparation to summary of results. This computing pipeline
provided necessary and efficient computing tools to investigate
numerous haplotype prediction models.

Applying these methods and tools to the Framingham Heart
Study data, we aimed at achieving the following objectives
for seven human phenotypes. The first objective was to find
the best haplotype prediction model for each phenotype by
evaluating numerous haplotype models based on structural and
functional genomic information. Structural genomic information
included fixed chromosome distance and fixed number of SNPs
per haplotype block. Functional genomic information included
coding genes, noncoding genes, autosome genes that included
both coding and noncoding genes, and ChIP-seq data. A major
question to answer was whether functional genomic information
was relevant to haplotype genomic prediction and whether
functional genomic information alone had the best prediction
model for any phenotype. For each type of structural and
functional genomic information and for each haplotype block
size, four haplotype models were evaluated: haplotype additive
values only, haplotype and SNP additive values, haplotype
additive and SNP dominance values, and haplotype and SNP
additive values and SNP dominance values. The observed
prediction accuracies of these haplotype models from ten-fold
cross validations were compared with those of the best SNP
model either with SNP additive values only or with SNP additive
and dominance values. The second objective was to assess the
contribution of haplotype epistasis to the phenotypic variance,
and the relationship between haplotype epistasis heritability
and the increase in prediction accuracy due to haplotypes for
the best haplotype prediction models. The third objective was
to evaluate the performance of different types of functional
genomic information for haplotype genomic prediction. Finally,
we evaluated the effects of different SNP densities on the accuracy
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of haplotype genomic prediction to provide indications whether
medium SNP densities such as those used in animal genomic
prediction might be suitable for haplotype genomic prediction,
and to assess the performance of various SNP densities for gene-
based haplotype analysis.

MATERIALS AND METHODS

SNP Data
The Framingham Heart Study (FHS) data (2019 version) had
7565 individuals with genotypes of the 500K SNP panel that had
488,146 autosome SNPs. The SNP coordinates were converted
to those of GRCh38.p13 using human dbSNP1, and 486,356
SNPs had known chromosome positions on GRCh38.p13. From
these 486,356 autosome SNPs, two high density sets of SNP data
were analyzed for prediction accuracy of haplotype models: the
380K set of 380,705 SNP markers with minor allele frequencies
(MAF) of 0.05, and the 320K set of 327,430 SNPs with MAF
of 0.10. Most results in this article were derived from these two
high-density SNP sets. The 320K SNP set was designed to serve
two purposes, to reduce the number of rare haplotypes through
the removal of more SNPs with low frequencies than in the
380K set, and to determine the effect of reduced SNP density
on haplotype prediction accuracy. To investigate the minimal
SNP density required for haplotype genomic prediction, three
medium density SNP sets of 42K, 63K and 76K were selected from
the 380K and three medium density SNP sets of 41K, 65K and
82K were selected from 320K SNP sets (Supplementary Table 1).

Phenotype Data
The seven phenotypes analyzed in this study were high
density lipoproteins (HDL), low density lipoproteins (LDL),
total cholesterol (TC), triglycerides (TG), height (HT), weight
(WT), and body mass index (BMI), with 3657-7564 observations
(Supplementary Table 2). BMI was calculated using the formula
BMI = Weight/(Height/100)2 (Cacciari et al., 2002). TG was
tested in 1967-1974 and 1996-2005 (Supplementary Figure 1),
but the tests in 1967-1974 could not be used. The mean value
of TG from the 1967-1974 tests was 310.59, 2.60 times as large
as the mean of 115.99 for the 1996-2005 tests (Supplementary
Table 3). Therefore, only the TG values tested in 1996-2005
were used in this study. HDL and TC each had one outlier: a
value of 206 that was 13.31 SD from the mean for HDL; 647
that was 17.47 SD from the mean for TC; and TG had two
outliers, 1499 and 1404 that were 16.41 and 17.37 SD from
the mean, respectively, where SD = standard deviations. These
outliers were removed in the subsequent analyses of genomic
prediction and heritability estimation using haplotype models.
Six of the seven phenotypes (except HT) had skewed distributions
and used the Box-Cox transformation (Box and Cox, 1964)
implemented by a R script to achieve normality (Ma et al., 2010)
(Supplementary Figures 2, 3). The λ value for HT was 1.03

1ftp://ftp.ensembl.org/pub/release-99/variation/vcf/homo_sapiens/
2ftp://ftp.ensembl.org/pub/release-99/gtf/homo_sapiens/Homo_sapiens.
GRCh38.99.gtf.gz

(≈ 1.00), indicating that a normality transformation of HT was
unnecessary. For the SNP models, five of the six phenotypes
after normality transformation consistently had better prediction
accuracy than using the original phenotypic values, with BMI
being the only exception with better prediction accuracy using
the original BMI values than using the normality transformed
BMI values (Supplementary Table 4). Therefore, BMI and
HT used the original phenotypic values, and the other five
phenotypes used the normality transformed phenotypic values
(Supplementary Figures 2, 3). In addition, as a comparison with
the transformed TG that benefitted most from the normality
transformation, the original TG was analyzed. To distinguish
between the original and transformed phenotypic values, original
HT, BMI and TG values will be denoted as HTO, BMIO and
TGO, while abbreviations for the other five phenotypes using
normality transformed phenotypic values remain unchanged as
HDL, LDL, TC, TG, and WT.

Construction of Haplotype Blocks
Haplotype blocks were defined using structural and functional
genomic information. Each haplotype block was treated as a
“locus” and each haplotype within the haplotype block was
treated as an “allele” in the analysis using GVCHAP (Prakapenka
et al., 2020). Haplotype blocking was based on two types of
structural genomic information and four types of functional
genomic information.

Structural genomic information included fixed chromosome
distances in kilobases (Kb) ranging from 5 to 1000 Kb per
haplotype block, fixed numbers of SNPs per haplotype block
ranging 2-500 SNPs per block initially, but only results of 2-
100 SNPs will be reported because the 300-SNP and 500-SNP
blocks had severely reduced accuracies. For the 380K SNP set
with MAF of 0.05, the method of fixed chromosome distance
had an increasing number of haplotypes per block as the block
size increases, averaging 102.06 haplotypes per block for 50 Kb
blocks to 8,703.03 per block for 1000 Kb blocks; an increasing
average number of SNPs per blocks as block size increases,
ranging from 7.92 SNPs for the 50 Kb blocks to 141.26 SNPs for
the 1000 Kb blocks; and a decreasing number of blocks ranging
from 47,701 blocks for 50 Kb blocks to 2,695 blocks for 1000
Kb blocks as block size increases (Table 1). In contrast, the
method of fixed number of SNPs per block had an increasing
chromosome distance as the number of SNPs increases, ranging
from 7.26 Kb for the 2-SNP blocks to 724.74 Kb for the 100-SNP
blocks (Table 2). Haplotype statistics for the 320K SNP set with
MF of 0.10 were described in Supplementary Tables 5, 6.

Functional genomic information included all autosome genes,
coding genes, noncoding genes, and the protein-DNA binding
sites from ChIP-Seq data to be short-named as ‘ChIP-seq
sites’ or simply ChIP-seq. Autosome genes included both
coding and noncoding genes. The autosome gene boundaries
and the classification of coding and noncoding genes were
based on the Gene Transfer Format (GTF) files2. Protein
coding genes were classified as coding genes, and all other
genes were classified as noncoding genes. Long noncoding
RNAs (lncRNAs) were the majority (84-88%) of the noncoding
genes with at least two SNPs per gene for haplotype analysis
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TABLE 1 | Statistics of haplotype blocks defined by fixed chromosome distance (380K, MAF = 0.05).

Distance (Kb) 5 20 50 100 150 200 250 300 400 500 1,000

Total number of
haplotypes

1,123,531 2,385,225 4,868,466 9,601,998 14,280,344 18,262,393 21,315,586 23,561,371 26,133,717 26,992,496 23,454,663

Number of
blocks

92,993 83,603 47,701 25,774 17,455 13,190 10,596 8,840 6,658 5,339 2,695

Average
number of
haplotypes per
block

12.08 28.53 102.06 372.55 818.12 1,384.56 2,011.66 2,665.31 3,925.16 5,055.72 8,703.03

Minimum SNPs
per block

2 2 2 2 2 2 2 2 2 2 2

Maximum
SNPs per block

16 29 50 75 92 119 148 164 217 260 451

Average
number of
SNPs per block

2.71 4.25 7.92 14.75 21.8 28.86 35.93 43.06 57.18 71.3 141.26

Minimum
distance in
block (Kb)

5 20 50 100 150 200 250 300 400 500 1,000

Maximum
distance in
block (Kb)

5 20 50 100 150 200 250 300 400 500 1,000

Average
distance per
block (Kb)

5 20 50 100 150 200 250 300 400 500 1,000

TABLE 2 | Statistics of haplotype blocks defined by fixed number of SNPs (380K, MAF = 0.05).

Number of SNPs per block 2 5 7 9 12 22 30 50 100

Total number of haplotypes 1,472,716 2,619,431 3,667,005 4,812,953 6,676,664 13,241,867 18,101,920 26,127,332 28,784,087

Number of blocks 190,357 76,151 54,395 42,312 31,734 17,317 12,699 7,624 3,817

Average number of haplotypes/block 7.74 34.4 67.41 113.75 210.39 764.67 1,425.46 3,426.98 7,541.02

Minimum SNPs per block 2 5 7 9 12 22 30 50 100

Maximum SNPs per block 2 5 7 9 12 22 30 50 100

Average number of SNPs per block 2 5 7 9 12 22 30 50 100

Minimum distance in block (Kb) 0.01 0.13 0.55 0.55 2.76 10.99 22.08 50.41 165.19

Maximum distance in block (Kb) 4,548.44 11,019.97 23,467.29 29,732.9 29,754.01 29,774.74 25,970.14 29,898.03 30,138.48

Average distance per block (Kb) 7.26 28.83 43.9 58.8 80.71 153.27 210.87 358.19 724.74

(Supplementary Table 7). The ChIP-seq data were downloaded
from ReMap20203. Haplotypes phasing and imputation used
Beagle 5.1 (Browning et al., 2018) with default parameters for
forty phasing runs per chromosome. The within-population
individuals were used as the reference population for any
individual being imputed, i.e., the imputation of any individual
used the remaining individuals as the reference population.

Haplotypes using functional genomic information were
derived from the 380K and 320K SNP sets. For the 380K
SNP set with MAF of 0.05, the number of haplotype blocks
was 18,080 for all autosome genes, 12,676 for coding genes,
and 10,111 for noncoding genes. The average size of the gene
blocks was 95.34 Kb for coding genes, 49.82 Kb for noncoding
genes, and 90.13 Kb for all coding and noncoding genes of
the autosomes. ChIP-seq had 21,474 blocks with average block
size of 75.51 Kb (Table 3). A 2-Kb distance was added to

3http://remap.univ-amu.fr/download_page

either end of each gene or ChIP-seq site. Based on experience
that block sizes exceeding 200 Kb mostly had low prediction
accuracy for the 380K data, large genes were split into 150 Kb
blocks. The coverage of autosomes by functional haplotype blocks
with the 4-Kb extension per block was 50.78% by all autosome
genes, 37.66% by coding genes, 15.70% by noncoding genes,
and 78.19% ChIP-seq haplotype blocks. For the 320K SNP set
with MAF of 0.10, the number of blocks was slightly fewer but
average block size was slightly larger than those of the 380K
set (Table 3).

Mixed Model for GBLUP and GREML
Genomic best linear unbiased prediction (GBLUP) of genetic
values and genomic restricted maximum likelihood (GREML)
estimation of variance components and heritabilities were
calculated using the GVCHAP program (Prakapenka et al.,
2020) that implements a multi-allelic mixed model treating each
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TABLE 3 | Statistics of haplotype blocks defined by gene boundaries and ChIP-seq sites.

380K, MAF = 0.05 320K, MAF = 0.10

Autosome
genes

Coding
genes

Non-coding
genes

ChIP-seq Autosome
genes

Coding
genes

Non-coding
genes

ChIP-seq

Total number of haplotypes 7,419,624 5,571,918 1,946,912 13,368,940 6,350,392 4,776,514 1,655,180 11,496,010

Number of blocks 18,080 12,676 10,111 21,474 17,238 12,168 9,262 20,967

Average number of haplotypes
per block

410.38 439.56 192.55 622.56 368.39 392.55 178.71 548.29

Minimum SNPs per block 2 2 2 2 2 2 2 2

Maximum SNPs per block 87 87 64 104 82 82 55 87

Average number of SNPs per
block

13.49 13.95 8.56 17.63 12.11 12.44 7.98 15.52

Minimum distance in block (Kb) 1.14 1.14 1.78 4.04 1.14 1.14 1.78 4.04

Maximum distance in block (Kb) 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0

Average distance per block (Kb) 90.13 95.34 49.82 116.85 92.65 97.2 52.79 118.15

Autosome coverage (Mb) 1557.23 1158.16 463.33 2423.24 1528.13 1134.03 451.90 2393.44

% of autosomes 48.53 36.08 14.44 75.51 47.62 35.34 14.08 74.59

4-Kb extended coverage (Mb) 1629.55 1208.49 503.77 2509.14 1597.08 1182.70 488.95 2477.31

% of autosomes by 4-Kb
extended coverage

50.78 37.66 15.70 78.19 49.77 36.86 15.24 77.20

haplotype block as a “locus” and each haplotype within the
haplotype block as an “allele.” The mixed model starts with
the quantitative genetics model resulting from genetic partition
for SNPs (Da et al., 2014) and for multi-allelic loci (haplotype
blocks) (Da, 2015), and implements genomic prediction and
variance component estimation using a reparameterized and
equivalent model resulting from the use of genomic relationship
matrices of SNPs and haplotypes. To avoid repeating a large
quantity of notations involving the relationship between the
original model and the reparameterized and equivalent model
(Da, 2019; Prakapenka et al., 2020), the following description
only summarizes the starting quantitative genetics model with
SNPs and haplotypes, and the variance-covariance matrices
using genomic relationship matrices of the reparametrized and
equivalent model. The mixed model with SNP and haplotype
effects is:

y = Xb+ Z(Wααo +Wδδo +Wαhαho)+ e

= Xb+ Z(a + d + ah)+ e (1)

where Z = N × n incidence matrix allocating phenotypic
observations to each individual = identity matrix for one
observation per individual (N = n), N = number of observations,
n = number of individuals, αo = m × 1 column vector of
SNP additive effects, m = number of SNPs, Wα = n × m
model matrix of αo, δo = m × 1 column vector of column
vector for dominance effects of SNP genotypes, Wδ = n × m
model matrix of δo, αh = nαh × 1 column vector of haplotype
additive effects, nαh = number of haplotype additive effects,
Wαh = n× nαh model matrix of αh, b = c × 1 column vector
of fixed effects, c = number of fixed effects, X = N× c model
matrix of b, a =Wααo = n × 1 SNP genomic additive
values, d =Wδδo = n × 1 SNP genomic dominance values,
ah =Wαhαoh = n × 1 haplotype genomic additive values,

and e = N × 1 column vector of random residuals. Fixed
effects included sex and cholesterol treatment as classification
variables, and age, glucose and BMIO as covariables for HDL,
TC, LDL and TG; and sex as classification variable and age as
covariable for HTO, WT and BMIO. The SNP coding in Wα

and Wδ is the same as the quantitative genetics coding for
SNPs (Da et al., 2014), and the haplotype coding in Wαh is
the same as the multi-allelic coding based on genetic partition
(Da, 2015). The first moment is E(y) = Xb, and the second
moments resulting from the reparameterized and equivalent
model are:

Var(a) = σ2
αAg = σ2

αWαW′α/kα = Ga (2)

Var(d) = σ2
δDg = σ2

δWδW′δ/kδ=Gd (3)

Var(ah) = σ2
αhAgh = σ2

αhWαhW′αh/kαh = Gah (4)

Var(y) = Z(σ2
αAg + σ2

δDg + σ2
αhAgh)Z′ + σ2

e IN

= Z(Ga + Gd + Gah)Z′ + σ2
e IN = V (5)

where σ2
α, σ2

δ and σ2
αh are the SNP additive variance,

SNP dominance variance and haplotype additive variance,
respectively, under the reparameterized and equivalent model;
Ag = WαW′α/kα = SNP genomic additive relationship matrix;
Dg = WδW′δ/kδ = SNP genomic dominance relationship
matrix; Agh = WαhW′

αh/kαh = haplotype genomic additive
relationship matrix; kα = tr(WαW′α)/n; kδ = tr(WδW′δ)/n; kαh =
tr(WαhW′

αh)/n; σ2
e = residual variance; and V = phenotypic

variance-covariance matrix. The GVCHAP program
(Prakapenka et al., 2020) first calculates the variance components
of σ2

α, σ2
δ and σ2

αh in Eqs. 2–5, and calculates GBLUP and
associated reliability estimates as well as the heritability
of each SNP and each haplotype block at the end of the
GREML iterations.
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Validation Studies for Observed
Prediction Accuracy of Haplotype
Models
A 10-fold validation study was used to evaluate the prediction
accuracy for each model. Individuals with phenotypic
observations was randomly divided into 10 validation
populations. The first nine validation populations had equal
sample size and the tenth population generally had fewer
observation than the first nine population. In each validation
population, phenotypes were omitted when calculating GBLUP.
For each method of haplotype blocking and each validation
population, six prediction models were evaluated:

Model 1: SNP additive, dominance and haplotype additive values;
Model 2: SNP and haplotype additive values;
Model 3: SNP dominance values and haplotype additive values;
Model 4: haplotype additive values only;
Model 5: SNP additive and dominance values;
Model 6: SNP additive values only.

Models 1–4 contain haplotype additive values, and Models
5–6 are SNP models. The comparison between Models 1–4 and
Models 5–6 for prediction accuracy provides an estimate whether
haplotypes improve the prediction accuracy. Multiple measures
of expected and observed prediction accuracy exist (Legarra et al.,
2008; Da et al., 2014; Tan et al., 2017; Da, 2019; Prakapenka
et al., 2020), and each type of genetic value in Models 1–6 has
its own expected and observed prediction accuracies (Prakapenka
et al., 2020). For simplicity, prediction accuracy of any of the six
prediction models in this article refers to the observed prediction
accuracy calculated as the correlation between the phenotypic
values and the GBLUP of the total genetic values as summation
of genetic values in the prediction model in the validation
individuals averaged over the ten validation populations for each
phenotype and each prediction model.

Estimation of Haplotype Epistasis
Heritability
Haplotype epistasis heritability can be estimated using two
methods, variance-base method (VBM) and heritability-based
method (HBM). However, the VBM method may have numerical
problems (Supplementary Text 1). Under the HBM method,
haplotype epistasis heritability is defined as the difference
between the genotypic heritability of the haplotype model and
the genotypic heritability of the SNP model, and is a measure
to study the reason for the improvement in prediction accuracy
of haplotype models. The HBM method had an upward bias
compared to the VBM method that could have the problem
of numerical instability (Supplementary Text 1). However,
SNP effects and heritability estimates used genomic additive
relationships that could have accounted for some epistasis effects
and resulted in underestimates of haplotype epistasis heritability.
Such underestimates and the bias in the estimates by the HBM
method should cancel each other to some degree. The estimate
of haplotype epistasis heritability can be represented by one
formula, i.e.,

ĥ2
E= ĥ2

g − ĥ2
s (6)

where ĥ2
E = haplotype epistasis heritability, ĥ2

g = total heritability
from a prediction model with haplotypes (Models 1–4), and
ĥ2

s = total SNP heritability from the corresponding SNP model
(Model 5 or 6). A haplotype or SNP heritability is available
from more than one model, and the contents of ĥ2

g and ĥ2
s from

different models generally are different. Consequently, the correct
use of Eq. 6 needs to consider the specific prediction model
from which haplotype and SNP heritabilities were estimated. Let
ĥ2

α1 = SNP additive heritability estimate from Model 6 with SNP
additive values only, ĥ2

α2 = SNP additive heritability estimate from
Model 5 with SNP additive and dominance values, ĥ2

δ = SNP
dominance heritability estimate from Model 5 with SNP additive
and dominance values, ĥ2

αs = SNP additive heritability estimate
from a haplotype model with SNP and haplotype additive values
(Model 1 or 2), ĥ2

δs = SNP dominance heritability estimate
from a haplotype model with SNP dominance values (Model 1
or 3), and ĥ2

αh = haplotype additive heritability estimate from
any model with haplotypes (Models 1–4). Depending on the
prediction model, ĥ2

g and ĥ2
s in Eq. 6 each has one of the

following expressions:

ĥ2
g = ĥ2

αh for Model 4 (7)

ĥ2
g = ĥ2

αs + ĥ2
αh for Model 2 (8)

ĥ2
g = ĥ2

αs + ĥ2
δs + ĥ2

αh for Model 1 (9)

ĥ2
g = ĥ2

δs + ĥ2
αh for Model 3 (10)

ĥ2
s = ĥ2

α1 for Model 6 (11)

ĥ2
s = ĥ2

α2 + ĥ2
δ for Model 5 (12)

Then, estimate of haplotype epistasis heritability of Eq. 6 for a
specific haplotype prediction model can be expressed as one of
the following formulae:

ĥ2
E = ĥ2

g − ĥ2
s = ĥ2

αh − ĥ2
α1 for Model 4

(13)

ĥ2
E = ĥ2

g − ĥ2
s = (ĥ2

αh + ĥ2
αs)− ĥ2

α1 for Model 2
(14)

ĥ2
E = ĥ2

g − ĥ2
s = (ĥ2

αh + ĥ2
αs + ĥ2

δs)− (ĥ2
α2+ ĥ2

δ) for Model 1
(15)

ĥ2
E = ĥ2

g − ĥ2
s = (ĥ2

αh + ĥ2
δs)− (ĥ2

α2 + ĥ2
δ) for Model 3

(16)

The heritability estimates on the right-hand sides of Eqs. 7–16 are
available from the GREML output files of GVCHAP (Prakapenka
et al., 2020). Relative haplotype epistasis heritability is defined
as the ratio of the haplotype epistasis heritability to the SNP
additive heritability, as a measure of the size of haplotype epistasis
heritability relative to SNP additive heritability. Depending
on the prediction model with haplotypes, estimated relative
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haplotype epistasis heritability is:

ĥ2
Er = ĥ2

E/ĥ2
α1 for Models 2 and 4 (17)

ĥ2
Er = ĥ2

E/ĥ2
α2 for Models 1 and 3 (18)

The method of estimating haplotype heritability described above
is based on the theoretical result of invariance property of GBLUP
and GREML to repeated SNPs (Da et al., 2016; Tan et al.,
2017) and the hypothesized haplotype model that a haplotype
additive value is the summation of the SNP additive values
and a haplotype epistasis value within the haplotype, plus a
potential haplotype loss of additive values (Da et al., 2016),
where haplotype epistasis effects between SNPs could include
pairwise and high-order epistasis effects within the haplotype.
The epistasis values in each haplotype block could only be
additive× additive (A× A) epistasis values involving interaction
between additive SNP values and could not involve dominance
values because haplotype dominance values were not included
in any of the prediction models. Based on this hypothesized
haplotype model, haplotype additive values can be expressed as:

ah = a+ εh + τh ≈ a+ εh (19)

where ah = n × 1 haplotype genomic additive values, a = n × 1
SNP genomic additive values, εh = n × 1 haplotype epistasis
values, and τh = n × 1 haplotype loss of additive values based on
empirical evidence that haplotype-only model was less accurate
than SNP model in some cases. According to the invariance
property that GBLUP and GREML are unaffected by duplicate
SNPs (Da et al., 2016; Tan et al., 2017), the combination of SNP
additive values (as) and haplotype additive values approximately
predicts the summation of SNP additive values and haplotype
epistasis effects as defined by Eq. 19, i.e.,

as + ah ≈ a+ εh (20)

Eqs. 19 and 20 are the foundation for estimating haplotype
epistasis heritability using Eqs. 13–16. With haplotype loss,
estimates of haplotype epistasis heritability using Eqs. 13–16
underestimate the true epistasis heritability. Haplotype loss likely
is due to the less accurate estimates of SNP effects by the
haplotype model than by a SNP model, and likely is the reason
why the combination of SNP and haplotype values in the
prediction model can increase the prediction accuracy, as shown
in this study. Without haplotype loss, haplotype additive values
accurately estimate SNP additive values and the inclusion of
SNP additive values in the prediction model is not helpful, as
shown in this study.

Profiles of Heritability Estimates of SNPs
and Haplotype Blocks
A heritability profile in this research is a Manhattan plot of
heritability estimates of SNPs or haplotype blocks using the
SNPEVG2 program (Wang et al., 2012). The heritability size of
each SNP is related to the number of SNPs in the model, the larger
the number of SNPs, the smaller each SNP heritability (Da et al.,
2016; Tan et al., 2017). Therefore, the heritability of a SNP is not
comparable with the heritability of a haplotype block. However,

each heritability profile of SNPs or haplotypes provides a global
view of relative genetic contributions of different genes and
chromosome locations to the phenotype, and such global views of
relative genetics contributions are comparable between SNPs and
haplotypes. The differences between heritability profiles of SNP
and haplotypes provide indications about the likely reason why a
haplotype model did or did not improve the prediction accuracy.

RESULTS AND DISCUSSION

The seven phenotypes including the original and normality
transformed triglycerides all had improved prediction accuracy
due to haplotypes in the prediction model. The increase in
prediction accuracy due to haplotypes for the best haplotype
models relative to the prediction accuracy of the best SNP model
(additive only, or additive and dominance) was in the range of
1.86-8.12% (Figure 1A and Table 4). Figure 1A is a summary
of prediction accuracy for the best haplotype models, whereas
Table 4 has detailed information about accuracy increases of
the best haplotype models. The eight different SNP densities
with 40,941-380,705 SNPs (Supplementary Table 1) had similar
prediction accuracies (Figure 1B). Figure 2 shows the entire
range of haplotype blocks with the best prediction models,
including 5-1000 Kb blocks, and 2-SNP to 100-SNP blocks
with comparison to two SNP models and four gene-based
haplotype models. The haplotype blocking method using gene
boundaries had the best prediction model for one phenotype
(HDL), fixed chromosome distances had the best prediction
model for four phenotypes, and fixed number of SNPs had the
best prediction model for three phenotypes including the original
triglycerides (Table 4). The summary below focuses on the results
of the best prediction models using the 380K SNP set with
MAF of 0.05 and 320K SNP set with MAF of 0.10, and the
complete results for each haplotype blocking method are shown
in Supplementary Figures 4–7.

Prediction Accuracy of Haplotype
Models for Cholesterol Phenotypes
For the three cholesterol phenotypes, HDL had the highest
prediction accuracy (0.298), followed by TC (0.295) and LDL
(0.253). However, LDL had the largest accuracy increase due to
haplotypes, 8.12% accuracy increase over the best SNP model,
followed by TC (3.15%) and HDL (2.76%). The best prediction
model was Model 1 with SNP additive and dominance values
and haplotype additive values using autosome gene boundaries
as haplotype blocks for HDL, Model 4 with haplotype additive
values using 12-SNP haplotype blocks for LDL, and Model 3
with SNP dominance values and haplotype additive values using
50-Kb haplotype blocks for TC (Figures 1A, 2A–C and Table 4).

Prediction Accuracy of Haplotype
Models for Triglycerides (TG)
Among the seven phenotypes, TGO had the most skewed
distribution (Supplementary Figure 2) and benefited most for
prediction accuracy from the normality transformation. The
prediction accuracy of the best SNP model (Model 5) for the
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FIGURE 1 | Prediction accuracy of haplotype prediction models. (A) Average prediction accuracy of the best haplotype model relative to the best SNP model for
each phenotype from ten-fold validations. (B) Average prediction accuracy of the best haplotype model from ten-fold validations for each SNP density. The error bar
is one standard deviation above and below the average prediction accuracy, where standard deviation was calculated from ten-fold validations.

normality transformed TG was 0.213 compared to 0.152 for
the best SNP model (Model 6) for TGO, a 40.13% increase in
prediction accuracy of TG over that of TGO. Haplotype additive
model using 50-Kb blocks further increased the prediction
accuracy of TG by 3.29% over the haplotype additive model
using 3-SNP blocks for TGO. Compared to the SNP additive
model for TGO, the combination of normality transformation
and haplotype additive values achieved 44.47% increase in
prediction accuracy over the best SNP prediction model for TGO
(Figures 1A, 2D and Table 4).

Prediction Accuracy of Haplotype
Models for Body Phenotypes
The prediction accuracy was 0.422 for HTO, 0.329 for WT and
BMIO (Figures 1A, 2E–G and Table 4). HTO had the highest
prediction accuracy (0.422) and the highest total heritability
(≈ 100%, Table 5) among the seven phenotypes. Increase in
prediction accuracy due to haplotypes relative to the best SNP

prediction model was 2.18% for HTO, 1.86% for WT, and 2.17%
for BMIO. The best prediction model was the full model with
SNP additive and dominance values and haplotype additive
values (Model 1) for HTO and WT, and Model 2 with SNP and
haplotype additive values for BMIO, but the best method for
haplotype blocking was 200-Kb blocks for HTO, 12-SNP blocks
for WT and 100-Kb blocks for BMIO (Table 5). Compared to
the three cholesterol phenotypes (HDL, LDL, TC) and TG, the
three body phenotypes had higher prediction accuracy but lower
percentage accuracy increase due to haplotypes because of the
higher prediction accuracy of the SNP models.

SNP and Haplotype Heritability
Estimates
From the 380K SNP set with MAF of 0.05, additive heritability
estimate from the SNP additive model (Model 6) was in the range
of 0.312 for TG to 0.773 for HTO, and was 0.260 for TG and
0.739 for HTO from the SNP model with additive and dominance
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TABLE 4 | Accuracy increase of the best prediction models with haplotype additive values relative to the best single-SNP model.

Trait HDL LDL TC TGO TG HTO WT BMIO

SNP prediction accuracy (MAF = 0.05)

Additive only (A),
mean ± SD

0.287 ± 0.024 0.232 ± 0.045 0.285 ± 0.041 0.152 ± 0.074 0.210 ± 0.048 0.411 ± 0.024 0.322 ± 0.040 0.322 ± 0.017

Additive and
dominance (A + D),
mean ± SD

0.290 ± 0.022 0.234 ± 0.045 0.286 ± 0.043 0.150 ± 0.076 0.213 ± 0.053 0.413 ± 0.023 0.323 ± 0.040 0.322 ± 0.017

% Accuracy increase of
(A + D) over (A)

1.05 0.86 0.35 -1.32 1.43 0.49 0.31 0.00

SNP prediction accuracy (MAF = 0.10)

Additive only (A),
mean ± SD

0.284 ± 0.024 0.232 ± 0.045 0.283 ± 0.040 0.152 ± 0.075 0.209 ± 0.048 0.408 ± 0.024 0.318 ± 0.040 0.320 ± 0.017

Additive and
dominance (A + D),
mean ± SD

0.287 ± 0.022 0.233 ± 0.045 0.285 ± 0.042 0.151 ± 0.077 0.213 ± 0.053 0.411 ± 0.023 0.321 ± 0.039 0.320 ± 0.017

Haplotype prediction accuracy

MAF 0.05 0.05 0.05 0.10 0.10 0.05 0.05 0.05

Best prediction model A + D + H H D + H H H A + D + H A + D + H A + H

Best haplotype
blocking method

Genes 12 SNPs 50 Kb 3 SNPs 50 Kb 200 Kb 12 SNPs 100 Kb

Prediction accuracy
(mean ± SD)

0.298 ± 0.024 0.253 ± 0.050 0.295 ± 0.047 0.156 ± 0.073 0.220 ± 0.045 0.422 ± 0.026 0.329 ± 0.041 0.329 ± 0.017

% Accuracy increase
over best SNP model

2.76 8.12 3.15 3.31 3.29 2.18 1.86 2.17

Accuracy increase is the percentage increase in observed prediction accuracy of the best haplotype model relative to the accuracy of the best SNP model (in bold face).
SD, standard deviation; A, SNP additive values; D, SNP dominance values; H, haplotype additive values; MAF, minor allele frequency.

values (Model 5), showing that the inclusion of dominance values
in the prediction model decreased the additive heritability for
all phenotypes (Table 5). Dominance heritability was in the
range of 0.044 for BMIO to 0.198 for HTO. However, dominance
values resulted in no increase in prediction accuracy for TG,
TC and BMIO, and less than 1% increases for LDL, HTO and
WT. HDL had the largest accuracy increase of 1.05% (0.290
versus 0.287) due to dominance values over the SNP additive
model (Table 4). Haplotype models had higher total heritability
as the sum of heritability estimates of all genetic values in the
prediction model (Eqs. 7–10) than those of SNP models (Eqs. 11
and 12) for all phenotypes. The sizes of SNP additive heritability,
haplotype heritability and total heritability were in concordance
with the prediction accuracy except LDL (Figures 3A–C). The
lack of concordance between heritability and accuracy for LDL
was unknown but could be related to the small sample size of
LDL, noting that TG also had similarly small sample size that
was about half of the sample sizes of the other five phenotypes.
Across the seven phenotypes, SNP additive heritability, haplotype
heritability and total heritability were significantly correlated
with the prediction accuracy (p = 0.010 to 0.033, Figures 3A–C).
The fact that haplotype models had higher total heritability than
SNP models was due to the presence of haplotype epistasis values
hypothesized by Eqs. 19 and 20 and shown by the analysis below.

Haplotype Epistasis Heritability and
Haplotype Prediction Accuracy
Estimates of haplotype epistasis heritability using Eqs. 13–16
and estimates of relative haplotype epistasis heritability using

Eqs. 17 and 18 indicated that epistasis effects within haplotype
blocks was the reason for the increased prediction accuracy from
haplotypes. Haplotype epistasis heritability was in the range of
0.039-0.147, and relative haplotype epistasis heritability was in
the range of 8.65-31.27% of the SNP additive heritability. LDL
had the largest haplotype epistasis heritability of 0.147 and the
largest relative epistasis heritability of 31.27% (Table 5), i.e., the
haplotype epistasis heritability explained 14.7% of the phenotypic
variance and was 31.27% of the SNP additive heritability. This
largest haplotype epistasis heritability was accompanied by the
largest increase in prediction accuracy due to haplotypes (8.12%)
relative to the prediction accuracy of the best SNP model, Model
6 with SNP additive values only. The other two cholesterol
phenotypes (HDL and TC) and TG all had higher haplotype
epistasis heritability estimates and larger increases in prediction
accuracy due to haplotypes than the three body phenotypes
(HTO, WT, and BMIO). In general, haplotype epistasis heritability
estimates were in concordance with accuracy increases due to
haplotypes except BMIO, and were strongly correlated with the
prediction accuracy across the seven phenotypes (p = 0.0013,
Figure 3D), noting that this correlation was more significant than
those between prediction accuracy and SNP additive heritability,
haplotype heritability and total heritability (Figures 3A–C). Since
haplotype epistasis is the only difference between haplotype and
SNP additive values in the absence of haplotype loss (Eq. 20),
haplotype epistasis is the reason for the increased prediction
accuracy of haplotype models. Haplotype loss defined in Eq. 19
also affects the prediction accuracy of haplotype models, but
the inclusion of SNP additive values compensates the haplotype
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FIGURE 2 | Prediction accuracy of best haplotype models relative to the SNP models and gene-based haplotype models. (A) High-density lipoproteins (HDL).
(B) Low-density lipoproteins (LDL). (C) Total cholesterol (TC). (D) Triglycerides (TG). (E) Height using the original phenotypic observations (HTO). (F) Weight (WT).
(G) Body mass index using the original phenotypic observations (BMIO). A = SNP additive values. D = SNP dominance values. H = haplotype additive values.
GH = haplotype additive values of genes.
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TABLE 5 | Relationship between haplotype epistasis heritability and prediction accuracy for best haplotype prediction models.

Trait HDL LDL TC TG HTO Weight BMIO

SNP model with additive values (A), MAF = 0.05

Additive heritability (ĥ
2
s1 = ĥ2

α1) 0.409 0.469 0.409 0.312 0.773 0.493 0.424

SNP model with additive values (A), MAF = 0.10

Additive heritability (ĥ2
s1 = ĥ2

α1) 0.401 0.464 0.402 0.308 0.760 0.483 0.417

SNP model with additive and dominance values (A + D), MAF = 0.05

Additive heritability (ĥ2
α2) 0.386 0.406 0.389 0.260 0.739 0.474 0.415

Dominance heritability (ĥ2
δ ) 0.121 0.174 0.102 0.125 0.198 0.088 0.044

SNP total heritability (ĥ2
s ) 0.507 0.580 0.491 0.385 0.937 0.562 0.459

SNP model with additive and dominance values (A + D), MAF = 0.10

Additive heritability (ĥ2
α2) 0.378 0.404 0.381 0.257 0.724 0.462 0.407

Dominance heritability (ĥ2
δ ) 0.122 0.170 0.107 0.126 0.212 0.098 0.049

SNP total heritability (ĥ2
s ) 0.500 0.574 0.488 0.382 0.935 0.560 0.456

Haplotype prediction models

MAF 0.05 0.05 0.05 0.10 0.05 0.05 0.05

Best prediction model A + D + H H D + H H A + D + H A + D + H A + H

Best haplotype blocking method Genes 12 SNPs 50 Kb 50 Kb 200 Kb 12 SNPs 100 Kb

Accuracy increase (%) 2.76 8.12 3.15 3.29 2.18 1.86 2.17

SNP additive heritability (ĥ2
αs) 0.070 - - - 0.359 0.124 0.123

SNP dominance heritability (ĥ2
δs) 0.094 - 0.077 - 0.147 0.057 -

Haplotype additive heritability (ĥ2
αh) 0.394 0.616 0.452 0.353 0.494 0.422 0.366

Total heritability (ĥ2
g) 0.558 0.616 0.530 0.353 0.999 0.603 0.488

Estimates of haplotype epistasis heritability

Haplotype epistasis heritability (ĥ2
E) 0.051 0.147 0.039 0.045 0.062 0.041 0.064

Relative haplotype epistasis heritability (ĥ2
Er,%) 13.27 31.27 10.03 14.53 8.90 8.65 15.05

Accuracy increase is the percentage increase in observed prediction accuracy of the best haplotype model relative to the accuracy of the best SNP model (in bold
face). A, SNP additive values; D, SNP dominance values; H, haplotype additive values; MAF, minor allele frequency; SNP total heritability is the sum of SNP additive and
dominance heritabilities (Eq. 12). Total heritability is the sum of all heritabilities of genetic values in the model with haplotypes (Eqs. 7–10). Haplotype epistasis heritability
was calculated using Eqs. 13–16. Relative haplotype epistasis heritability was calculated using Eqs. 17 and 18.

loss as shown later. Consequently, haplotype epistasis is the only
reason for the increased prediction accuracy due to haplotypes
with or without haplotype loss.

Autosome Genes, Coding, and
Non-coding Genes, ChIP-seq
Given the presence of haplotype epistasis calculated from all
autosomes for all seven traits, we investigated whether functional
regions had stronger haplotype epistasis, including coding and
noncoding genes, and ChIP-seq sites. SNPs and haplotypes for
these functional regions were extracted from the 380K SNPs
and haplotypes with MAF of 0.05. The results showed that
the functional regions had much stronger haplotype epistasis
than observed for all autosomes. The relative haplotype epistasis
heritability calculated from all autosomes was 8.65-31.27% (above
15% only for HDL and LDL) (Figure 3D), and 15-55.07%
calculated from haplotype and SNP heritabilities in the functional
regions (Figure 3E). Other than TC, noncoding genes (mostly
lncRNAs) had the highest relative haplotype epistasis heritability,
followed by coding genes, ChIP-seq, and all autosomes. These
results showed that functional regions had strong haplotype
epistasis affecting the phenotypes, relative to the SNP effects in
those regions. The analysis of accuracy increases from haplotype

additive values relative to SNP values showed haplotypes mostly
had higher prediction accuracy than SNPs in the functional
regions (Figure 3F). Haplotypes of noncoding genes had the
largest increases in prediction accuracy relative to SNPs in
the noncoding genes for all seven phenotypes, followed by
coding genes for five phenotypes, the best prediction models
using all autosomes (380K/320K), and ChIP-seq. The results
of noncoding genes indicated that haplotype epistasis effects
likely were the typical effects of noncoding genes. Although such
relative accuracy increases provided an understanding about the
role of functional regions in prediction accuracy, such measures
had limitations, e.g., ChIP-seq had high prediction accuracy
but low relative accuracy increase for LDL. To overcome such
limitations, we further compared the prediction accuracies of
the best prediction models in functional regions with the best
prediction models using the 380K/320K SNP sets (Table 5).

The best prediction models using autosome genes and the
380K/320K still had the highest prediction accuracy for all seven
phenotypes (Figures 4A–G). The full model (Model 1) with
gene boundaries as haplotype blocks was the best prediction
model for HDL (Figure 2A and Table 4), but was only slightly
better than the full model with 22-SNP blocks (Figure 4A),
and was virtually tied with the full model using 200 Kb blocks
for HTO (Figure 4E). Coding genes performed better than all
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FIGURE 3 | Prediction accuracy had strong concordance with the size of heritability estimates. (A) SNP additive heritability and prediction accuracy. (B) SNP total
heritability and prediction accuracy. (C) Prediction accuracy and total heritability as summation of all heritabilities of the prediction model. (D) Relative haplotype
epistasis heritability and accuracy increase. (E) Relative haplotype epistasis heritability estimates in functional regions. (F) Accuracy increase due to haplotypes
relative to SNPs in functional regions. r = correlation coefficient. p = probability that the null hypothesis of correlation is true = significance level.

autosome genes for TG (Figure 4D) and WT (Figure 4F), and
almost had the same accuracy as the best prediction models for
HDL, HTO, and BMIO (Figures 4A,E,F). The accuracy of the
noncoding genes (mostly lncRNAs) was not as high as that of the
coding genes, but the combination of haplotype additive values
in noncoding genes with SNP additive and dominance values
had better accuracy than the best SNP models for HDL, TC, and
HTO (Figures 4A,C,E), indicating that noncoding genes were
relevant to the accuracy of genomic prediction. ChIP-seq had
better prediction accuracy than all autosome genes for LDL, TC,
and BMIO (Figures 4B,C,G), and had better prediction accuracy

than the best SNP models when combined with SNP additive
and dominance values for six of the seven phenotypes, with
TG being the only exception. The ChIP-seq accuracy was most
striking for LDL, where all four haplotype models using ChIP-
seq sites as the haplotype blocks had similarly higher prediction
accuracy than all autosome genes (Figure 4B), indicating that
regulatory genetic mechanism likely was important for LDL.
Among the three types of functional genomic information for
defining haplotype blocks, coding genes were most important
for the prediction accuracy of HDL, HTO and WT, whereas
ChIP-seq was most important for LDL, TC and BMIO. These

Frontiers in Genetics | www.frontiersin.org 12 November 2020 | Volume 11 | Article 588907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-588907 November 20, 2020 Time: 16:41 # 13

Liang et al. Haplotype Genomic Prediction in Humans

FIGURE 4 | Average prediction accuracy of coding genes, noncoding genes and ChIP-seq from ten-fold validations relative to the prediction accuracy of SNP
models with additive and dominance values (black line), the best autosome gene haplotype model (green line), and the overall best haplotype model (red line).
(A) High-density lipoproteins (HDL). (B) Low-density lipoproteins (LDL). (C) Total cholesterol (TC). (D) Triglycerides (TG). (E) Height using the original phenotypic
observations (HTO). The red and green lines overlap. The red line is slightly higher but is invisible. (F) Weight (WT). (G) Body mass index using the original phenotypic
observations (BMIO). A = SNP additive values. D = SNP dominance values. H = haplotype additive values. GH = haplotype additive values of genes.
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FIGURE 5 | SNP and haplotype heritability profiles of height using the original phenotypic observations (HTO) and body mass index using the original phenotypic
observations (BMIO). (A) SNP additive heritability estimates of HTO from the A + D model (Model 5). (B) SNP additive heritability estimates of HTO from the A + D + H
model (Model 1). (C) Haplotype additive heritability estimates of HTO from the haplotype-only model (Model 4). (D) Haplotype heritability estimates of HTO from the
A + D + H model (Model 1). (E) SNP additive heritability estimates of BMIO from the SNP additive model (Model 6). (F) Haplotype additive heritability estimates of
BMIO from the haplotype-only model (Model 4). (G) SNP additive heritability estimates of BMIO from the A + H model (Model 2). (H) Haplotype heritability estimates of
BMIO from the A + H model (Model 2). A = SNP additive values. D = SNP dominance values. H = haplotype additive values. GH = haplotype additive values of genes.

results showed that functional genomic information is relevant
to genomic prediction and that multi-allelic haplotype analysis
can be a method to utilize functional genomic information
or integrate functional and structural genomic information for
genomic prediction.

Comparison of SNP and Haplotype
Heritability Profiles
The similarities and differences between the SNP and haplotype
heritability profiles may provide an understanding of the reasons
for the success or failure of a haplotype prediction model.
The most striking examples of not sharing the same genes
or regions with the highest SNP and haplotype heritabilities
were HTO and BMIO. For HTO, SNP additive heritability
profile from the SNP A + D model (Model 5) (Figure 5A)
was similar to the SNP additive heritability profile from the
A + D + H (Model 1) (Figure 5B), and haplotype heritability
profile from the haplotype-only model (Figure 5C) was similar
to the haplotype heritability profile from the A + D + H (Model
1) (Figure 5D). However, the two SNP heritability profiles
(Figures 5A,B) all identified KCNV2 and ZBTB38 to have the
highest heritability estimates, but the two haplotype heritability
profiles (Figures 5C,D) did not identify these two genes to have
high haplotype heritability. For BMIO, SNP additive heritability

profile from the SNP model with additive values (Figure 5E)
was similar to the SNP additive heritability profile from the
model with SNP and haplotype additive values (Figure 5F),
and haplotype heritability profile from the haplotype-only model
(Figure 5G) was similar to the haplotype heritability profile
from the full model (Model 1) (Figure 5H). The two SNP
heritability profiles (Figures 5E,F) all identified FTO, GALNT18
and SPDYA to have the highest heritability, but the two haplotype
profiles (Figures 5G,H) did not identify these genes to have
high haplotype heritability. For WT, genes with the highest SNP
heritability (Figures 6A,B) were different from genes with the
highest heritability profiles (Figures 6C,D). The inclusion of SNP
additive values in the prediction model likely compensated the
inaccuracy of the haplotype heritability estimates for the genes
with the highest SNP heritability estimates, includingKCNV2 and
ZBTB38 for HTO, FTO, GALNT18 and SPDYA for BMIO, and at
least five genes for WT.

High density lipoproteins had the simplest patterns of the SNP
and haplotype heritability profiles among the four phenotypes
(HTO, BMIO, WT, HDL) with the A + D + H model (Model
1) as the best prediction model. The SNP heritability profiles
from the A + D model (Model 5) (Figure 6E) and that from
the A + D + H model (Model 1) (Figure 6F) were virtually
identical, and the haplotype heritability profiles from the H model
(Model 4) (Figure 6G) and that from the A + D + H model
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FIGURE 6 | SNP and haplotype heritability profiles of weight (WT) and high-density lipoproteins (HDL). (A) SNP additive heritability estimates of WT from the A + D
model (Model 5). ‘(1)’ represents RP11-469N6.1-RP11-555G19.1. (B) SNP additive heritability estimates of WT from the A + D + H model (Model 1). (C) Haplotype
additive heritability estimates of WT from the haplotype-only model (Model 4). (D) Haplotype heritability estimates of WT from the A + D + H model (Model 1).
(E) SNP additive heritability estimates of HDL from the A + D additive model (Model 5). (F) Haplotype additive heritability estimates of HDL from the haplotype-only
model (Model 4). (G) SNP additive heritability estimates of HDL from the A + D + H model (Model 1). (H) Haplotype heritability estimates of HDL from the A + D + H
model (Model 1). A = SNP additive values. D = SNP dominance values. H = haplotype additive values. GH = haplotype additive values of genes.

(Model 1) (Figure 6H) were also virtually identical. The CETP
gene had the highest SNP and haplotype additive heritability
estimates (Figures 6E–H). The LPL-AC100802.3 region had the
second highest SNP heritability estimates (Figure 6E) but did
not have the second highest haplotype heritability estimates in
the same region (Figure 6H). This difference likely contributed
to the higher prediction accuracy with SNP additive values in
the prediction model than without. Several regions including the
ATRNL1 gene had high haplotype heritability but not high SNP
heritability estimates, and such differences likely were due to the
presence of haplotype epistasis effects in those regions.

Three phenotypes had the best prediction model with
haplotype additive values without SNP additive values, TC, LDL
and TG. The best prediction model for TC was the D + H
model (Model 3). The SNP heritability profile of TC (Figure 7A)
showed that APOB, CELSR2 and BCAM genes had the highest
SNP heritability estimates, and these genes also had the highest
haplotype heritability estimates (Figure 7B). Given that the
inclusion of SNP additive values did not increase the prediction
accuracy over the D + H model without SNP additive values, the
haplotype additive values fully accounted for the SNP additive
values. LDL and TG had the haplotype-only model (Model 4)
as the best prediction model. Similar to the analysis for TC, the
SNP heritabilities of LDL (Figure 7C) were fully accounted for
by the haplotype heritabilities of LDL (Figure 7D), and the SNP

heritabilities of TG (Figure 7E) were fully accounted for by the
haplotype heritabilites of TG (Figure 7F).

The comparison of SNP and haplotype heritability profiles
showed that haplotype loss was in the form of less accurate
estimates of SNP heritabilities than those from the corresponding
SNP models, and the inclusion of SNP additive values in the
prediction model compensated the haplotype loss. The exact
reason for haplotype loss was unknown, but incorrect size
of haplotype blocks for chromosome regions with high SNP
heritabilities such as excessively large blocks (>200 Kb blocks,
Figures 2A,C–E,G) or excessively small blocks (5-Kb blocks,
Figure 2D) could be a reason for incorrect estimates of SNP
heritabilities by haplotype. Haplotype imputing errors in the
regions with high SNP heritabilities could also fail to identify
those regions with high haplotype heritabilities. For phenotypes
with haplotype-only models as the best prediction models,
haplotype loss was negligible or nonexistent, and haplotype
effects more accurately estimated the SNP effects, given that
adding SNP values decreased the prediction accuracy relative to
the haplotype-only models.

Effect of MAF on Haplotype Analysis
Haplotype analysis could be complicated by rare alleles that could
generate many rare haplotypes, particularly when the number
of SNPs is large in the haplotype block. In this case, increasing
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FIGURE 7 | SNP and haplotype heritability profiles of total cholesterol (TC), low-density lipoproteins (LDL) and triglycerides (TG). (A) SNP additive heritability
estimates of TC from the A + D model (Model 5). (B) Haplotype additive heritability estimates of TC from the model with haplotype additive values and SNP
dominance values (Model 3). (C) SNP additive heritability estimates of LDL from the SNP additive model (Model 6). (D) Haplotype heritability estimates of LDL from
the haplotype-only model (Model 4). (E) SNP additive heritability estimates of TG from the SNP additive model (Model 6). (F) Haplotype heritability estimates of TG
from the haplotype-only model (Model 4). A = SNP additive values. D = SNP dominance values. H = haplotype additive values. GH = haplotype additive values of
genes.

MAF could reduce the number of rare haplotypes. To evaluate
the effect of increased MAF, we produced two high density SNP
sets, MAF = 0.05 for the 380K and MAF = 0.10 for the 320K
(Supplementary Table 1). The 320K indeed reduced the number
of haplotypes relative to the 380K, e.g., the 320K had 61.46
SNPs (Supplementary Table 5) and the 380K had 71.30 SNPs on
average for the 500 Kb haplotype blocks (Table 1). However, only
TG (and TGO) had the best prediction model using the 320K,
and the other six phenotypes had the best prediction models
using the 380K (Table 4), indicating that reducing the number
of haplotypes by increasing MAF did not achieve improved
prediction accuracy for most phenotypes.

Effect of SNP Density on Haplotype
Analysis
To obtain indications about the minimal SNP density required
and the suitability of medium SNP densities for haplotype
genomic prediction, we evaluated eight SNP densities
ranging from 40,941 to 380,705 SNPs (Supplementary
Table 1) for prediction accuracy and heritability estimates
(Supplementary Tables 8–15).

For prediction accuracy, we identified the best haplotype
prediction model for each SNP set using a 10-fold validation
study per model per phenotype (Supplementary Table 8).
Although the different SNP densities had similar prediction
accuracies (Figure 1B), the best haplotype block size increased
as the SNP density decreased. For the example of HDL, the
best block size was 250 Kb for the 82K set, 1000 Kb for the
63K set, and 1500 Kb for the 41K and 42K sets, and the other
six phenotypes had similar trend though not as typical as HDL
(Supplementary Table 8).

Heritability estimates from the best prediction models of the
eight SNP densities were mostly similar except a few visible
differences. For HTO, the 380K SNP set had the highest estimates
of SNP additive heritability (Figure 8A), SNP dominance
heritability (Figure 8B), SNP total heritability (Figure 8C),
haplotype additive heritability (Figure 8D), and total heritability
of haplotypes and SNPs (Figure 8E). The 41K, 42K and 63K had
large variations in estimates of haplotype epistasis heritability
for LDL and the 42K and 65K had large variations for TG
(Figure 8F). The estimates of haplotype epistasis heritability by
the 76K, 82K, and 380K/320K were similar with the exception
of HTO, for which the 380K had the lowest estimate of
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FIGURE 8 | Average heritability estimate from ten-fold validations for each SNP density. (A) SNP additive heritability. (B) SNP dominance heritability. (C) SNP total
heritability. (D) Haplotype heritability. (E) Total heritability as summation of from the haplotype heritability and SNP total heritability. (F) Haplotype epistasis heritability.
The error bar is one standard deviation above and below the average heritability estimate, where standard deviation was calculated from the ten-fold validations.

haplotype epistasis heritability due to the highest estimate of
the SNP additive heritability (Figure 8F). Overall, results of
various SNP densities were surprisingly similar for prediction
accuracy (Figure 1B) and for heritability estimates except those of
haplotype epistasis heritability (Figure 8). Based on the estimates
of haplotype epistasis heritability, a SNP density of 76K or higher
should be preferred for haplotype genomic prediction given the
large variations in estimates of haplotype epistasis heritability by
the 41K, 42K, 63K, and 65K.

However, for haplotype analysis of autosome genes, the
380K SNP set with the highest density was the best choice.
As the SNP density decreased, the number of genes with at
least two SNPs for haplotype analysis decreased. For the 380K,
the number of autosome genes with at least two SNPs was
18,080, and this number decreased as the SNP density decreased
and became 8,609 for the 41K (Supplementary Table 16).

Consequently, haplotype heritability and prediction accuracy of
genes decreased as the SNP density decreased. The decrease in
haplotype heritability due to decreased SNP density (Figure 9A)
was more striking than the decrease in haplotype prediction
accuracy (Figure 9B). The highest density, the 380K, had the
highest prediction accuracy for six of the seven phenotypes with
the only exception of TG for which the 320K with 10% MAF was
slightly more accurate than the 380K.

Limitation of This Study
The results of this study have a limitation of being from one
study population of Caucasians, the Framingham Heart Study
population. It is unknown whether the results from this study
also apply to other human populations. However, the consistency
between genes with high haplotype and SNP heritabilities
and the widely reported significant effects from genome-wide

Frontiers in Genetics | www.frontiersin.org 17 November 2020 | Volume 11 | Article 588907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-588907 November 20, 2020 Time: 16:41 # 18

Liang et al. Haplotype Genomic Prediction in Humans

FIGURE 9 | Effect of SNP density on the heritability and prediction accuracy of haplotypes of autosome genes. (A) Average haplotype additive heritability of
autosome genes from ten-fold validations. (B) Average prediction accuracy of haplotype-only model of autosome genes from ten-fold validations. The error bar is
one standard deviation above and below the average haplotype heritability or average prediction accuracy, where standard deviation was calculated from the
ten-fold validations.

association studies (GWAS) is encouraging that results of this
studies may apply to some other populations. For examples,
the CETP, APOB, CELSR2, LPL, AC100802.3 genes with high
haplotype heritabilties, and ZBTB38 and FTO genes with high
SNP heritabilities all had highly significant effects on the same
phenotypes from multiple GWAS reports as documented in the
GWAS catalog4.

4https://www.ebi.ac.uk/gwas/

CONCLUSION

Results in this study showed haplotypes using structural
and functional genomic information improved the accuracy
of genomic prediction. Haplotypes using structural genomic
information covering all autosomes had the best prediction
models for most phenotypes, whereas haplotypes using autosome
gene boundaries had the best prediction model for one phenotype
and tied for the best for another phenotype even though
the gene haplotypes only covered 50.78% of the autosomes.
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Haplotypes using coding gene boundaries covering 37.66% of
the autosomes were nearly as accurate as haplotypes based
on all autosome genes for two phenotypes and was more
accurate than haplotypes based on all autosome genes for
two phenotypes. Although ChIP-seq alone did not have the
best prediction model for any trait, ChIP-seq had higher
prediction accuracy than all autosome genes for one trait, and
improved the prediction accuracy over the best SNP models
when combined with SNP additive an dominance values for
another five traits. These results showed that functionality of the
genome is relevant to genomic prediction and that multi-allelic
haplotype analysis can be a method to utilize both functional
and structural genomic information for genomic prediction.
Haplotype epistasis was the reason for the increased prediction
accuracy of haplotype models over SNP models. Noncoding
genes (mostly lncRNAs) had the highest haplotype epistasis
heritability relative to the SNP heritability in the same regions,
followed by coding genes and ChIP-seq. These results provided
new understanding of the genetic mechanism underlying the
accuracy of genomic prediction, and indicated the widespread
presence of local epistasis within haplotype blocks affecting the
seven human phenotypes, particularly low density lipoproteins
that had the largest haplotype epistasis heritability and relative
increase in prediction accuracy. The integration of SNP and
haplotype additive values in the prediction model improved the
prediction for phenotypes where haplotype additive heritability
estimates did not identify chromosome locations with high SNP
additive heritability estimates, but haplotype-only models were
the best prediction models for three phenotypes, indicating that
haplotype effects fully accounted for SNP effects or estimated SNP
effects more accurately than the SNP models.
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