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Breast cancer (BC) is the leading cause of cancer death among women worldwide.
The molecular mechanisms of its pathogenesis are still to be investigated. In our study,
differentially expressed genes (DEGs) were screened between BC and normal tissues.
Based on the DEGs, a weighted gene co-expression network analysis (WGCNA) was
performed in 683 BC samples, and eight co-expressed gene modules were identified. In
addition, by relating the eight co-expressed modules to clinical information, we found the
blue module and pathological stage had a significant correlation (r = 0.24, p = 1e–10).
Validated by multiple independent datasets, using one-way ANOVA, survival analysis
and expression level revalidation, we finally screened 12 hub genes that can predict BC
progression and prognosis. Functional annotation analysis indicated that the hub genes
were enriched in cell division and cell cycle regulation. Importantly, higher expression of
the 12 hub genes indicated poor overall survival, recurrence-free survival, and disease-
free survival in BC patients. In addition, the expression of the 12 hub genes showed a
significantly positive correlation with the expression of cell proliferation marker Ki-67 in
BC. In summary, our study has identified 12 hub genes associated with the progression
and prognosis of BC; these hub genes might lead to poor outcomes by regulating the
cell division and cell cycle. These hub genes may serve as a biomarker and help to
distinguish different pathological stages for BC patients.

Keywords: breast cancer, WGCNA, progression, cell cycle, prognosis

INTRODUCTION

In 2018, there are approximately 2.1 million new cases of breast cancer (BC) and 630,000 deaths
worldwide (Bray et al., 2018). Although adjuvant therapies have reduced BC-related mortality, up to
25% of patients will develop tumor relapse (Early Breast Cancer Trialists’ Collaborative Group et al.,
2012; Howlader et al., 2014). The mortality of BC is largely due to recurrent tumors (Berry et al.,
2005). BC patients with higher clinical stage are more likely to recurrence and have worse prognosis
(Garcia-Murillas et al., 2015). Genetic mutations have a key role in the progression of BC. About
20% of triple-negative BC patients have BRCA mutation, while BRCA mutations are rarely found
in the healthy population (Trainer et al., 2011). Over 30% of BC patients have overexpressed HER2.
Ki-67 was reported to be associated with disease-free survival of BC (Kontzoglou et al., 2013).
BRAF mutations were present in over 3% of metastatic BC patients (Cejalvo et al., 2016). Although
there have been great advances in the treatment of BC, the ability to treat advanced BC is still
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limited due to the lack of precise molecular targets (Meng et al.,
2016). Therefore, more novel candidate genes are needed to
improve early diagnosis and treatment decisions.

Many studies have suggested that genes were involved in
tumor progression and prognosis (van Kessel et al., 2018;
McFaline-Figueroa et al., 2019). Gene expression profiles such
as microarray and RNA-sequencing are common ways to
determine biomarkers related to progression of various cancers
(Dahinden et al., 2010; Gerlinger et al., 2014). However, most
published studies have focused on the screening of differentially
expressed genes (DEGs), ignoring the high connection between
genes, although genes with similar expression patterns may be
functionally related (Tavazoie et al., 1999). Therefore, it is very
limited to merely focus on DEGs between normal and tumor
cells, and more attention should be paid to combination of gene
expression pattern and clinical features, such as tumor stage,
histological grade, invasiveness, etc.

Co-expression networks are widely used to decipher disease
mechanisms and provide a systematic view of dysregulation
pathways (Nayak et al., 2009). The basic theory of co-expression
analysis is that co-expressed genes may be functionally related.
Weighted gene co-expression network analysis (WGCNA) is
an open source tool to perform co-expression analysis based
on the theory. WGCNA integrates the expression differences
between samples into a higher-order network structure, and
clarifies the relationship between genes based on their co-
expression profiles. The WGCNA algorithm has been used to
investigate the associations between gene modules and clinical
indicators in the field of cancer research (Langfelder and
Horvath, 2008). Specifically, WGCNA was applied to identify
key genes significantly associated with clinical indicators of
tumor progression including tumor stage, grade, and metastasis
(Chen L. et al., 2017; Chen P. et al., 2017). WGCNA has
been used to identify biomarkers related to BC progression in
recent publications. Tang et al. screened several prognostic genes
including CCNB2, FBXO5, KIF4A, MCM10, and TPX2 using
WGCNA (Tang et al., 2018). Another recent study suggested
that four hub genes (FAM171A1, NDFIP1, SKP1, and REEP5)
were identified as candidate biomarkers for BC (Tian et al.,
2020). WGCNA was also used to identify key modules and
pathways in BC. Our study intends to use this algorithm to
identify biomarkers associated with progression of BC. We try
to construct a co-expression network of genes and identify
the network hub genes related to the clinical characteristics of
BC, and use various databases (GEO, TCGA, and STRING) to
verify our results.

MATERIALS AND METHODS

Data Collection
Normalized gene expression data and corresponding clinical
information were downloaded from Gene Expression Omnibus
(GEO)1. Datasets GSE42568 (Cheng et al., 2017) performed
on the platform Affymetrix Human Genome U133 Plus 2.0

1http://www.ncbi.nlm.nih.gov/geo/

Array included gene expression profiling of 104 BC and 17
normal breast biopsies. GSE42568 was analyzed to screen
differential expressed genes (DEGs). Dataset GSE102484 (Kao
et al., 2011) also performed on Affymetrix Human Genome
U133 Plus 2.0 Array included 683 BC samples, which was
used to perform weighted gene co-expression networks. Dataset
GSE20685 (Sabatier et al., 2011b) had gene expression profiles
of 327 BC samples. Dataset GSE21653 (Sabatier et al., 2011a)
had 266 samples and was used for Ki-67 correlation analysis and
module preservation analysis. In addition, 992 BC samples with
RNA-seq data were obtained from the Cancer Genome Atlas
(TCGA) database. GSE20685 and TCGA were both used for
stage validation.

Screening for DEGs
Normalized gene expression matrix and corresponding
annotation files were obtained from GEO database. Firstly,
we used the annotation files to annotate the probes. DEGs
between normal and tumor breast samples were identified by R
package “limma” (Ritchie et al., 2015). The cut-off criteria were
the FDR (false discovery rate) < 0.01 and |log2(fold change)| ≥ 1.

Weighted Gene Co-expression Network
Construction
Based on the expression values of all DEGs of 683 BC samples
and the corresponding clinical information (GSE102484), the
“WGCNA” (Langfelder and Horvath, 2008) R package was used
for the co-expression network (Langfelder and Horvath, 2008).
Before constructing the co-expression network, outlier samples
should be excluded by sample clustering using Pearson’s method.
According to the tutorial of WGCNA, we firstly verified the
qualification of genes and samples. Then we construct the
Pearson correlation matrix, and use the formula amn = |cmn|β
(cmn represents the Pearson correlation between genes, amn
represents the adjacency between genes, β parameter can amplify
the correlation between genes) to obtain the weighted adjacency
matrix. The soft threshold power β is determined based on
the standard scale-free network. Subsequently, we converted the
adjacency relationship into a topological overlap matrix (TOM)
(Yip and Horvath, 2007), and hierarchically clustered genes to
identify modules containing similar genes. In this study, we
selected the minimum size as 30 for the gene dendrogram,
selected the cutting line (0.25) for the modular dendrogram, to
merge some similar modules.

Identify Modules With Clinical
Significance and Functional Annotations
It is of great biological significance to identify modules most
significantly associated with clinical features. Based on the
similarity expressed in samples, gene modules with clinical
significance were identified by correlation analysis. We selected
the gene modules most relevant to clinical features as the modules
of interest, and analyzed their correlation with clinical features.
In addition, in order to further clarify the potential mechanism
of module of interest affecting clinical features, the genes
were uploaded to DAVID (Dennis et al., 2003) (The Database
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for Annotation, Visualization, and Integrated Discovery) for
GO function enrichment analysis. False transmission rate
(FDR) < 0.01 was considered statistically significant.

Module Preservation Analysis
Module preservation analysis was conducted to ensure the
identified gene modules could also be found in the test network
(Langfelder et al., 2011). To evaluate the module preservation,
we applied median rank and Zsummary via permutation testing
in the “WGCNA” package. Considering the computational
complexity involved in the size of our network, the permutation
was executed 200 times. According to the threshold set in a
previous study (Langfelder et al., 2011), modules with ZSummary
scores > 10 indicate preservation, 2–10 indicate weak to
moderate preservation, and < 2 indicate no preservation in the
permutation. The dataset GSE21653 was used for preservation
analysis including 266 BC samples.

Hub Gene Identification and Validation
Hub genes have a significant correlation with clinical
characteristics (Gene significance, GS), and have a high module
characterization (Module Membership, MM) in the module.
Hub genes, also called key genes, are a group of genes with the
highest connectivity, and determine the characteristics of the
gene module. There are two ways to identify the key genes in the
module according to the official tutorial of WGCNA (Langfelder
and Horvath, 2008). The first is to directly determine the key
genes based on GS and MM greater than a certain threshold.
Specifically, the screening criterion with GS greater than 0.2 and
MM of more than 0.8 are often used. The second is to use the
“networkScreening” function, which can be used to calculate the
weighted P-value p.weighted of each gene. Our study chose the
first way to identify hub genes. In order to ensure the reliability
of the hub genes, we used other independent datasets to validate
the expression of hub genes in different tumor stages. We
used BC samples from other independent datasets to compare
hub gene expression at different pathological stages. We also
obtained prognostic data for hub genes and analyzed the survival
time of each gene.

RESULTS

Screening DEGs in BC Tissue Samples
The flow chart of the study is shown in Supplementary Figure S1.
When the cut-off criteria is FDR < 0.05 and |log2 (FC)| ≥ 1,
3046 DEGs were screened between 104 BC and 17 normal breast
biopsies from dataset GSE42568. The heatmap of all DEGs was
shown in Figure 1A. Pathway and functional enrichment analysis
showed that the upregulated DEGs were significantly enriched
in cell proliferation and migration related pathways, including
cell division, positive regulation of cell proliferation, cell–cell
adhesion, cell migration etc. The downregulated DEGs were
associated with metabolism related pathways, such as metabolic
process, glucose homeostasis, and fatty acid beta-oxidation.

Identifying Co-expression Network and
Module Preservation Analysis
Co-expression analysis included 683 BC samples and their
complete clinical data and 3046 differential gene expression
data. Four outlier samples were excluded after the samples were
clustered by correlation analysis (Figure 1C and Supplementary
Figure S2A). We used WGCNA R package and classified
differential genes with similar expression patterns into different
modules by average link clustering. When the soft threshold
β was selected as 8, the genes in the network was scale-
free (Supplementary Figures S2B–E). Different modules were
identified, and the genes in the same module had a similar
co-expression trend. A total of 8 modules were identified after
the modules with a similar co-expression trend were combined
(Figure 2A). The genes in the gray module were not co-
expressed (Figures 2A,B). We did module preservation analysis
by comparing the identified gene modules above with the test
dataset GSE21653 to ensure the repeatability of the modules. As
shown in Figures 3A,B, since the Zsummary statistic of the blue
module was higher than 10 and the median rank statistic was
close to the minimum in the test dataset, the module showed
considerable stability.

Identifying Clinically Significant Gene
Modules
The main purpose of WGCNA is calculating the correlation
between different modules and clinical features, and identifying
the modules most relevant to clinical features, which has
important biological significance. We used Pearson’s correlation
analysis to calculate the correlation coefficients between different
gene modules and clinical features, and found that the blue
module and tumor stage (R = 0.24, p = 1e–10) has the highest
correlation, and it also has a significant correlation with the
tumor T stage (t.stage, R = 0.23, p = 2e–9) Figure 1B. The bar
plot in Figure 2C also showed that the blue module had the
highest gene significance across all modules. Therefore, the blue
module is identified as a clinically significant module for further
analysis. To investigate the functional role of the 504 genes of
the blue module, we performed GO enrichment analysis and
found that the biological process mainly focused on cell cycle and
cell division (all p < 0.01, Figure 3C). Under the threshold of
p < 0.01, Figure 3C showed the genes included in the three top
biological processes including chromosome segregation, mitotic
nuclear division, and organelle fission.

Identification and Validation of Hub
Genes
Different methods were used to identify the hub gene from
the hub module. Firstly, 504 genes in the stage-related module
(blue module) are screened by module membership (MM) and
gene significance (GS). As mentioned in section “Materials
and Methods,” when the absolute value of MM is greater
than 0.8 and the absolute value of GS is greater than 0.2,
36 hub genes were identified (Figure 3E). The PPI network
showed that 62 genes with the top connectivity degree were
identified as hub genes under the cutoff of confidence > 0.4
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FIGURE 1 | Heatmap of the DEGs, GO functional annotation and clustering dendrogram of 683 tumor samples. (A) The heatmap shows the DEGs between 104 BC
and 17 normal breast samples based on the dataset GSE42568. (B) The bubble plot shows the enriched biological processes of the upregulated genes and
downregulated genes. (C) The clustering of 683 BC samples based on all DEGs expression and clinical features. The color intensity represents older age and higher
stage.
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FIGURE 2 | Identifying co-expressed modules and the correlation between modules and the clinical features. (A) Dendrogram of all DEGs clustered based on a
dissimilarity measure (1-TOM). (B) Correlation heatmap showed the correlation coefficients between gene modules and clinical features of BC. (C) The bar plot
showed the distribution of average gene significance at different modules.

and connectivity degree of ≥ 4 (node/edge) (Figure 3D and
Supplementary Figure S6). One-way ANOVA analyses were
performed to validate candidate hub genes in the datasets
GSE102484, GSE20685, and TCGA-BRCA, and 30 of 36 genes
could be verified. As tumor prognosis was always affected by
tumor progression, the candidate hub genes were validated by
overall survival analysis (OS), recurrence-free survival analysis
(RFS), and metastasis-free survival analysis (MFS), which showed
that most of the hub genes had significant P-values in different
test sets (Figures 3F, 6, 7 and Supplementary Figures S4, S5).
We regarded the common genes with statistical significance
in different methods to the candidate hub genes, and 12
genes were finally screened (AURKA, BUB1B, CCNB2, CDK1,
CDT1, HJURP, KIF20A, KIF2C, KIF4A, MELK, TPX2, UBE2C)
(Figures 4A–C). As we all know, MKi67 is a cell proliferation
marker, and the correlation coefficient between the candidate

hub gene and MKi67 was calculated by Pearson correlation. The
results showed that the expression of 12 candidate hub genes was
highly positively correlated with MKi67. In addition, BC samples
with stronger KI67 IHC staining showed higher gene expression
of hub genes (Figures 5A–C).

DISCUSSION

By 2019, about 268,600 invasive BC and 48,100 DCIS cases were
diagnosed among American women, and 41,760 women will die
of the disease. About 13% of women will be diagnosed with
invasive BC (DeSantis et al., 2019). From 2009 to 2015, the 5 years
survival rate for women diagnosed with BC was stage I: 98%, stage
II: 92%, stage III: 75%, and stage IV: 27% (Marinac et al., 2016).
Because TNM staging focuses on the anatomical information of
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FIGURE 3 | Module preservation analysis and functional enrichment of clinically significant module. (A) The medianRank statistics of the module preservation using
independent dataset GSE21653. The medianRank of the modules close to zero indicates a high degree of module preservation. (B) The Zsummary statistics of the
module preservation using independent dataset GSE21653. These horizontal lines represent the Zsummary threshold (Z = 2 and Z = 10), which is used to indicate
strong evidence of preservation (above 10) and low to moderate preservation (above 2). (C) Biological processes of genes in the blue module. The x-axis is the gene
ratio, which is the ratio of enriched genes to the total number of genes in the term. (D) The three top-ranked biological processes and the corresponding genes of
the blue module. (E) Scatter plot shows the gene module membership and gene significance of the blue module. (F) Common genes with statistical significance in
different methods, including survival, one-way ANOVA, Pearson’s correlation, and co-expression analysis.
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FIGURE 4 | Stage validation of hub gene. (A) Relative expression of the 12 hub genes at different stages in the GSE102484. (B) Relative expression of the 12 hub
genes at different stages in TCGA BRCA. (C) Relative expression of the 12 hub genes at different stages in the GSE20685. The medians and dispersions are shown
in the boxplot. One-way ANOVA is used to test statistical significance. *p < 0.05, **p < 0.01, ***p < 0.001.

the tumor, the disease progression and prognosis of BC patients
cannot be fully evaluated. So, our study aimed to find biomarkers
that could adequately predict BC progression and prognosis.

WGCNA has been widely used in the screening of biomarkers
that predict disease progression (Chen L. et al., 2017). WGCNA

is an algorithm for mining gene module information from
expression profile analysis chips, and it has been widely used in
gene expression profile data analysis (Langfelder and Horvath,
2008). In this method, a module is defined as a set of genes, where
genes have similar expression trends in different physiological
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FIGURE 5 | Pearson’s correlation analysis for the expression of Ki67 and the candidate hub genes. (A) The gene expression of the hub genes in Ki-67 IHC staining
high and low BC samples. (B,C) The Pearson’s correlation between the expression of MKi67 and the hub genes.
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FIGURE 6 | Overall survival (OS) analysis of the candidate hub genes. Overall survival analysis of the candidate hub genes based on GSE20685. The red line is the
high gene expression group, and blue line is the low gene expression group. The unit of time is year.

processes or different samples. After identifying gene modules
with WGCNA, the correlation between gene modules and clinical
characteristics such as tumor stage and grade is calculated. In
this way, the gene modules most relevant to clinical features
can be used to explore the main causes of tumor development.
The characteristic of the scale-free network is that there are
some nodes, the connectivity of these nodes is much higher than
that of ordinary nodes, and the “few” nodes genes are defined
as central genes (Niemira et al., 2019). Therefore, the study
on the correlation between the module of interest and certain
clinical features can be simplified to the correlation between
the module of interest and the hub genes, so as to provide
an important molecular basis for studying the mechanism of
disease (Chen L. et al., 2019; Tian et al., 2019; Wang et al.,
2019). By comparing different histological levels of BC, molecular
targets have been identified to distinguish different stages of
BC (Tian et al., 2020). We use systematic biology methods to
identify specific biomarkers of BC based on a large number of
samples. In our study, eight co-expression gene modules were
determined by the dynamic tree cutting method. Correlation
analysis shows that the blue module has the highest correlation
with tumor staging, identifying the hub gene with the highest
connectivity from the hub module. The functional annotations of
clinical related modules suggest focusing on the cell proliferation

related pathways, such as organelle fission, nuclear division, and
chromosome segregation. WGCNA has been used to identify
biomarkers related to BC progression. In comparation with
recent studies, Tang et al. used WGCNA to screen several
prognostic genes, including CCNB2, FBXO5, KIF4A, MCM10
and TPX2. These five genes are all related to cell division, which
is consistent with our results. Among them, three genes are
consistent with the results we found. However, the difference
is that we have more BC samples to discover and validate, and
our results are complementary to their findings. In addition,
we have included more methods, including module preservation
analysis and protein–protein interaction (PPI) to make our
findings convincing.

In this study, 12 pathological hub genes (AURKA, BUB1B,
CCNB2, CDK1, CDT1, HJURP, KIF20A, KIF2C, KIF4A, MELK,
TPX2, and UBE2C) that are significantly related to the
pathological stage were identified and verified, and significant
differences can also be found in the expression value of each
hub gene between different tumor stages and grades. Further
verification also confirmed that the 12 hub genes were positively
correlated with the progression of BC, and their expression was
also related to the prognosis of BC patients. Aurora kinase A
(AURKA), a member of the serine/threonine kinase family, plays
an important role in mitotic cell division and genetic instability
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FIGURE 7 | Disease-free survival (DFS) analysis of the candidate hub genes. Disease-free survival of the candidate hub genes based on GSE21653. The red line is
the high gene expression group, and blue line is the low gene expression group. The unit of time is month.

(Wu et al., 2018). It has been reported to stabilize FOXM1 by
attenuating its ubiquitination in triple-negative breast cancer
(TNBC), thus promoting proliferation of TNBC cells (Gartel,
2017). It has also been found to inhibit autophagy induction,
suggesting that it may be the mechanism of drug-resistant BC cell
apoptosis26. BUB1 mitotic checkpoint serine/threonine kinase
B (BUB1B) encodes is a kinase involved in spindle testing.
This protein plays a key role in the cell cycle (Lee et al.,
2017). Its mRNA level has been found to be associated with
intrachromosomal instability (Lee et al., 2017). Cyclin-dependent
kinase 1 (CDK1) is a mitotic kinase, it mainly mediates tumor-
related cell cycle defects, misregulated CDK1 may cause tumor
cell proliferation and genome instability (Prevo et al., 2018).
It has been reported that CDK1 could directly phosphorylate
AMPK and promote the progress of BC (Galindo-Moreno
et al., 2017). Other hub genes also play an important role in
promoting cancer in BC.

There are still some limitations to our research. First, all
data used in our study were based on publicly available datasets
without validating in prospective clinical trials. Moreover, several
important clinical factors, such as tumor size and lymph node
metastasis, were not provided in these datasets. Finally, the
mechanism between these gene signatures and BC recurrence
still needs further experimental verification. In conclusion,
through high-throughput screening and further screening by the

WGCNA algorithm, we finally identified 12 hub genes that were
significantly related to the progress and prognosis of BC after
layers of validation.
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Supplementary Figure 5 | Recurrence-free survival (RFS) analysis of the
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