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As one of the most malicious cancers, pancreatic cancer is difficult to treat due
to the lack of effective early diagnosis. Therefore, it is urgent to find reliable
diagnostic and predictive markers for the early detection of pancreatic cancer. In
recent years, the detection of circulating cell-free DNA (cfDNA) methylation in plasma
has attracted global attention for non-invasive and early cancer diagnosis. Here, we
carried out a genome-wide cfDNA methylation profiling study of pancreatic ductal
adenocarcinoma (PDAC) patients by methylated DNA immunoprecipitation coupled
with high-throughput sequencing (MeDIP-seq). Compared with healthy individuals, 775
differentially methylated regions (DMRs) located in promoter regions were identified in
PDAC patients with 761 hypermethylated and 14 hypomethylated regions; meanwhile,
761 DMRs in CpG islands (CGIs) were identified in PDAC patients with 734
hypermethylated and 27 hypomethylated regions (p-value < 0.0001). Then, 143
hypermethylated DMRs were further selected which were located in promoter regions
and completely overlapped with CGIs. After performing the least absolute shrinkage
and selection operator (LASSO) method, a total of eight markers were found to
fairly distinguish PDAC patients from healthy individuals, including TRIM73, FAM150A,
EPB41L3, SIX3, MIR663, MAPT, LOC100128977, and LOC100130148. In conclusion,
this work identified a set of eight differentially methylated markers that may be potentially
applied in non-invasive diagnosis of pancreatic cancer.

Keywords: pancreatic ductal adenocarcinoma, cfDNA, MeDIP-seq, methylation, biomarkers

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is one of the most highly aggressive diseases in the
world. Due to the hard challenge of detecting the disease at an early stage, poor prognosis often
occurs. The morbidity of PDAC is approximately close to that of mortality. Nearly 80% of PDAC
patients have no early symptoms before the advanced stage (Kaur et al., 2012) with a 5-year survival
rate as low as 9% (Siegel et al., 2019). Accordingly, PDAC is the fourth leading cause of cancer-
related death worldwide and is predicted to rise to second place by 2030 (Rahib et al., 2014).
Currently, ultrasonography, computed tomography, positron emission tomography, magnetic
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resonance imaging, and endoscopic ultrasonography are the
most commonly used diagnostic methods for PDAC (Kamisawa
et al., 2016; Chu et al., 2017). However, operator experience,
patient obesity and intestinal gas, and other factors affect the
accuracy of diagnosis (Kamisawa et al., 2016). In addition, due
to the location of the pancreas, it is not easy to make an early
diagnosis compared to other digestive tract tumors (Lowenfels
and Maisonneuve, 2004). Therefore, it would be very valuable to
identify both sensitive and specific non-invasive biomarkers for
the early diagnosis of PDAC.

Epigenetic regulation, especially DNA methylation, plays
an important role in the regulation of gene expression and
the development of cancers. Genome-wide hypomethylation is
common in cancer cells, leading to genomic instability. Some
tumor suppressor genes with promoter hypermethylation are
observed to cause gene silencing (Hanahan and Weinberg, 2000;
Esteller, 2007). Hypermethylation of CpG islands (CGIs) in the
promoters of tumor suppressor genes is a major and early event
during tumorigenesis (Hanahan and Weinberg, 2000; Park et al.,
2011; Udensi and Tchounwou, 2016; Liu et al., 2019). Aberrant
methylation of promoter CGI regions in some genes has been
proven to be associated with tumorigenesis and tumor growth
(Cai et al., 2011; Pistore et al., 2017). Therefore, it is vital to
detect the hypermethylation of promoter CpG islands for early
diagnosis. This may contribute to the early detection of cancer
and improve the therapeutic effect.

In recent years, circulating cell-free DNA (cfDNA), known
as liquid biopsy, has attracted much more attention from the
medical community due to its clinical advantages. As small
double-stranded DNA fragments, cfDNA is released by necrotic
or apoptotic cells and is circulated in the peripheral blood (Jahr
et al., 2001; Stroun et al., 2001). During tumorigenesis, the
increase of cell necrosis and apoptosis leads to the accumulation
of cfDNA, which can be detected at a relatively early stage.
Furthermore, cfDNA not only contains the same mutations as
tumor cells, but also has the same methylation pattern, making
it possible and convenient for early cancer diagnosis, even
for those hidden organs such as the pancreas and bile ducts
(Schwarzenbach et al., 2011).

Methylated DNA immunoprecipitation coupled with high-
throughput sequencing (MeDIP-seq) is a sensitive technology for
the detection of DNA methylation, which can even detect an
initial DNA amount as low as 1 ng (Taiwo et al., 2012; Zhao et al.,
2014). Genome-wide detection of cfDNA methylation profiling
using the MeDIP-seq method has been developed recently for
screening potential biomarkers of cancers in early stages. Based
on cfDNA methylation patterns by MeDIP-seq analysis, (Shen
et al., 2018) identified different potential biomarkers in pancreatic
ductal adenocarcinoma, colorectal cancer, breast cancer, lung
cancer, renal cancer, bladder cancer, and acute myeloid leukemia
for early-stage detection. Xu et al. (2019) also identified a set
of potential biomarkers that could be served in lung cancer
clinical diagnosis by screening cfDNA methylation profiling
using MeDIP-seq.

Therefore, in this study, we aimed to investigate the potential
cfDNA methylation biomarkers in the diagnosis of PDAC. By
MeDIP-seq analysis, we compared the differentially methylated

regions (DMRs) of PDAC cfDNA with that of normal control,
and identified 143 hypermethylated DMRs which were located in
promoter regions and completely overlapped with CGIs in PDAC
patients. After cross-validation with publicly available DNA
methylation data, including 339 pancreatic adenocarcinoma
(PAAD) patients and 357 normal controls, we successfully
identified eight probes from six differentially methylated genes,
containing TRIM73, FAM150A, EPB41L3, SIX3, MIR663, MAPT,
LOC100128977, and LOC100130148, which could be used as
potential biomarkers for early detection for PDAC patients.

MATERIALS AND METHODS

Sample Collection
A total of six samples including four PDAC patients and two
healthy controls were used for this study. Four serum samples
from PDAC patients were supplied by ChangHai Hospital.
All of them signed informed consent forms. Specimens were
collected and analyzed with the approval of the ethics committees
of ChangHai Hospital and School of Medicine, Northwest
University, respectively.

cfDNA Extraction
First, 5 ml peripheral blood was collected using EDTA
anticoagulant tubes before surgery and drug treatment. The
plasma was purified by centrifuge for 15 min at 1500 × g within
6 h of collection. cfDNA was extracted from 800 µl aliquots of
plasma using a QIAamp Circulating Nucleic Acid Kit (Qiagen,
55114) according to manufacturer’s protocol and quantified with
Bioanalyzer 2100 (Agilent Technologies).

MeDIP-seq Library Construction and
Sequencing
The cfDNA MeDIP-seq library was prepared as we described
previously (Xu et al., 2019). In short, approximately 20 ng
cfDNA was ligated with Illumina barcode adapters using a
KAPA Hyper Prep Kit (KAPA, KK8502). The constructed
cfDNA libraries were denatured at 95◦C for 10 min. The
methylated cfDNA was separated from the cfDNA libraries
by immunoprecipitation using the 5-Methylcytosine (5mC)
Monoclonal Antibody (Epigentek, A-1014). MeDIP DNA was
further amplified using a Q5 High-Fidelity DNA Polymerase
(NEB, M0491). After quality assessment using Bioanalyzer 2100
(Agilent Technologies), amplified libraries were subjected to deep
sequencing by the Illumina HiSeq 2000 platform.

Data Processing and Analysis
MeDIP-seq raw data were processed using the Trimmomatic
software (version 0.38) to filter out low-quality reads and
Illumina adapters. The clean reads were mapped to the
human reference genome GRCh37/hg19 (UCSC) using the
Bowtie software (version 2.3.3.1) (Langmead et al., 2009). The
differentially methylated regions (DMRs) between pancreatic
cancer patients and healthy controls were calculated with the
R package MEDIPS (version 1.36.0) (Lienhard et al., 2014), the
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coupling factor for CpG density was generated based on the
normalization of the patient MeDIP-seq data. The function of
region of interest (ROI) analysis in the MEDIPS package was
specifically used to investigate the DNA methylation levels in
UCSC CpG islands, CpG shore (∼2 Kb from islands), and
CpG shelf regions (∼4 Kb from islands)1. Mapping results
were visualized using Integrative Genomics Viewer (IGV)
(Thorvaldsdottir et al., 2013). Pathway analysis was carried with
the Ingenuity Pathway Analysis (IPA) software (Qiagen).

Illumina Infinium HumanMethylation 450K BeadChip Array
(HM450K) data from The Cancer Genome Atlas (TCGA) project
and Gene Expression Omnibus (GEO) were used to validate
our MeDIP-seq results. A total of 696 HM450K sample sets
including 339 PAAD patients and 357 normal controls were
assembled from the TCGA2 and GEO (GSE49149 and GSE40279)
databases. The information about the patient age and gender
of 696 HM450K sample sets are supplied in Supplementary
Table 1. The bioinformatics pipeline and R codes are available
as supplementary code in zenodo3. The variable selection was
performed using the LASSO method (Xu et al., 2017). We
subsampled 75% of the dataset for model building. After 500
iterations, we selected the probes that appeared more than 450
times as covariates, and obtained a total of eight probes. We fitted
a logistic regression model with these candidate markers and
measured the classification performance of the binary classifier
using an area under the ROC curve (AUC).

The Paired Student’s t-test was performed using the processed
beta (β) values (proportion of the methylated signal over
the total signal) to compare the DNA methylation levels
in the probe regions between 339 PAAD sample and 357
normal samples, the p-value for each maker was corrected
by multiple testing with the Benjamini-Hochberg procedure
(Benjamini and Yekutieli, 2001).

Multivariate Cox regression analysis was performed to
construct the prognostic model based on the AIC value. Kaplan-
Meier curves were generated and used to perform survival
analysis using GEPIA4.

RESULTS

Analysis of Global cfDNA Methylation
Profiling in Pancreatic Cancer by
MeDIP-seq
Four plasma samples of PDAC patients and two of healthy
controls were collected, the clinical information of patients is
shown in Table 1. The four PDAC samples were in the IB or
IIB stage which had entered into the early or middle stage of
pancreatic cancer (Table 1) (van Roessel et al., 2018). After being
subjected to quality testing, the size of the cfDNA fragments was
mainly distributed in the range of 150–200 bp with a main peak
of 172 bp, which met the previous criteria where cfDNA showed a

1http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cpgIslandExt.txt.gz
2https://portal.gdc.cancer.gov/projects/TCGA-PAAD
3https://doi.org/10.5281/zenodo.4066412
4http://gepia.cancer-pku.cn/index.html

TABLE 1 | Clinical information of PDAC patients.

Sample Gender Age Stage Histology

P1 Male 59 pT3N1Mx Ductal adenocarcinoma

P2 Male 79 pT3N1Mx Ductal adenocarcinoma

P3 Female 67 pT2N0Mx Ductal adenocarcinoma

P4 Female 56 pT2N0Mx Ductal adenocarcinoma

specific size of∼167 bp (Lo et al., 2010; Thierry et al., 2010). After
immunoprecipitation and amplification, the size distribution
profiles of all cfDNA libraries showed a range from 172 to 292 bp
with a main peak of ∼292 bp including ∼120 bp sequencing
adapters (Supplementary Figure 1). The cfDNA MeDIP libraries
were sequenced with Illumina HiSeq 2000 (a flow chart of the
steps in the analysis is presented in Figure 1). A total of 41
million raw sequenced reads were obtained from PDAC patients,
72.7% of which was mapped to the reference genome (Human
hg19), and 32 million reads from healthy controls of which 54.8%
was mapped. After quality filtering, there were approximately 24
million unique reads of patients and 17 million unique reads of
healthy controls (Table 2).

In order to analyze the whole-genome methylation patterns
between PDAC patients and healthy controls, we performed
the principal component analysis (PCA) to investigate the
genome-wide methylation profiles in the two groups. The
methylation patterns in PDAC patients exhibited a significant
difference from the healthy control groups (Figure 2A). The
unsupervised clustering analysis result further showed that there
was a dramatic change in methylation patterns between PDAC
patients and healthy controls (Figure 2B). This indicates that
there are epigenetic differences between PDAC patients and
healthy people.

Differentially Methylated Regions of
Promoters in Pancreatic Cancer Patients
A total of 5,205 differentially methylated regions (DMRs)
were identified through MeDIP-seq analysis in PDAC patients
(p < 0.05), which included 5,117 hypermethylated regions
(98.3%) and 88 hypomethylated regions (1.7%) as shown in
Supplementary Table 2. The clustering analysis also exhibited
a significant alteration between PDAC patients and controls
(Figure 3A). Previous studies have revealed that aberrant
methylation patterns in the promoter region of tumor suppressor
genes may cause transcriptional silencing which could be a
driving force for cancer development (Herman and Baylin,
2003). We focused on promoter regions and recognized 775
different DMRs (p < 0.0001), including 761 hypermethylated
regions (98.2%) from 532 genes and 14 hypomethylated
regions (1.8%) from 14 genes (Figure 3B and Supplementary
Table 3). These data suggest that most of the promoter regions
are hypermethylated in pancreatic cancer samples, which is
consistent with previous findings that specific hypermethylation
occurring at specific promoter sites likely leads to cancer (Park
et al., 2011; Liu et al., 2019; Zhang et al., 2020).
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FIGURE 1 | The flow chart of screening cfDNA methylation biomarkers in pancreatic cancer.

Differentially Methylated Regions (DMRs)
of CpG Regions in Pancreatic Cancer
Patients
According to the division of the CG content, some areas in the
genome can be determined as CpG islands (CG content > 50%)
(Gardiner-Garden and Frommer, 1987), CpG shores (up to
2 kb from CpG islands) (Irizarry et al., 2009), and CpG shelfs
(≥2 kb from CpG islands) (Nones et al., 2014). It is reported
that 72% of promoters are unmethylated GC-rich (Saxonov
et al., 2006). Here we found that the general methylation
levels of CpG regions in pancreatic cancer patients were higher
than those in normal controls, which showed the median
methylation levels in CGI, CpG shore, and CpG shelf to be
0.39, 0.57, and 0.5475, respectively, compared with 0.265, 0.45,
and 0.41, respectively in controls (Figure 4A). Hypermethylation
of CGI sites in promoter regions is considered as a risk
marker for cancer development and progression (Costello et al.,

TABLE 2 | Statistics summary of MeDIP-seq data.

Sample Number of
total reads

Number of
mapped reads

Mapped
read rate

Number of
unique reads

Unique
read rate

P1 41,251,616 30,099,978 73.0% 25,187,519 83.7%

P2 37,618,679 27,811,589 73.9% 22,962,727 82.6%

P3 54,836,822 40,245,896 73.4% 33,248,824 82.6%

P4 31,699,187 22,318,731 70.41% 17,448,398 78.18%

C1 12,247,801 6,219,267 50.78% 5,547,597 89.20%

C2 53,490,488 31,510,659 58.91% 29,241,359 92.80%

C, healthy control; P, PDAC patient.

2000; Esteller et al., 2001; Widschwendter and Jones, 2002),
therefore, only DMR in CGIs were in focus and used for
further analysis.

A total of 761 DMRs was identified in CGIs of the
whole genome in PDAC patients (p value < 0.0001).
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FIGURE 2 | The methylation patterns of pancreatic cancer patients and healthy controls after MeDIP-seq datasets analysis. (A) Principal component analysis (PCA)
of the methylation profiles between patients and controls. (B) The unsupervised cluster analysis of the genome-wide methylation profiles in patients and controls.

FIGURE 3 | Differentially methylated regions (DMRs) in pancreatic cancer patients and healthy controls. (A) Heat map of total 5,205 DMRs located in the whole
genome of PDAC patients compared to healthy controls, including 5,117 hypermethylated and 88 hypomethylated regions. (B) Heat map of total 775 DMRs located
in the promoter regions of patients compared to healthy controls, including 761 hypermethylated and 14 hypomethylated regions.
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FIGURE 4 | Differentially methylated regions (DMRs) of the CpG regions in pancreatic cancer patients and healthy controls. (A) Violin plots of DMRs located in CpG
islands, CpG shores, and CpG shelfs of PDAC patients compared to controls. (B) Whole genomic and chromosomal location of DMRs in CGIs. (C) The different
features of CGI distribution according to hypermethylated and hypomethylated regions.

Among them, there were 734 (96.5%) hypermethylation
regions from 507 genes and 27 (3.5%) hypomethylation
regions from 26 genes (Supplementary Table 4). The visual
DMR signals of hypermethylation and hypomethylation
in CGIs mapped to the whole genome are shown in
Figure 4B. The distribution features of hypermethylated
and hypomethylated regions in CGIs were further classified
as shown in Figure 4C. A predominant hypermethylation
of DMRs in CGIs was observed, except in the 3′UTR
region (Figure 4C).

Identification of Differentially Methylated
Genes Located in Promoter CGIs in
Pancreatic Cancer Patients
It is reported that the hypermethylation of promoter CGIs
is supposed to be an indicator of the risk of progression or
development of cancers which is associated with the silencing
of tumor suppressor genes (Feinberg, 2005; Park et al., 2011).
We further screened those DMRs which were located in CGIs
promoters. A total of 143 hypermethylated DMRs located in
promoter regions that completely overlapped with CGIs were
identified as candidate DMRs (Figure 5A). The 143 candidate
DMRs were derived from 70 genes. To further understand the
biological associations of the 70 genes, ingenuity pathway analysis
(IPA) was performed and showed that cancer was included in the
top diseases (Figure 5B).

Cross-Validation of Potential Candidate
Genes With Publicly Available DNA
Methylation Data
The 143 candidate DMRs were further annotated to 131 probes
on an Illumina HM450K BeadChip Array (Supplementary
Table 5) and were analyzed by the Least Absolute Shrinkage
and Selection Operator (LASSO) method to select the most
discriminating markers. The 75% HM450K datasets were
randomly selected each time for loop modeling. Eventually, eight
probes were identified as a final selection of markers which
were required to appear over 450 times out of a total of 500
repetitions in the model (Table 3). To evaluate the diagnostic
value of the eight markers, we built a risk prediction model
in training and validation dataset using the logistic regression
method. The HM450K datasets were then divided into a training
cohort of 488 individuals (238 PAAD patients and 250 normal
controls) and a validation cohort of 208 individuals (101 PAAD
patients and 107 normal controls). The final prediction model
achieved a sensitivity of 97.1% and a specificity of 98.0% on the
training cohort, the sensitivity and specificity of the validating
cohort was 93.2 and 95.2%, respectively (Figure 6A). This model
could distinguish PAAD patients from the normal controls
both in the training dataset (the area under the ROC curve,
AUC = 0.975) and the validation dataset (AUC = 0.943). The
prediction performance of the model in two datasets is shown
in Figure 6B. To further characterize the methylation status
of the eight markers in PAAD patients and normal controls,
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FIGURE 5 | Selection and definition of differentially methylated genes in both the CGIs and promoter regions. (A) Hypermethylated DMRs in the overlap of promoter
regions and CGIs. (B) Top disease and bio functions by IPA analysis for genes derived from hypermethylated DMRs located in both the promoter regions and CGIs.

unsupervised hierarchical clustering was performed in 696 cases
of the HM450K datasets (Figure 6C). The result demonstrated
that these eight markers were able to distinguish PAAD patients
from normal controls with high sensitivity and specificity.

Analysis of Relative Methylation Levels
of the Eight Markers Between PAAD
Patients and Normal Controls
To further address whether the eight markers we identified
can distinguish pancreatic cancer patients from the healthy
individuals, we next assessed the methylation levels of the eight
markers in 696 cases including 339 PAAD patients and 357
normal controls. For all eight markers, there was a significantly

difference in the overall methylation levels between the PAAD
patients and normal controls (BH-adjusted p < 0.0001)
(Figure 7). It suggested that the eight markers: MAPT, SIX3,
MIR663, EPB41L3, FAM150A, TRIM73, LOC100128977, and
LOC100130148 may serve as potential biomarkers for the early
diagnosis of pancreatic cancer.

DISCUSSION

Here, we performed a genome-wide epigenetic profiling
assessment in pancreatic cancer patients for screening potential
biomarkers using MeDIP-seq technology in cfDNA. Our
analysis exhibited global changes in cfDNA methylation
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patterns in pancreatic cancer patients. In our study, we found
761 hypermethylated DMRs in promoter regions and 734
hypermethylated DMRs in CGIs derived from pancreatic cancer

TABLE 3 | Characteristics of the eight methylation markers and their coefficients in
PAAD diagnosis prediction.

Markers Ref Gene Coefficients SE z value p-value

cg00394725 TRIM73 −3.1937 0.6835 −4.673 <0.05

cg09442654 FAM150A 0.3357 0.4777 0.703 <0.05

cg26170805 EPB41L3 1.8672 0.781 2.391 <0.05

cg19186145 SIX3 1.877 0.871 2.155 <0.05

cg11220245 MIR663 0.4137 0.4914 0.842 <0.05

cg11909912 MAPT 0.9288 0.5346 1.737 <0.05

cg10780632 LOC100128977 8.7616 3.4814 2.517 <0.05

cg19670923 LOC100130148 0.7289 0.8566 0.851 <0.05

SE: standard errors of coefficients; z value: Wald z-statistic value.

patients, furthermore, a total of 143 candidate DMRs were
identified, located in both the promoter regions and CGIs.
For subsequent analysis, tissue-derived data from TCGA and
GEO was used due to the lack of cfDNA metalation data
in public datasets. Finally, the diagnostic prediction model
of the eight probes was established, including MAPT, SIX3,
MIR663, EPB41L3, FAM150A, TRIM73, LOC100128977, and
LOC100130148. Among these, MAPT, LOC100128977, and
LOC100130148 are the three differentially methylated CpG sites
that hit only one gene locus. The diagnostic prediction model
could effectively distinguish between PAAD patients and normal
controls according to both the training cohort (AUC = 0.975)
and validation cohort (AUC = 0.943). These results represented
promising novel methylation markers for the early diagnosis of
pancreatic cancer.

To determine the prognostic value of the eight markers in
pancreatic cancer patients, Kaplan–Meier survival analysis was
performed (Supplementary Figure 2). Pancreatic cancer patients

FIGURE 6 | Identification of novel pancreatic cancer diagnostic markers from cfDNA methylation analysis. (A) Confusion tables of binary results of the diagnostic
prediction model in the training and validation datasets. (B) ROC of the diagnostic prediction model with methylation markers in the training and validation datasets.
(C) Unsupervised hierarchical clustering of the eight methylation markers selected for use in the diagnostic prediction model.
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FIGURE 7 | The comparison of the methylation level of the eight selected markers between pancreatic cancer patients and healthy controls.

with a high expression of MAPT, EPB41L3, LOC100128977,
and LOC100130148 had an evidently higher overall survival
as compared with those with a low expression of MAPT
(p = 0.0034), EPB41L3 (p = 0.0088), LOC100128977 (p = 0.0077),
and LOC100130148 (p = 0.0017). However, the multivariate Cox
regression analysis indicated that TRIM73, FAM150A, EPB41L3,
SIX3, MAPT, LOC100128977, and LOC100130148 might not
be independent factors for the prognosis of pancreatic cancer
patients (Supplementary Table 6). This may indicate that gene
expression is not only regulated by methylation, but also under
a complex regulatory system. Therefore, these eight markers may
be effective biomarkers for the diagnosis of pancreatic cancer, but
they can not be used as prognostic indicators.

In recent years, there have been a few studies into the
genome-wide detection of cfDNA methylation profiling using
the MeDIP-seq method to screen potential tumor biomarkers.
Shen et al. (2018) collected seven kinds of cancer samples
for MeDIP-seq data analysis and took transcription factors
into consideration while processing the biomarker analysis.
Xu et al. (2019) identified hypermethylated DMRs in the
promoter region for finding early diagnosis markers of lung
cancer. In this study, we aimed to identify biomarkers in
cfDNA which were located both in promoter regions and
CGIs. CGIs are closely related to tumor epigenome, especially
in promoter regions. Lay et al. (2015) demonstrated that
compared to non-CGI promoters, methylation in CGI promoters
had a greater impact on nucleosome phasing and histone
modifications which have an influence on directing the
functional organization of cancer epigenome. Tumorigenesis
often coincides with CGI hypermethylation, leading to the
inactivation of tumor suppressor genes (Namba et al., 2019). In
a study of the genome-wide search for identifying potentially

methylated changes during the progression of colorectal
neoplasia, (Gu et al., 2019) found that hypermethylation
occurred mainly in the overlap regions of CGIs and promoters,
while hypomethylation tended to be far away from functional
regions. Studies in hepatocellular carcinoma and ovarian
cancer also revealed that the methylation status of some
genes in the promoter and CGI regions can be used as
prognosis markers for cancer patients (Dai et al., 2013;
Lee et al., 2016).

Allele-specific methylation (ASM) has been well documented
in imprinted loci. The parental allele 5mC asymmetry would
create allele-specific imprinted differentially methylated regions
(iDMRs). Moreover, it has been recently reported that some
ASM loci undergo cancer-associated epigenetic changes in
hematopoietic cancer. de Sa Machado Araujo et al. (2018)
reported that the maternally inherited 5mCpG imprints for one
gametic (PARD6GAS1) and one somatic (GCSAML) iDMRs
are dysregulated in hematopoietic cancers. Among the eight
methylated probes that could potentially serve as diagnosis
markers in this study, we found four markers that were allele-
specific methylated, including EPB41L3, SIX3, MIR663, and
MAPT, suggesting that ASM also occurs in solid malignancies.
Unlike whole-genome bisulfite sequencing (WGBS), which
could detect the methylation state of nearly each CpG site,
MeDIP technology uses an anti-methylcytosine antibody at
a resolution of 100–300 bp. Therefore, MeDIP could not
distinguish DNA methylation at a single base resolution (Yong
et al., 2016). So ASM could not be included in the current
study. Pancreatic cancer is a highly lethal disease, the lack
of early detection and optional treatment is the main reason.
Therefore, as a non-invasive micro diagnostic technology, cfDNA
combined with MeDIP-seq is expected to be an effective
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method for early clinical diagnosis. In our analysis, MAPT,
SIX3, MIR663, EPB41L3, FAM150A, TRIM73, LOC100128977,
and LOC100130148 exhibited statistically significant differences
between pancreatic cancer patients and the healthy controls
(Figure 7). MAPT is a potential predictive biomarker of
the efficacy of SG410, a benzoylphenylurea sulfur analog for
pancreatic cancer treatment (Jimeno et al., 2007). Tumor
suppressor SIX3 is reported to inhibit cell proliferation,
migration, and invasion in glioblastoma and breast cancer
(Zhang et al., 2017; Zheng et al., 2018; Yu et al., 2020). MIR663
could act as a tumor suppressor in gastric cancer (Pan et al.,
2010) and glioblastoma (Shi et al., 2014). FAM150A is a potential
prognostic marker of clear cell renal cell carcinomas (Tian et al.,
2014). Taken together, these markers, which we identified in the
plasma of pancreatic cancer, may have potential clinical values.

CONCLUSION

In summary, by analyzing genome-wide cfDNA methylation
profiling using the MeDIP-seq method, we established a set
of eight potential biomarkers which might be applied in non-
invasive diagnosis of early-stage pancreatic cancer.
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