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Background: There is significant heterogeneity in prostate cancer (PCa), but immune
status can reflect its prognosis. This study aimed to explore immune-related gene-based
novel subtypes and to use them to create a model predicting the risk of PCa.

Methods: We downloaded the data of 487 PCa patients from The Cancer Genome
Atlas (TCGA) database. We used immunologically relevant genes as input for consensus
clustering and applied survival analysis and principal component analysis to determine
the properties of the subtypes. We also explored differences of somatic variations,
copy number variations, TMPRSS2-ERG fusion, and androgen receptor (AR) scores
among the subtypes. Then, we examined the infiltration of different immune cells into
the tumor microenvironment in each subtype. We next performed Gene Set Enrichment
Analysis (GSEA) to illustrate the characteristics of the subtypes. Finally, based on
the subtypes, we constructed a risk predictive model and verified it in TCGA, Gene
Expression Omnibus (GEO), cBioPortal, and International Cancer Genome Consortium
(ICGC) databases.

Results: Four PCa subtypes (C1, C2, C3, and C4) were identified on immune status.
Patients with the C3 subtype had the worst prognosis, while the other three groups did
not differ significantly from each other in terms of their prognosis. Principal component
analysis clearly distinguished high-risk (C3) and low-risk (C1 + 2 + 4) patients.
Compared with the case in the low-risk subtype, the Speckle-type POZ Protein (SPOP)
had a higher mutation frequency and lower transcriptional level in the high-risk subtype.
In C3, there was also a higher frequency of copy number alterations (CNA) of Clusterin
(CLU) and lower CLU expression. In addition, C3 had a higher frequency of TMPRSS2-
ERG fusion and higher AR scores. M2 macrophages also showed significantly higher
infiltration in the high-risk subtype, while CD8+ T cells and dendritic cells had significantly
higher infiltration in the low-risk subtype. GSEA revealed that MYC, androgen, and
KRAS were relatively activated and p53 was relatively suppressed in high-risk subtype,
compared with the levels in the low-risk subtype. Finally, we trained a six-gene signature
risk predictive model, which performed well in TCGA, GEO, cBioPortal, and ICGC
databases.
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Conclusion: PCa can be divided into four subtypes based on immune-related
genes, among which the C3 subtype is associated with a poor prognosis. Based
on these subtypes, a risk predictive model was developed, which could indicate
patient prognosis.

Keywords: prostate cancer, immune, subtype, machine learning, prognosis, multi-omics

INTRODUCTION

Prostate cancer (PCa) is the most common cancer found in
men and ranks second among the causes of cancer-related
deaths in males in the United States (Crea, 2019; Siegel et al.,
2019). According to the latest global cancer data1 of the World
Health Organization (WHO), among men, the age-standardized
rate (ASR) of PCa ranks second, its 5-year prevalence is
the highest globally, and its age-standardized mortality is the
sixth highest. PCa has a high degree of heterogeneity, which
leads to different prognoses in patients after treatment (Chang
et al., 2014; Peng et al., 2018). Clinicians mainly employ
the pathological preoperative prostate-specific antigen (PSA),
Gleason score, and clinical staging to estimate the prognosis of
PCa patients (Eminaga et al., 2018; Pernar et al., 2018). However,
these clinicopathological variables do not have satisfactory
specificity and sensitivity in estimating the prognosis of such
patients (Peng et al., 2018). Therefore, there is a need to
explore the subtypes of PCa and develop an effective risk
predictive model.

The immune system is the guardian of the body’s health,
protecting us from infectious diseases, other foreign invaders,
and internal dysfunctions, such as microbes and cancers. Cancer
immunoediting refers to the three stages by which tumors
evade the immune system, namely, elimination, equilibrium,
and escape (Pardoll, 2012). Changing the interaction of
various immune cells in the tumor microenvironment can
promote this process (Hanahan and Weinberg, 2011; Heinrich
et al., 2012). All cancers undergo immunoediting and are
clinically detected during the escape phase. Natural killer
cells, macrophages, polymorphonuclear cells, T cells, dendritic
cells, and B cells constitute the tumor microenvironment.
High mutation rates and genetic instability lead to increased
production of new epitopes, which induce a multiphenotypic
immune response and produce a tumor microenvironment of
chronic inflammation (Alexandrov et al., 2013; Shalapour and
Karin, 2015). Increasing evidence has shown the anticancer
effect of the host immune system, which has promoted the
application of different immunotherapeutic drugs in clinical
trials, leading to significant progress in the diagnosis and
treatment of cancer (Zheng et al., 2018; Lingohr et al., 2019). PCa
is a known immunogenic disease, which can escape the immune
system by downregulating human leukocyte antigen class I
and thereby rendering antigen presentation ineffective. This is
achieved by inducing T-cell apoptosis through the expression
of the Fas ligand, by secreting immunosuppressive cytokines
such as TGF-β or by increasing regulatory T cells (Tregs)

1http://gco.iarc.fr

(Drake et al., 2006; Drake, 2010). Several studies have shown that
the combination of checkpoint inhibitors or cancer vaccines
with different immunotherapeutic agents, radiation therapy
(radium 223), hormonal therapy (enzalutamide), chemotherapy
(docetaxel), or DNA-damaging agents (olaparib) can enhance
immune responses and induce more dramatic, long-lasting
clinical responses without obvious toxicity (Bilusic et al., 2017).
Therefore, we may be able to further explore the biological
mechanism of PCa and better help to predict the prognosis
of patients by reclassifying the subtypes of tumors through
differences in immune status.

Machine learning methods can automatically learn from
a large scale of training data and capture signals to make
accurate decisions. There have been many significant studies
using machine learning to predict the prognosis of PCa patients.
One 2019 study introduced a method that uses machine
learning techniques to identify transcripts that correlate with PCa
development and progression (Alkhateeb et al., 2019). Another
interesting study used a novel machine learning method to
analyze gene expression of PCa with different Gleason scores
and identify potential genetic biomarkers for each Gleason group
(Hamzeh et al., 2019). In this study, we obtained genes related
to immune status from the IMMPORT database2 (Bhattacharya
et al., 2018). Consensus clustering is a popular method of
searching tumor genomes and is often used to discover new
molecular subtypes of tumors (Monti et al., 2003). In this study,
we used the expression of immunologically relevant genes as
input for the consensus clustering to obtain novel molecular
subtypes of PCa and to construct a prognostic risk prediction
model for patients based on this subtype classification.

MATERIALS AND METHODS

Data Acquisition
The Cancer Genome Atlas (TCGA), a landmark cancer genomics
program, molecularly characterized over 20,000 primary cancer
and matched normal samples spanning 33 cancer types (Blum
et al., 2018). We downloaded the RNA-seq data of 497 PCa
tissues and 52 normal prostate tissues in TCGA database
(Blum et al., 2018). The RNA-seq data are in the form of
HTSeq-Counts and HTSeq-FPKM. We converted the RNA-
seq data in FPKM into RNA-seq data in TPM. A total of
60,483 genes were included in the RNA-seq data. We extracted
19,463 protein-coding genes from these 60,483 genes using gene
annotations from the Ensembl database3 (Yates et al., 2020).

2https://www.immport.org/
3http://asia.ensembl.org/index.html
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We also downloaded the simple nucleotide variation data in
TCGA, along with the copy number variation data of PCa.
Then, we downloaded the XML files containing the clinical
information of 498 patients. We sorted through the clinical
information of the patients and eliminated those with incomplete
information. Finally, we retained 487 patients for the study. The
clinicopathological variables associated with PCa in this study
cohort are shown in Table 1. IMMPORT (see text footnote 2) is a
bioinformatic database for analyses in the field of immunology
(Bhattacharya et al., 2014, 2018). We downloaded the list of
immunologically relevant genes from it and removed duplicates
(shown in Supplementary Table 1). Based on two recently
published studies (Li et al., 2020; Zhang et al., 2020), we used
the profiling data of mRNAs as well as clinical data in four
public datasets (GSE116918, DKF2018, MSKCC2010, and ICGC-
PRAD-FR) as external validation sets to validate the effectiveness
of the risk predictive model (Gerhauser et al., 2018; Jain et al.,
2018; Taylor et al., 2010). We downloaded GSE116918 from the
Gene Expression Omnibus (GEO)4. We downloaded DKF2018
and MSKCC2010 from cBioPortal for Cancer Genomics5, which
provides visualization, analysis, and downloading of large-scale
cancer genomics datasets (Cerami et al., 2012; Gao et al., 2013).
Finally, we downloaded ICGC-PRAD-FR from the International
Cancer Genome Consortium (ICGC) database6. Information on
these four publicly available independent validation datasets is
presented in Table 2.

Consensus Clustering in Prostate
Cancer Patients
We used the DESeq2 R package to process the RNA-seq
data in the form of HTSeq-Counts to identify differentially
expressed genes (DEGs) between PCa and normal prostate
tissues (Love et al., 2014). We set the screening criteria for
differential expression as follows: adjusted p < 0.05 and absolute
value of the logarithmic fold change (| LFC|) > 1. The
adjust method for p value was false discovery rate (FDR).
We selected genes that were both immunologically relevant
genes and DEGs; we called these genes immune DEGs. We
then used RNA-seq data in TPM to make an immune DEG
matrix for all patients and performed log2(x + 1) conversion
of the data. Then, we employed ConsensusClusterPlus R
package to perform consensus clustering analysis of the
immune DEG matrix (Monti et al., 2003). The operating
parameters were set as follows: maxK = 10, reps = 1,000,
pItem = 0.8, pFeature = 1, clusterAlg = “hc,” distance = “pearson,”
seed = 1,262,118,388.71279. According to the results of
ConsensusClusterPlus, we determined the most consensual
cluster subtypes for the patients. We demonstrated the immune
DEG expression of 487 patients through a heatmap using
the pheatmap R package (Kolde and Kolde, 2015). We then
performed survival analysis of the subtypes using the log-
rank test with the survival R package (Therneau, 2014).
We used disease-free survival (DFS) as the end event and

4https://www.ncbi.nlm.nih.gov/geo/
5https://www.cbioportal.org/
6https://icgc.org/

TABLE 1 | The clinicopathologic variables of patients with PCa
included in the study.

Characteristics Value

Patients (n) 487

Age (years), median(IQR) 62.0 (56.0− 66.0)

Pathological Gleason score, n (%)

≤6 43 (8.8)

7 (3 + 4) 143 (29.4)

7 (4 + 3) 101 (20.7)

8 61 (12.5)

9∼10 139 (28.6)

Prior malignancy, n (%)

No 459 (94.3)

Yes 28 (5.7)

Ethnicity, n (%)

Asian 12 (2.5)

White, American Indian, or Alaska native 406 (83.4)

Black or African American 55 (11.3)

NA 14 (2.8)

Residual tumor, n (%)

R0 309 (63.4)

R1 15 (3.1)

R2 144 (29.6)

Rx 5 (1.0)

NA 14 (2.9)

Clinical M, n (%)

M0 446 (91.6)

M1a or M1c 2 (0.4)

NA 39 (8.0)

Pathological T, n (%)

T1c 2 (0.4)

T2a 13 (2.7)

T2b 10 (2.1)

T2c 161 (33.1)

T3a 157 (32.2)

T3b 132 (27.1)

T4 9 (1.8)

NA 3 (0.6)

Pathological N, n (%)

N0 337 (69.2)

N1 79 (16.2)

NA 71 (14.6)

Diagnostic CT or MRI, n (%)

No evidence of extraprostatic extension 200 (41.1)

Equivocal 6 (1.2)

Extraprostatic extension localized 22 (4.5)

Extraprostatic extension 9 (1.8)

NA 250 (51.4)

Outcome, n (%)

Cancer-specific death or biochemical recurrence 57 (11.7)

Disease free 430 (88.3)

PCa, prostate cancer; IQR, interquartile range; NA, not analyzed.

calculated it in the survival analysis. We used the survminer
R package to plot the survival curve by the Kaplan–Meier
method (Kassambara et al., 2017). Based on the results of
survival analysis, we identified high-risk (C3) and low-risk

Frontiers in Genetics | www.frontiersin.org 3 November 2020 | Volume 11 | Article 595657

https://www.ncbi.nlm.nih.gov/geo/
https://www.cbioportal.org/
https://icgc.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-595657 November 9, 2020 Time: 18:59 # 4

Zhang et al. Subtypes and Model of PCa

TABLE 2 | Information of the four publicly available independent
validation datasets.

Dataset Patient Size Transcriptome
Platform

Tissue

GSE1166918 248 ADXPCv1a520642
Affymetrix Human

Formalin-Fixed
Paraffin-Embedded

DKFZ2018 82 Illumina HiSeq
2000 (RNAseq)

Fresh frozen

MSKCC2010 140 Affymetrix Human
Exon 1.0 ST Array

Fresh frozen

ICGC-PRAD-FR 25 Illumina HiSeq
2000 (RNAseq)

Fresh frozen

(C1 + C2 + C4) subtypes. We performed principal component
analysis on the 487 patients on the basis of the high-risk (C3)
and low-risk (C1 + C2 + C4) subtypes using the DESeq2
R package (Love et al., 2014). Then, we used the Mann–
Whitney U test, χ2 test, or Fisher’s exact test to analyze the
correlations between clinicopathological variables and subtype
status in the 487 patients.

Determining the Best Consensus
Clustering Result
There were 2,976 DEGs and 1,811 immunologically relevant
genes. A total of 263 genes (immune DEGs) overlapped between
these two groups. These 263 immune DEGs were used for
consensus clustering, the process of which is shown in Figure 1.
The ConsensusClusterPlus R package produced a set of results
that helped us determine the best grouping scheme. Cumulative
distribution function (CDF) reflects the distribution of values
in the consensus matrix under different k values. When the
optimal k value is reached, the area under the CDF curve will
not significantly increase with increasing k value. As shown in
Figures 1A,B, when k reached 4, the area under the CDF curve
did not increase significantly. When k took different values,
we obtained different clustering patterns, which means that
one item might be in different clusters with different k values.
If items always change their cluster membership (i.e., change
the color in a column), this indicates an unstable classification
relationship. As shown in Figure 1C, items in this study did
not always change their cluster membership. The item-consensus
reflects the degree of representation of an individual to different
clusters. The greater the value, the more representative the
individual is of the characteristics of the corresponding cluster.
As shown in Figure 1D, we found that most of the items
in the study did not change cluster frequently. The cluster-
consensus reflects the average value of the consensus matrix of
each cluster, which represents the degree of consensus of this
cluster. The higher the cluster-consensus of a cluster, the higher
the stability of this cluster. The results of the cluster-consensus
when k was equal to 5 until 10 are shown in Supplementary
Figure 1. As shown in Figure 1E, when k = 4, each cluster
generally had a high cluster-consensus. Finally, we created a
heatmap of the consensus matrix when k = 4, as shown in
Figure 1F.

Difference of Somatic Variations
Between High-Risk and Low-Risk
Groups
We used the data of simple nucleotide variation to explore the
difference in somatic variation between the high-risk (C3) and
low-risk (C1 + 2 + 4) groups. We analyzed the genes with the
top 10 mutation frequencies in the cohort. We used the GenVisR
R package to display the mutation details in the waterfall plot
(Skidmore et al., 2016). We compared the transcription levels
of Speckle-type POZ Protein (SPOP) in different subtypes. We
used Kruskal–Wallis analysis to compare C1, C2, C3, and C4. We
also used Wilcoxon’s test to compare the high-risk (C3) and low-
risk (C1 + 2 + 4) groups. Then, we compared the relationship
between SPOP transcription levels and mutations in the high-risk
(C3) and low-risk (C1+ 2+ 4) groups through Wilcoxon’s test.

Copy Number Alterations,
TMPRSS2-ERG Fusion, and Androgen
Receptor Scores in Each Subtype
We analyzed copy number alterations (CNA) in all patients
among the different subgroups. We analyzed the CNA profile
of all genes using the chi-square test. We defined p < 0.05
as statistically significant. We then screened for genes with
statistically significant differences in CNA among the different
subgroups. According to the literature review, we found that
prostate cell transformation at an early stage requires Clusterin
(CLU) silencing (Rizzi and Bettuzzi, 2009). Thus, we next
explored the differences in the CNA of CLU in the different
subgroups, as well as the changes in CLU expression. Finally, we
explored the correlation between CLU expression and its CNA.

TMPRSS2-ERG fusion gene is a biological indicator associated
with the occurrence of PCa, in cases of which it is the most
common type of fusion. Based on integrated analysis of paired-
end RNA sequencing and DNA copy number data from TCGA,
The Tumor Fusion Gene Data Portal7 provides a bona fide
fusion list across many tumor types (Yoshihara et al., 2015).
With the help of this database, we analyzed the differences of
TMPRSS2-ERG between the different subtypes. We downloaded
the Prostate Adenocarcinoma (TCGA, Cell 2015) dataset in
cBiopPortal and obtained the androgen receptor (AR) score of
each patient (Cancer Genome Atlas Research Network, 2015).
Finally, we explored the differences of AR scores among the
different subtypes. In this part of the study, we used the Kruskal–
Wallis test to compare C1, C2, C3, and C4 and Wilcoxon test’s to
compare C1+ C2+ C4 and C3.

Infiltration of Immune Cells Into the
Tumor Microenvironment in Each
Subtype
We analyzed RNA-seq data in TPM format from the 487 patients
in CIBERSORTx8 (Newman et al., 2019). The parameters were
set as follows: signature genes: LM22, batch correction mode:

7https://www.tumorfusions.org/
8https://cibersortx.stanford.edu/
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FIGURE 1 | The results of consensus cluster for PCa patients. (A) The CDF curve under different values of k. The value of k represents the number of clusters during
the consensus cluster. When the optimal k value is reached, the area under the CDF curve will not significantly increase with the increase of k value. (B) Relative
change in area under the CDF curve under different values of k. (C) The x-coordinate of the graph is items, and the y-coordinate is the value of k. Each color
corresponds to different cluster classification colors in the consensus cluster. If items always change the type of cluster (i.e., change the color in a column), it
indicates an unstable classification relationship. If a cluster has a large number of samples with unstable classification, it indicates that the cluster is not a stable
classification and cannot become a subtyping. (D) The figure reflects the item-consensus of each patient for different clusters. The item-consensus reflects the
degree of representation of an individual to different clusters. The greater the value, the more representative the individual is of the characteristics of the
corresponding cluster. (E) The diagram shows the cluster-consensus for each cluster with different k values. The cluster-consensus refers to the average value of the
consensus matrix of each cluster and represents the degree of consensus of this cluster. The higher the cluster-consensus of the cluster, the higher the stability of
this cluster. (F) The consensus matrix obtained when k = 4. Consistency values range from 0 to 1, 0 means never clustering together (white) and 1 means always
clustering together (dark blue). PCa, prostate cancer; CDF, cumulative distribution function.
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B-mode, and permutations: 100. Then, we demonstrated the
infiltration of immune cells into the tumor microenvironment of
the patients through a heatmap using the pheatmap R package
(Kolde and Kolde, 2015). Next, we represented such infiltration
of some patients using a bar plot. We used Wilcoxon’s test to
compare the degree of infiltration of 22 kinds of immune cells
between the high-risk (C3) and low-risk (C1+ 2+ 4) groups. We
considered a P value of less than 0.05 as statistically significant.

Gene Set Enrichment Analysis for
Consensus Clusters
We used RNA-seq data in HTSeq-Counts format from the 487
patients for the analysis of the differential expression between
C3 (high-risk) and C1 + 2 + 4 (low-risk) using the DESeq2 R
package. We used LFC as the sequencing of the gene list in Gene
Set Enrichment Analysis (GSEA). We performed GSEA using the
clusterProfiler R package (Yu et al., 2012). For the gene list, we
chose the Hallmarks gene set downloaded from the Molecular
Signatures Database9 v7.1 (Subramanian et al., 2005; Liberzon
et al., 2011). We set P < 0.05 to indicate statistical significance.
The adjust method for p value was FDR.

Training the Risk Predictive Model by
Machine Learning
We used the term NT-DEGs to describe the genes that were
differentially expressed between the normal prostate tissue and
prostate tumor tissue. Meanwhile, we used the term cluster-
DEGs to describe the genes differentially expressed between the
high-risk subtype (C3) and low-risk subtype (C1 + 2 + 4).
We obtained the NT-DEGs and cluster-DEGs from RNA-seq
data in the form of HTSeq-Counts, calculated using the DESeq2
R package (Love et al., 2014). We set the screening criteria
for differential expression as follows: adjusted p < 0.05 and
|LFC| > 1. Then, we selected genes overlapping between the
categories of NT-DEGs and cluster-DEGs for survival analysis
by log-rank test and Cox regression. We used DFS as the
end event and calculated it in the survival analysis. We chose
genes with significant associations with survival for both of
these methods (p < 0.05). Finally, we used these selected genes
as input for training the model. Least absolute shrinkage and
selection operator (LASSO) regression is a popular method in
machine learning. LASSO makes a feature of variable selection
and regularization, while fitting the generalized linear model.
Before LASSO, we performed log2(x + 1) conversion for the
TPM of selected genes. We randomly divided the 487 patients
into a training set and an internal validation set using the
caret R package. Patients in the training set and internal
validation set are shown in Supplementary Tables 2 and 3,
respectively. We performed LASSO regression using the glmnet
R package to train the model (Engebretsen and Bohlin, 2019).
In terms of the regression model type, the Cox model was
selected. We created heatmaps for the gene signatures in the
model using the pheatmap R package (Kolde and Kolde, 2015).
Then, we compared the difference in risk scores among the

9https://www.gsea-msigdb.org/gsea/msigdb/index.jsp

four subtypes by the Kruskal–Wallis test and between the
high-risk (C3) group and low-risk (C1 + 2 + 4) group by
Wilcoxon’s test.

Validating the Effectiveness of the Model
Because PCa is a relatively indolent disease, we selected 5 years
as the end-point of the follow-up. First, we conducted time-
dependent receiver operating characteristic (tdROC) analysis
in the training set, internal validation set, and external
validation sets to calculate the area under the curve (AUC).
We performed tdROC with the help of the survivalROC
R package (Heagerty et al., 2013). Then, we completed the
survival analysis and created the survival curve in the training
set, internal validation set, and external validation sets using
the survival and survminer R packages (Therneau, 2014;
Kassambara et al., 2017). As DKFZ2018 and GSE116918 recorded
the patients’ biochemical recurrence, we conducted survival
analysis for these two sets using biochemical recurrence-
free survival (BCR). In the other datasets, we used DFS
as the end event and calculated it in the survival analysis.
Finally, we explored the difference in the risk scores between
patients with different survival outcomes in the training
set, internal validation set, and external validation sets by
Wilcoxon’s test.

Furthermore, we compared the clinical diagnostic value
of the predictive model with that of clinical features (PSA
and Gleason grade) and a 28-gene hypoxia-related prognostic
signature (Yang et al., 2018). PSA and Gleason grade are the
main clinical methods to judge the prognosis of patients. We
used decision curve analysis (DCA) to evaluate the performance
of each indicator (Vickers and Elkin, 2006; Kerr et al., 2016).
DCA is a method for evaluating and comparing prediction
models that incorporates clinical consequences, requires only the
dataset on which the models are tested, and can be applied to
models that have either continuous or dichotomous results. The
“stdca” function performs DCA for time to event or survival
outcomes. We used MASS R package and stdca R code to
complete the DCA.

Statistical Analysis
All of the statistical analyses in this study were completed in R
3.6.3. The statistical methods used in each step and the p value
thresholds are explained in the corresponding sections.

RESULTS

Characteristics of Patients in Different
Clusters
We eventually divided the 487 patients into four subtypes (C1,
C2, C3, and C4). There were 186 patients in the C1 subgroup,
41 in the C2 subgroup, 222 in the C3 subgroup, and 38 in
the C4 subgroup. We present the specific subtype grouping of
each patient in Supplementary Table 4. The heatmap for the
expression of the 263 immune DEGs of the 487 patients is
shown in Figure 2A. We found that immune DEGs had different
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FIGURE 2 | Differences in characteristics of patients in different clusters. (A) The heatmap for 263 immune DEG expressions of 487 patients. (B) Survival curves for
C1, C2, C3, and C4 groups. (C) Survival curves for C3 and C1 + 2 + 4 groups. (D) Principal component analysis showed that patients in the C3 group were
significantly different from patients in the C1 + 2 + 4 group. DEGs, differentially expressed genes.

expression patterns among the different subtypes. Survival curves
for the C1, C2, C3, and C4 groups are shown in Figure 2B and
were found to differ significantly (log-rank test, p = 0.04). We
found that the survival prognosis of patients in the C3 group was

significantly worse than that of the other three groups. Therefore,
we combined the C1, C2, and C4 groups and defined them
together as a low-risk group, while C3 was defined as a high-
risk group. Survival curves for the C3 and C1 + 2 + 4 groups
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TABLE 3 | The association between consensus clusters and clinicopathologic variables of prostate cancer.

Clinicopathologic variables Consensus clusters P

C1 + C2 + C4 (n = 265) C3 (n = 222)

Age (years), median (IQR) 62.0 (57.0− 66.0) 61.5 (56.0− 66.0) 0.228a

PSA (ng/ml), median (IQR) 6.65 (4.8− 10.1) 8.3 (5.8− 14.1) < 0.001a

Pathological Gleason score, n (%) < 0.001b

≤6 25 (9.4) 18 (8.1)

7(3 + 4) 96 (36.2) 47 (21.2)

7(4 + 3) 59 (22.3) 42 (18.9)

8 29 (10.9) 32 (14.4)

9∼10 56 (21.2) 83 (37.4)

Prior malignancy, n (%) 0.927b

No 250 (94.3) 209 (94.1)

Yes 15 (5.7) 13 (5.9)

Ethnicity, n (%) 0.012b

Asian 3 (1.1) 9 (4.1)

White, American Indian, or Alaska native 232 (87.5) 174 (78.4)

Black or African American 23 (8.7) 32 (14.4)

NA 7 (2.7) 7 (3.1)

Residual tumor, n (%)

R0 178 (67.2) 131 (59.0) 0.049b

Rx/R1/R2 79 (29.8) 85 (38.3)

NA 8 (3.0) 6 (2.7)

Clinical M, n (%) 0.207c

M0 244 (92.1) 202 (91.0)

M1a or M1c 0 (0) 2 (0.9)

NA 21 (7.9) 18 (8.1)

Pathological T, n (%) 0.048c

T1c 2 (0.8) 0 (0.0)

T2a 8 (3.0) 5 (2.3)

T2b 5 (1.9) 5 (2.3)

T2c 101 (38.1) 60 (27.0)

T3a 82 (30.9) 75 (33.8)

T3b 63 (23.8) 69 (31.1)

T4 2 (0.8) 7 (3.2)

NA 2 (0.7) 1 (0.3)

Pathological N, n (%) 0.001b

N0 196 (74.0) 141 (63.5)

N1 30 (11.3) 49 (22.1)

NA 39 (14.7) 32 (14.4)

Diagnostic CT or MRI, n (%)

No evidence of extraprostatic extension 102 (38.5) 98 (44.1) 0.692c

Equivocal 2 (0.8) 4 (1.8)

Extraprostatic extension localized 9 (3.4) 13 (5.9)

Extraprostatic extension 4 (1.5) 5 (2.3)

NA 148 (55.8) 102 (45.9)

Outcome, n (%)

Cancer-specific death or biochemical recurrence 22 (8.3) 35 (15.8) 0.011b

Disease free 243 (91.7) 187 (84.2)

P values were calculated by the Mann–Whitney U test, chi-square test, or Fisher’s exact test. P < 0.05 was defined as statistically significant. IQR, interquartile range;
NA, not analyzed.

are shown in Figure 2C and were found to differ significantly
(log-rank test, p = 0.024). Principal component analysis showed
that patients in the C3 group were significantly different from
those in the C1 + 2 + 4 group (Figure 2D). Furthermore,

as shown in Table 3, the PSA level, pathological Gleason
score, ethnicity, residual tumor, pathological T, pathological
N, and clinical outcome were significantly correlated with
the subtype status.
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Difference of Somatic Variations
Between High-Risk and Low-Risk
Groups
We found that the high-risk (C3) group had higher SPOP
mutation frequency than the low-risk (C1 + 2 + 4) group
(Figures 3A,B). SPOP is one of the genes that is most frequently
mutated in primary PCa. SPOP mutations in PCa are significantly
associated with increased PCa cell proliferation and invasion,
indicating the loss of function of SPOP mutations and the
tumor-suppressive role of SPOP in PCa (Barbieri et al., 2012;
An et al., 2014). Based on this background, we then explored
the differences in the transcription levels of SPOP in different
subtypes. The transcription level of SPOP in the C3 group was
lower than that in the other groups (Kruskal–Wallis analysis,
p < 0.01) (Figure 3C), although the SPOP transcription level of
the C4 group was lower than that of the C3 group. However,
owing to the small number of patients in the C4 group, there
was a certain selection bias when comparing the differences. As
shown in Figure 3D, the SPOP transcription level of the C3 (high-
risk) group was significantly lower than that of the C1 + 2 + 4
(low-risk) group (Wilcoxon’s test, p < 0.01). We found that, in
the high-risk (C3) group, the SPOP transcription level of patients
with SPOP mutation was significantly lower than that of patients
with wild-type SPOP (Wilcoxon’s test, p = 0.027) (Figure 3E).
However, in the low-risk (C1 + 2 + 4) group, there was no
significant difference in SPOP transcription between the mutant
and wild-type patients (Wilcoxon’s test, p = 0.66) (Figure 3F).

Copy Number Alterations,
TMPRSS2-ERG Fusion, and AR Scores in
Each Subtype
As shown in Figures 4A,B, CLU had a lower expression level in
the C3 subtype (Kruskal–Wallis test and Wilcoxon’s test, both
p < 0.001). Consistent with this, CLU expression was previously
found to be significantly reduced in untreated and hormone-
refractory human prostate carcinomas (Rizzi and Bettuzzi, 2009).
The expression level of CLU was significantly correlated with
its CNA, and the expression level of CLU was decreased with
single deletion or single gain (Figure 4C). We also found that the
frequency of CNA in CLU in the C3 subtype was significantly
higher than that in other subtypes (Figures 4D,E). We also
found that C3 had a higher frequency of TMPRSS2-ERG fusion
(Figure 4F). Finally, we found that patients of the C3 subtype had
higher AR scores (Kruskal–Wallis test and Wilcoxon’s test, both
p < 0.001) (Figures 4G,H).

Infiltration of Immune Cells Into the
Tumor Microenvironment in Each
Subtype
We presented the infiltration of immune cells into the tumor
microenvironment of the 487 patients through a heatmap, as
shown in Figure 5A. We found that activated dendritic cells,
memory B cells, naïve CD4 T cells, eosinophils, and neutrophils
showed little change in infiltration among the groups. Then, we
demonstrated the infiltration of immune cells into the tumor

microenvironment of the patients in a bar plot. Owing to the
large number of patients (n = 487), the figure is too large, so
for convenience of display, we present only part of this figure in
Figure 5B. We found that resting memory CD4 T cells, plasma
cells, CD8 T cells, M2 macrophages, and resting mast cells had
higher levels of infiltration. We used Wilcoxon’s test to compare
the degree of infiltration of 22 kinds of immune cells between
the high-risk (C3) and low-risk (C1 + 2 + 4) groups, and the
results of which are shown in a violin diagram (Supplementary
Figure 2). We found that naïve B cells; plasma cells; and M0,
M1, and M2 macrophages infiltrated significantly more into
the tumor microenvironment in the high-risk (C3) group. In
addition, we found that CD8 T cells, monocytes, resting dendritic
cells, activated dendritic cells, and activated mast cells infiltrated
significantly more in the low-risk (C1+ 2+ 4) group.

Gene Set Enrichment Analysis for
Consensus Clusters
We found that HALLMARK_MYC_TARGETS_V2 and
HALLMARK_ANDROGEN_RESPONSE were activated in the
high-risk (C3) group (Figures 6A,B), while HALLMARK_
KRAS_SIGNALING_DN and HALLMARK_P53_PATHWAY
were relatively suppressed in it (Figures 6C,D). HALLMARK_
MYC_TARGETS_V2 is composed of a subgroup of genes
regulated by MYC; HALLMARK_ANDROGEN_RESPONSE
is composed of genes defining the response to androgens;
HALLMARK_KRAS_SIGNALING_DN is composed of genes
downregulated by KRAS activation; and HALLMARK_
P53_PATHWAY is composed of genes involved in p53
pathways and networks. One study overexpressed MYC in
the prostate of engineered mice and found that prostatic
intraepithelial neoplasia progressed to invasive adenocarcinoma,
demonstrating the oncogenic role of MYC in PCa (Ellwood-
Yen et al., 2003). The normal development of the prostate
requires the presence of androgen; however, androgen can
also promote the development of PCa (Heinlein and Chang,
2004). Here, HALLMARK_KRAS_SIGNALING_DN and
HALLMARK_P53_PATHWAY were found to be relatively
suppressed in the high-risk (C3) group. HALLMARK_
KRAS_SIGNALING_DN is composed of genes that are
downregulated when the KRAS signaling pathway is activated.
KRAS promotes the development of a variety of tumors including
PCa (Chang et al., 2018). In the C3 (high-risk) subtype, these
genes are relatively downregulated, which indicates that they are
relatively overexpressed in the C1 + 2 + 4 (low-risk) subtype.
This indicates that the KRAS signaling pathway is relatively
highly activated in the C3 (high-risk) subtype. In support of this,
inhibition of the p53 signaling pathway has been reported to
facilitate the development of PCa and to contribute to a poor
outcome (Takayama et al., 2018).

The Model Constructed by LASSO
Regression
According to the steps described in the Training the Risk
Predictive Model by Machine Learning section, we selected a total
of 896 genes as input for the survival analysis (Figure 7A). Finally,
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FIGURE 3 | Difference of somatic variations between high-risk (C3) and low-risk (C1 + 2 + 4) groups. (A) The map of waterfall for high-risk (C3) group. (B) The map
of waterfall for low-risk (C1 + 2 + 4) group. (C) The differences in the transcription levels of SPOP in different subtypes (C1, C2, C3, and C4). (D) The differences in
the transcription levels of SPOP between high-risk (C3) and low-risk (C1 + 2 + 4) groups. (E) In the high-risk (C3) group, SPOP transcription level of patients with
SPOP mutation was significantly lower than that of patients with wild-type SPOP. (F) In the low-risk (C1 + 2 + 4) group, there was no significant difference in SPOP
transcription between the mutant and the wild-type patients. PCa, prostate cancer; SPOP, Speckle-type POZ Protein.

we selected 104 genes for the LASSO regression. We used cross-
validation (10-fold) to find the punish coefficient (λ) to ensure
the minimal misclassification error (Figure 7B) (Fan et al., 2019).

LASSO regression algorithm would screen the sites in the model
and their coefficients based on the λ; we show this process in
Figure 7C. We eventually constructed a risk prediction model
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FIGURE 4 | Copy number alterations, TMPRSS2-ERG fusion, and AR scores in each subtype. (A,B) CLU had a lower expression level in C3 subtype. (C) The
expression level of CLU was significantly correlated with its CNA, and the expression level of CLU was decreased with single deletion or single gain. (D,E) The
frequency of CNA in CLU in C3 subtype was significantly higher than that in other subtypes. (F) C3 had a higher frequency of TMPRSS2-ERG fusion. (G,H) Patients
of the C3 subtype had higher AR scores. CAN, copy number alteration; CLU, Clusterin; AR, androgen receptor.

consisting of six genes (MYT1, UTS2B, CAMKV, PRRG3, PON3,
and IGSF1).

risk score = 0.181× expression of MYT1 +

0.188× expression of UTS2B +

0.235× expression of CAMKV −

0.122× expression of PRRG3 −

0.055× expression of PON3 −

0.017× expression of IGSF1

We then ranked the patients by risk scores in the training set
and internal validation set (Figures 7D,E). We then explored the
relationship between the survival outcome and risk classification
of patients (Figures 7G,H). Low-risk patients are shown on

the left side of the dotted line and high-risk patients on the
right of it. Heatmaps for the six gene signatures are shown in
Figures 7F,I. We found that MYT1, UTS2B, and CAMKV were
generally upregulated in high-risk patients, while PRRG3, PON3,
and IGSF1 were generally downregulated in low-risk patients.
Finally, we found that patients in the C3 subtype generally
presented a higher risk score (Figures 7J,K) (Kruskal–Wallis test
and Wilcoxon’s test, both p < 0.01). This is consistent with the
results obtained in the process of consensus clustering.

The Model Demonstrated Good
Predictive Performance and More
Clinical Benefits
The AUCs of the tdROC in 5 years were 0.730 in the
training set, 0.717 in the internal validation set, 0.624 in
GSE116918, 0.706 in DKFZ2018, 0.671 in MSKCC2010,
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FIGURE 5 | Immune infiltration in each subtype. (A) The heatmap about immune infiltration degree of the 487 patients. (B) Barplot about immune infiltration of
patients.

and 0.825 in ICGC-PRAD-FR (Figures 8A–F). Survival
analysis and the curves revealed that patients with a risk
score greater than the median value had a worse survival
prognosis (Figures 8G–L) [training set: p(log-rank) < 0.001,
HR = 6.8, 95% CI: 3.5–13; internal validation set: p(log-
rank) = 0.012, HR = 1.3, 95% CI: 1.46–3.9; GSE116918:
p(log-rank) = 0.019, HR = 4.2, 95% CI: 1.5–12; DKFZ2018:

p(log-rank) = 0.002, HR = 260, 95% CI: 18–3,800; MSKCC2010:
p(log-rank) = 0.005, HR = 170, 95% CI: 17–1,600; ICGC-
PRAD-FR: p(log-rank) = 0.035, HR = 4.3, 95% CI: 1.2–15].
Then, we found that patients with cancer-specific death or
biochemical recurrence presented higher risk scores than
those with a disease-free status (Supplementary Figure 3)
(training set: Wilcoxon, p < 0.001; internal validation set:
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FIGURE 6 | GSEA for consensus clusters. (A) HALLMARK_MYC_TARGETS_V2. (B) HALLMARK_ANDROGEN_RESPONSE. (C) HALLMARK_KRAS_SIGNALING_
DN. (D) HALLMARK_P53_PATHWAY. GSEA, Gene Set Enrichment Analysis.

Wilcoxon, p = 0.049; GSE116918: Wilcoxon, p < 0.0001;
DKFZ2018: Wilcoxon, p = 0.0016; MSKCC2010: Wilcoxon,
p = 0.0036; ICGC-PRAD-FR: Wilcoxon, p = 0.0011). As shown
in Figures 9A,B, the predictive model in this study had a
better clinical net benefit and a wider threshold probability
range, which suggests that it is more reliable than clinical
features (PSA and Gleason grade) and a 28-gene hypoxia-related
prognostic signature.

DISCUSSION

As the most common urinary tumor, the heterogeneity of PCa has
been an important topic of research. Exploring novel subtypes
of tumors is an effective way of studying their heterogeneity.
The immune status of patients can effectively reflect the trends
of tumor development and prognosis. Therefore, in this study,
we used immune-related genes to conduct consensus clustering

Frontiers in Genetics | www.frontiersin.org 13 November 2020 | Volume 11 | Article 595657

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-595657 November 9, 2020 Time: 18:59 # 14

Zhang et al. Subtypes and Model of PCa

FIGURE 7 | Build the model and see how the model is performing in each dataset. (A) The intersection of NT-DEGs and cluster-DEGs served as the input for LASSO
regression. (B) The λ value corresponding to minimal misclassification error in cross validation. (C) Based on the value of λ, the gene signatures and their coefficients
of the model were obtained. (D,G,F) The results in the training set. (E,H,I) The results in the internal validation set. (D,E) The distribution of population risk scores
and risk classification based on the cut-off value. (G,H) The relationship between the survival outcome and risk classification of patients. Low-risk patients are shown
on the left side of the dotted line and high-risk patients are shown on the right side. (F,I) Heat maps for the gene signatures. (J) The difference in risk scores between
the four subtypes (C1, C2, C3, and C4). (K) The difference in risk scores between the high-risk (C3) group and the low-risk (C1 + 2 + 4) group. NT-DEGs, the
differentially expressed genes (DEGs) between the normal prostate tissue and the prostate tumor tissue; cluster-DEGs, the differentially expressed genes (DEGs)
between the high-risk subtype (C3) and the low-risk subtype (C1 + 2 + 4); LASSO, least absolute shrinkage and selection operator; λ, punish coefficient.

among 487 patients and finally identified four PCa subtypes (C1,
C2, C3, and C4).

Through survival analysis, we found that the prognosis
of patients in the C3 group was significantly worse than
that of the other three groups. However, there was no

significant difference in prognosis among the three groups
C1, C2, and C4. Therefore, we grouped C1, C2, and
C4 together and defined them as the low-risk group,
while we defined C3 as the high-risk group. Supporting
this approach, principal component analysis showed a
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FIGURE 8 | Verification of the effectiveness of the model. (A–F) The ROC curve of 5-year follow-up time. (G–L) Kaplan–Meier curve for survival analysis. (A,G) The
results in the training set. (B,H) The results in the internal validation set. (C,I) The results in GSE116918. (D,J) The results in DKFZ2018. (E,K) The results in
MSKCC2010. (F,L) The results in ICGC-PRAD-FR. AUC, area under curve; DFS, disease-free survival; BCR, biochemical recurrence-free survival.

clear boundary between patients in the high-risk and
low-risk groups.

Speckle-type POZ Protein can inhibit the proliferation,
migration, and invasion of PCa cells by promoting ATF2
ubiquitination (Ma et al., 2018). PCa-associated SPOP mutants

are defective at promoting ATF2 degradation in PCa cells and
contribute to facilitating PCa cell proliferation, migration, and
invasion (Ma et al., 2018). Expressing PCa-associated SPOP
mutants or knocking out SPOP gives PCa cells resistance to cell
death caused by stress granule inducers such as docetaxel, sodium
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FIGURE 9 | Decision curve analyses suggested that the model had good clinical benefits: (A) The model had higher net benefit and wider threshold probability
range. The green line is the net benefit of providing all patients with intervention, and the horizontal black line is the net benefit of providing no patients with
intervention. (B) The net reduction analyses demonstrated in how many patients an intervention could be avoided without missing any poor prognosis.

arsenite, and H2O2 (Shi et al., 2019). Strikingly, we found that
the high-risk (C3) group had a higher SPOP mutation frequency
than the low-risk (C1 + 2 + 4) group. Furthermore, the SPOP
transcription level of the C3 (high-risk) group was significantly
lower than that of the C1 + 2 + 4 (low-risk) group (Wilcoxon’s
test, p < 0.01). In summary, at the somatic variation level, we
found that PCa of the high-risk subtype had a higher SPOP
mutation frequency and lower SPOP expression level.

The expression of CLU was previously found to be
significantly reduced in untreated and hormone-refractory
human prostate carcinomas (Rizzi and Bettuzzi, 2009). In
this study, CLU showed a lower expression level in the C3
subtype. This is consistent with the high-risk characteristics of
this subtype. We found that the expression level of CLU was
significantly correlated with its CNA, and the expression level of
CLU was decreased with single deletion or single gain. We also
found that the frequency of CNA in CLU in the C3 subtype was
significantly higher than that in other subtypes. This suggested
that the low CLU expression in the C3 subtype may be related
to the CNA status of this gene. We also found that C3 had
a higher frequency of TMPRSS2-ERG fusion and higher AR
score. All of these findings suggested that the C3 subtype is a
high-risk phenotype.

We found that naïve B cells; plasma cells; and M0,
M1, and M2 macrophages infiltrated significantly more in
the high-risk (C3) group. There is increasing evidence that
inflammatory cells such as M2 macrophages can promote PCa
progression by inhibiting antitumor immune responses (Liang
et al., 2016; Cortesi et al., 2018). One study showed that
PCa patients with a high number of M2 macrophages in
the tumor environment had a significantly increased risk of
death from PCa (Erlandsson et al., 2019). The development

of resistance to androgen deprivation therapy is also known
to be related to the tumor-associated macrophages and
neuroendocrine differentiation. Blocking the feedback loop
between neuroendocrine differentiation and macrophages was
reported to improve the therapeutic effect of enzalutamide on
PCa (Wang et al., 2018). T cells can effectively fight against
tumors, and this antitumor capacity can be enhanced by
immune-regulatory molecular antibodies (checkpoint blockade)
(Palucka and Banchereau, 2013). We also found that CD8 T
cells, monocytes, resting dendritic cells, activated dendritic cells,
and activated mast cells infiltrated significantly more in the low-
risk (C1 + 2 + 4) group. CD8+ T cells need to be primed
and activated toward effector CD8+ cytotoxic T lymphocytes,
in a process called the tumor immunity cycle, in order to exert
durable and efficient antitumor immune responses (Farhood
et al., 2019). Dendritic cells are considered a promising weapon
for activating the immune system in tumor immunotherapy
(Constantino et al., 2017).

After GSEA, we found that HALLMARK_MYC_
TARGETS_V2 and HALLMARK_ANDROGEN_RESPONSE
were activated in the high-risk (C3) group. In one study in
which MYC was overexpressed in the prostate of engineered
mice, it was found that prostatic intraepithelial neoplasia
progressed to invasive adenocarcinoma, demonstrating
the oncogenic role of MYC in PCa (Ellwood-Yen et al.,
2003). The normal development of the prostate requires the
presence of androgen; however, androgen can also promote
the development of PCa (Heinlein and Chang, 2004).
In this study, HALLMARK_KRAS_SIGNALING_DN and
HALLMARK_P53_PATHWAY were relatively suppressed in the
high-risk (C3) group. HALLMARK_KRAS_SIGNALING_DN
is composed of genes that are downregulated when the KRAS
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signaling pathway is activated. KRAS promotes a variety of
tumors including PCa (Chang et al., 2018). In the C3 (high-
risk) subtype, these genes are relatively downregulated, which
indicates that they are relatively overexpressed in the C1+ 2+ 4
(low-risk) subtype. This indicates that the KRAS signaling
pathway is relatively highly activated in the C3 (high-risk)
subtype. Inhibition of the p53 signaling pathway facilitates
the development of PCa and contributes to a poor outcome
(Takayama et al., 2018).

After the establishment of the four subgroups (C1, C2, C3, and
C4) and the demonstration of their properties, we constructed
a LASSO risk prediction model based on genes differentially
expressed between the high-risk and low-risk subgroups. This
model consists of six genes: MYT1, UTS2B, CAMKV, PRRG3,
PON3, and IGSF1. Based on the expression of these six genes, we
could obtain the risk score of individual patients.

Interestingly, the risk coefficients for MYT1, UTS2B, and
CAMKV are positive and those for PRRG3, PON3, and IGSF1 are
negative. MYT1 is a candidate predictive biomarker of acquired
resistance to the Wee1 kinase inhibitor adavosertib (Lewis et al.,
2019). Adavosertib has monotherapy activity in a variety of
tumors. Cancer cells with intrinsic adavosertib resistance were
shown to have higher levels of MYT1 than sensitive cells. As one
of the genes in the model, UTS2B has many redundant biological
effects with urotensin II. They were shown to be equally potent
in stimulating urotensin II receptor, whose mRNA was widely
expressed, and notably, their very high levels of transcript were
found in the prostate. Christophe et al. found that UTS2B may
participate more specifically in reproductive functions (Dubessy
et al., 2008). In addition, Robyn et al. found that CAMKV was not
expressed in normal tissues outside of the central nervous system
and proposed it as a candidate immunotherapeutic target in
MYCN-amplified neuroblastoma (Sussman et al., 2020). PRRG3
is a protein-coding gene, but to the best of our knowledge,
no research has explored its role in cancer. Bedİr et al. (2020)
found that the PON3 level decreased significantly in patients
with PCa. They also found that PON3 increased postoperatively
in those with PCa. They proposed that surgical excision of
malignant tissue in PCa caused a decrease in oxidative stress
and that a higher level of PON3 was associated with lower
oxidative stress (Bedİr et al., 2020). Finally, IGSF1 is a novel
oncogene regulating the progression of thyroid cancer (Guan
et al., 2019); however, no study describing its role in PCa has been
reported. The predictive model established here showed good
ability to predict DFS or BCR in TCGA, GSE116918, DKFZ2018,
MSKCC2010, and ICGC-PRAD-FR datasets. Furthermore, we
compared the clinical diagnostic value of the predictive model
with that of clinical features (PSA and Gleason grade) and a
28-gene hypoxia-related prognostic signature. According to the
results of DCA, this model had a better clinical net benefit and
a wider threshold probability range, which suggests that it is
more reliable than current invasive measures. Furthermore, we
would like to introduce how to design the model for clinical
application: since the model was trained based on RNA-seq data
in TPM format, we recommend using the same format of data for
evaluation of the prognosis. In order to eliminate the batch effect
of detection techniques, we do not recommend other detection

techniques to measure gene transcription levels, although we
find that the model still performed well on expression profiling
by array. In this study, we used the median risk score of
the cohort as the threshold for determining high or low risk.
In the future, the study cohort should be further expanded
to obtain a more objective and stable threshold range before
clinical application.

In this study, we first found that PCa patients could be divided
into four subtypes (C1, C2, C3, and C4) using immune-related
genes. We also found that patients with the C3 subtype had a
worse clinical prognosis, so we defined this subtype as the high-
risk type. Then, we found that patients of the high-risk (C3)
subtype had a higher frequency of SPOP mutations. We also
revealed that naïve B cells; plasma cells; and M0, M1, and M2
macrophages infiltrated significantly more in the high-risk (C3)
group. Moreover, we found that CD8 T cells, monocytes, resting
dendritic cells, activated dendritic cells, and activated mast cells
infiltrated significantly more in the low-risk (C1 + 2 + 4) group.
Finally, we used LASSO regression, a popular machine learning
algorithm, to construct a risk prediction model, demonstrating
good predictive performance and more clinical benefits, based on
the subtype classification. However, the biological mechanisms
associated with the subtype classification need to be further
explored in future work and the validity of the model needs to
be verified in more cohorts.
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