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Eukaryotic cells contain numerous components, which are known as subcellular
compartments or subcellular organelles. Proteins must be sorted to proper subcellular
compartments to carry out their molecular functions. Mis-localized proteins are related
to various cancers. Identifying mis-localized proteins is important in understanding the
pathology of cancers and in developing therapies. However, experimental methods,
which are used to determine protein subcellular locations, are always costly and time-
consuming. We tried to identify cancer-related mis-localized proteins in three different
cancers using computational approaches. By integrating gene expression profiles and
dynamic protein-protein interaction networks, we established DPPN-SVM (Dynamic
Protein-Protein Network with Support Vector Machine), a predictive model using the
SVM classifier with diffusion kernels. With this predictive model, we identified a number
of mis-localized proteins. Since we introduced the dynamic protein-protein network,
which has never been considered in existing works, our model is capable of identifying
more mis-localized proteins than existing studies. As far as we know, this is the
first study to incorporate dynamic protein-protein interaction network in identifying
mis-localized proteins in cancers.

Keywords: protein subcellular localization, differentially gene expression, protein-protein interactions, mis-
localized proteins, diffusion kernel

INTRODUCTION

Eukaryotic cell is the most basic structural and functional unit of eukaryotic living creatures.
Every cell contains numerous more basic components named subcellular compartments or
subcellular organelles (Reece, 2015). According to the presence or absence of membranes, these
subcellular organelles can be divided into two categories, the membrane bounded subcellular
compartments and the non-membrane bounded subcellular structures (Perez-Ordonez et al.,
2006). The membrane bounded subcellular compartments are those compartments surrounded
by a single or double lipid layer membrane, such as mitochondria, nucleus and chloroplasts
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(in photosynthetic organisms). The non-membrane bounded
subcellular structures, for example, the ribosomes, the
cytoskeletons and the centrioles, are those structures without
a membrane.

Proteins, which are translated in cytosol or rough ER
(Endoplasmic Reticulum), must be transported to proper
compartments during or after the translations to perform their
biological functions (Mitra et al., 2006; Nyathi et al., 2013;
Johnson et al., 2013). This process is known as the protein
sorting process (Alberts et al., 2002). The subcellular organelles,
where a protein performs its biological functions, are called the
subcellular localization of the protein. A protein may have one
or more than one subcellular localizations (Cheng et al., 2017).
In complex disease conditions, some proteins may be sorted
to incorrect subcellular locations, which results in abnormal
intracellular behavior (Lee et al., 2008). For example, Zellweger
syndrome is a rare congenital disorder characterized by the
reduction or absence of functional peroxisomes in the cells of an
individual (Brul et al., 1988). A study showed that many diseases
such as Swyer syndrome, speech-language disorder, Alzheimer’s
disease, kidney stones and Diamond-Blackfan anemia were all
associated with mis-localized proteins (Hung and Link, 2011).
Therefore, tracking alternative subcellular locations in different
cellular conditions is important in understanding the pathology
of complex diseases, like cancers.

With the help of automatic image processing and
understanding technology, the first comprehensive human
protein localization map was finally established (Uhlen et al.,
2010; Thul et al., 2017). However, the experimental methods
used to establish this kind of comprehensive localization map is
still costly and time consuming (Horwitz and Johnson, 2017),
which makes it difficult to establish this kind of localization
map in different cellular conditions, such as disease conditions,
drug perturbations and environmental stress conditions.
Therefore, computational prediction approaches are still
demanded in analyzing altered protein subcellular locations in
different conditions.

During the last twenty years, hundreds of works have been
done in predicting protein subcellular locations using various
types of information at various levels of cellular structure in
various species (Chou and Shen, 2006; Briesemeister et al., 2010;
Mooney et al., 2011; Zhou et al., 2017; Cheng et al., 2017).
For example, many works have been done in predicting protein
subcellular locations using protein sequences and sequence
related information (Chou and Shen, 2007; Du et al., 2011; Du
and Xu, 2013). Most of these works rely on machine learning
algorithms (Chou, 2011). Unfortunately, almost all existing
studies, which focus on predicting protein subcellular locations,
only predict subcellular locations for a given protein in only one
condition (Liu and Hu, 2016).

This is because almost all existing studies of this kind utilize
only the static information as the input data. For example, most
of the existing methods tried to extract informative features from
the primary sequence of proteins, while the mutations and the
SNPs were not taken into considerations. For another example,
some of the existing methods make use of the gene ontology
annotations, as well as the functional domain composition of

proteins (Zhou et al., 2017). There is still no distinguishable
information that can be extracted from the gene ontology
annotations or the functional domain compositions for different
cellular conditions.

Several existing methods are designed to find the alternative
protein subcellular locations in different cellular conditions.
PROLocalizer makes use of sequence mutations to detect mis-
localized protein in diseases (Laurila and Vihinen, 2009, 2011).
Lee et al. integrated protein sequences, PPI (Protein-Protein
Interaction) networks, and gene expression profiles to predict
mis-localized proteins in glioma (Lee et al., 2008). Liu and Hu
improved the Lee’s method to predict mis-localized protein in
several types of cancers (Liu and Hu, 2016).

In these existing works, the information to distinguish
different cellular conditions comes from two sources, one is the
mutations and SNPs, while the other is the differential gene
expressions. Although the gene mutation and SNP information
is useful, it is not easy to utilize them in sequence based
features. On the contrary, many gene expression datasets have
been deposited in the NCBI GEO (Gene Expression Omnibus)
database (Barrett et al., 2013), which have been proved to be
useful if they are combined with the protein-protein interaction
networks (Ideker and Krogan, 2012). Therefore, combining the
gene expression profiles and the PPI network is a feasible way to
explore mis-localized proteins in cancers, as well as other kinds
of complex diseases.

Although state-of-the-arts methods, which applied gene
expression profiles and PPI networks to predict mis-localized
proteins in cancers, have achieved success in several specific
types of cancers, it should be noted that these methods have two
common issues.

First, all state-of-the-arts methods used identical PPI network
structures in both the disease and non-disease conditions. This
is the result of lacking PPI network data in specific disease
conditions. However, if a protein is mis-localized in the disease
condition, its interacting proteins must be changed, as the
physical distances between the mis-localized protein and the
other proteins are changed. Therefore, the topological structure
of the PPI network in the disease condition must not be identical
to the non-disease condition.

Second, as the topological structure of the PPI network
should be changed in the disease condition, the difference of the
topological structure of the PPI network should be utilized to
predict mis-localized proteins.

In this work, we tried to solve the above two issues by
building a model named DPPN-SVM (Dynamic Protein-Protein
Network with Support Vector Machine). We made changes to
the PPI network in the non-disease condition according to the
changes of co-expression scores in disease condition to establish
an adjusted PPI network in the disease condition. We applied
the ECC (edge clustering coefficient), which has already been
applied in predicting essential proteins and protein subcellular
locations (Wang et al., 2012; Du and Wang, 2014), to extract the
PPI network structure information. By training SVM classifiers
with diffusion kernels (Kondor and Lafferty, 2002) on the PPI
network, we can predict protein subcellular locations in different
cellular conditions. We developed a mis-localization score, which
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describes how likely a protein will move to or leave from a specific
subcellular location in a specific cellular condition. We hope
this work may provide a better way in predicting mis-localized
protein in various types of cancers.

MATERIALS AND METHODS

PPI Network Construction
We downloaded our PPI data from the BioGRID database
version 3.5.179 (Oughtred et al., 2019). To construct a high
quality working dataset, we screened the raw PPI data strictly
using the following criteria. (1) Only interactions between two
human proteins were kept. (2) The interactions between two
identical proteins were discarded, as this kind of interactions
does not provide useful information for protein subcellular
localizations. (3) Duplicate interaction records were reduced to
unique interactions. (4) Only physical interactions were kept.
All other types of interactions were removed. This is because
the physical interactions implied that the two interactors have
a very short physical distance, which contributes to protein
subcellular location predictions. To achieve this, we kept only
those interaction records with interaction type MI:0915 (physical
association) or MI:0407 (direct interaction). After all above
filtering procedures, we obtained 341088 interactions involving
23810 proteins.

Subcellular Localization Annotations
We obtained reviewed human protein records from the UniProt
database (UniProt Consortium, 2019), which include 20432
proteins. We employed the online ID mapping function of the
UniProt database to convert the BioGRID protein IDs of every
node in the PPI network to the UniProt database IDs. There
are 16319 proteins in our PPI network, which can be mapped
uniquely between the UniProt database and the BioGRID
database. Although this covers just about 68% nodes in the
PPI network, the number of interactions between these mapped
proteins is 301366, which covers over 88% of all interactions.

After the mapping procedure, we transferred the GO
(Gene Ontology) annotations in cellular component ontology
category from the UniProt records to the BioGRID proteins.
We chose the following 12 subcellular locations, including
Cell cortex(GO:0005938), Cytosol(GO:0005829), Actin
cytoskeleton(GO:0015629), Golgi apparatus(GO:0005794),
Endoplasmic reticulum(GO:0005783), Nucleolus(GO:0005730),
Peroxisome(GO:0005777), Mitochondrion(GO:0005739),
Lysosome(GO:0005764), Centrosome(GO:0005813),
Nucleus(GO:0005634), and Plasma membrane(GO:0005886).
When the GO annotations were transferred from the Uniprot
records to the BioGRID proteins, we choose to transfer only
those GO terms with experimental evidences. This is achieved
by choosing only those terms with evidence code IDA (Inferred
from Direct Assay) or HDA (Inferred from High Throughput
Direct Assay). We have 6461 BioGRID proteins that were
experimentally annotated with at least one of the above 12
subcellular locations.

Among the 6461 annotated BioGRID proteins, there were
4112 proteins with only one subcellular location, 1731 proteins
with two locations, 503 proteins with three locations, 98 proteins
with four locations, 15 proteins with five locations and 2 proteins
with six locations. The average multiplicity degree of the dataset
was 1.48. The breakdown of the dataset for different location
multiplicity is illustrated in Figure 1A.

Virtual Locative Proteins
Since one protein may have more than one subcellular locations,
it is necessary to introduce the virtual locative protein concept
(Chou and Shen, 2006). In the view of machine learning,
computational prediction of multiple subcellular locations for a
single protein is a multi-label classification problem. Therefore, it
should be converted to a single-label classification problem before
it can be dealt with traditional machine-learning algorithms.

Every protein with κ (κ > 1) subcellular locations was split into
κ virtual locative proteins. Each of the κ virtual locative proteins
has one and only one of the κ subcellular locations. For example,
if a protein pi has two subcellular locations l1 and l2, we split the
protein pi into two different virtual proteins, located at l1 and
l2, respectively.

The virtual locative proteins inherited the properties of the
original real proteins, including all PPI connections and gene
expression profiles. Since the virtual locative proteins have
different subcellular locations, we assumed that there is no PPI
between the virtual locative proteins that are generated from the
same real protein.

The original 6461 proteins with experimentally annotated
subcellular locations are split into 9562 virtual locative proteins,
resulting in a multiplicity degree of 1.48. Therefore, the number
of proteins that are mapped between UniProt and BioGRID
increased to 19420, which is about 120% of the original. The
number of PPI in the network increased to 601693, which is
about 200% of the original. Figure 1B gives the breakdown of
the dataset in the term of virtual locative proteins in different
subcellular locations.

Edge Clustering Coefficients
Edge clustering coefficient was originally developed in analyzing
social networks (Radicchi et al., 2004). It has been introduced in
identifying essential proteins (Wang et al., 2012), as well as in
predicting protein subcellular locations (Du and Wang, 2014).
Particularly, ECC has been proved to be an indicator of whether
two interacting proteins tend to have common subcellular
locations (Du and Wang, 2014). For a pair of interacting proteins,
which can be noted as the u-th and the v-th proteins, the ECC can
be defined as follows:

ηu,v =
zu,v

min
(
du − 1, du − 1

) , (1)

where ηu,v is the ECC between the u-th and the v-th proteins,
zu,v the number of triangles that involve the edge between the
u-th and the v-th proteins, and du and dv the degree of the u-th
and the v-th proteins, respectively.

The denominator in Eq (1) represents the possible most
number of triangles that may involve the u-th and the v-th
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FIGURE 1 | The summary of dataset. (A) The number of proteins with different number of subcellular locations. Among the 6461 annotated BioGRID proteins, there
were 4112 proteins with only one subcellular location, 1731 proteins with two locations, 503 proteins with three locations, 98 proteins with four locations, 15 proteins
with five locations and 2 proteins with six locations. The average multiplicity degree of the dataset was 1.48. (B) The number of locative proteins in different
subcellular locations. There are 6461 proteins with experimentally annotated subcellular locations in the dataset. Because one protein may have more than one
subcellular location, the number of locative proteins is 9562.

proteins. We set ηu,v = 0 in the case that the denominator is
degraded to zero.

Diffusion Kernel Matrix
In order to apply machine learning techniques to graph-
like structures, diffusion kernel was proposed to capture the
long-range relationships between vertices induced by the local
structure of a graph (Kondor and Lafferty, 2002). The diffusion
kernels provide means to incorporate all neighbors of proteins in
the network (Lee et al., 2006).

Let G be a simple graph. Its Laplacian matrix can be defined
as:

L = D − A, (2)

where A is the adjacency matrix of the graph, and D the degree
matrix. The matrix D can be defined as:

D = {di,j} =
{
di i = j
0 Otherwise

, (3)
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where di is the degree of the i-th vertex in the graph. The diffusion
kernel matrix K(τ) is given by:

K (τ) = exp (−τL) , (4)

where τ is a constant parameter, exp() the matrix exponential
function. It can be easily shown that the K(τ) is a valid
kernel function.

Co-expression Network Construction
Three cancer-related gene expression profile datasets were
obtained from the NCBI GEO database. These datasets are from
studies on acute myeloid leukemia, breast cancer and hepatitis
carcinoma, respectively. The datasets include GSE9476 (myeloid
leukemia, 25 cases and 38 controls), GSE27567 (breast cancer, 51
cases and 31 controls) and GSE121248 (hepatitis carcinoma, 70
cases and 37 controls). All gene expression datasets were retrieved
using the Affymetrix platforms (Dalma-Weiszhausz et al., 2006).
We used the “simpleaffy” package in the Bioconductor to perform
quality controls (Wilson and Miller, 2005). For each dataset, the
following filtering steps were carried out. (1) The samples with
scale factors larger than 3 were removed. (2) The samples with
3′ to 5′ ratios for β-actin less than 3 were kept. (3) The samples
with 3′ to 5′ ratios for GAPDH (Glyceraldehyde 3-phosphate
dehydrogenase) less than 1.25 were kept. We also checked the
RLE (relative log expression) and NUSE (normalized unscaled
standard errors) of samples. Samples with significant different
RLE or NUSE values to other samples were removed. The case
and control samples in each dataset were grouped, respectively.
The MAS5 algorithm (Pepper et al., 2007) were applied to
generate expression values for every sample. We applied the
affymetrix templates and annotation packages in Bioconductor
to map the gene expression values to UniProt proteins. In case
of a many-to-one mapping, we used the mean value as the final
expression value for proteins.

Let xi,u be the u-th protein expression values of the i-th
sample, n the number of samples in a group. We define the
sample-wise centered expression vector Xu as follows:

Xu =
[
x1,u − au x2,u − au · · · xn,u − au

]T
, (5)

where T is the transpose operator for matrix, and

au =
1
n

n∑
i−1

xi,u. (6)

We now defined the pair-wise PCC (Pearson Correlation
Coefficient) between the u-th protein and the v-th protein as the
follows:

ρu,v =
XT
uXv√

XT
uXu

√
XT
v Xv

, (7)

where ρu,v is the PCC between the u-th and the v-th proteins.
The PCC was used to quantify the coherent extent of

two proteins in terms of gene expressions. Regardless to
whether two proteins have physical interactions, their PCC was
calculated as above.

Disease-Related Mis-Localized Protein
Identification
Given a specific disease status θ, we term the case sample set as
θ1, while the control sample set as θ0.

We can compute the PCC for all pairs of proteins as Eq(7)
using only the samples in θ0. The PCC between the u-th and
the v-th proteins in non-disease states can be noted as ρu,v(θ0).
Similarly, we can compute the ECC for each interaction as Eq(1).
The ECC between the u-th and the v-th proteins in non-disease
states can be noted as ηu,v(θ0).

Let A(θ0) be the adjacency matrix of the PPI network in non-
disease states, which can be defined as follows:

A (θ0) = {au,v (θ0)}

=

{
ρu,v (θ0) ηu,v (θ0) The u-th and v-th protein are interacting

0 otherwise
.

(8)

The Laplacian matrix in non-disease state can be defined as:

L (θ0) = D (θ0) − A (θ0) , (9)

where D(θ0) is the degree matrix that is computed using Eq(3).
With L(θ0), we can create the diffusion kernel matrix K(τ,θ0)

using Eq(4). This kernel matrix is used in an SVM model to
predict protein subcellular locations in the non-disease state.
Since we took the multi-label scenario into the consideration,
we employed the libSVM package (Chang and Lin, 2011) to
derive the probability that each locative protein localized to each
subcellular locations.

Let pu,k(θ0) be the probability score that the u-th protein
localize to the k-th subcellular location. The libSVM package
ensures that

m∑
k=1

pu,k (θ0) = 1, (10)

where m is the number of all possible subcellular locations.
Due to the imbalanced dataset, the ranges of pu,k(θ0) of

different subcellular locations varies a lot. Therefore, we defined
the following adjusted probability score, qu,k(θ0), which is for the
u-th protein and the k-th subcellular location:

qu,k (θ0) =
p̂u,k (θ0)∑m
k=1 p̂u,k (θ0)

, (11)

where

p̂u,k (θ0) =
pu,k (θ0) − min

u
pu,k (θ0)

max
u

pu,k (θ0) − min
u

pu,k (θ0)
. (12)

With all above definitions, the u-th protein localize to the k-th
subcellular location if the following condition is satisfied:

qu,k (θ0) ≥ max
k

qu,k (θ0) − α

(
max
k

qu,k (θ0) − min
k

qu,k (θ0)

)
,

(13)
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where α is a real number parameter between 0 and 1. The
subcellular locations, which are predicted for the u-th protein
using Eq(13), can be denoted as a set Su(θ0).

For the disease state, all above computation can be performed
on θ1. However, to amplify the differences between disease and
non-disease status, we altered the topology of the PPI network
before all computations in disease status. This is different to all
existing works in predicting mis-localized proteins in diseases.

For the u-th protein and the v-th protein, we first compute the
PCC in θ1, which can be noted as ρu,v(θ1). We define the disease
status difference of PCC as follows:

hu,v = ρu,v (θ1) − ρu,v (θ0) . (14)

We define two threshold parameters as follows:

t+ = h + 3σ, and (15)

t− = h − 3σ, (16)

where h is the average value of all hu,v, and σ the standard
deviation of all hu,v.

If the u-th protein and the v-th protein are two interacting
proteins in non-disease status, the interaction would be removed,
if hu,v < t− is satisfied. Similarly, if the u-th protein and the
v-th protein are two non-interacting proteins in non-disease
status, the interaction between them should be established, if
hu,v > t+ is satisfied.

After altering the topology of the PPI network as above, we
compute the Su(θ1) according to the Eq(8) to Eq(13) using the
updated PPI network and gene expression samples in θ1. It should
be noted that the ηu,v(θ1) may be different to ηu,v(θ0), as the
topology of the PPI network is altered in the disease state.

By comparing the Su(θ1) and Su(θ0), we can identify whether
the subcellular locations of the u-th protein were altered in the
disease state. However, this method cannot quantify how likely
a protein would be mis-localized in the disease state. Therefore,
we developed the following method to quantify the mis-localized
proteins, which we termed as the mis-localization scores.

For each disease, we compute the differences of adjusted
probability scores between the disease and non-disease states.
The mis-localization score of the u-th protein in the k-th
subcellular location of disease θ can be defined as follows:

ϕu,k (θ) =
qu,k (θ1) − qu,k (θ0)

qu,k (θ0)
. (17)

The ϕu,k(θ) indicates the extent that the u-th protein would
localize to or move from the k-th subcellular location. For each
protein, we define the following two boundaries:

sup [ϕu (θ)] = max
k

ϕu,k (θ) , and (18)

inf [ϕu (θ)] = min
k

ϕu,k (θ) (19)

We sorted the proteins according to the sup[ϕu(θ)] and
inf[ϕu(θ)] in descending and ascending orders, respectively. The

top-ranked proteins within a fixed proportion of the entire list
are considered as mis-localized proteins. The proportion is fixed
as 0.1% in this work.

Performance Evaluation Methods
In this study, we used 10-fold cross-validation to evaluate the
prediction performance of our method in the non-disease state.
Four statistics, including aiming (AIM), coverage (CVR), multi-
label accuracy (mlACC), absolute-true rate (ATR) were applied to
measure the prediction performances (Jiao and Du, 2016). These
statistics are defined as follows:

AIM =
1
b

b∑
u=1

∣∣∣∣Su (θ0)
⋂

Su
|Su (θ0)|

∣∣∣∣ , (20)

CVR =
1
b

b∑
u=1

∣∣∣∣Su (θ0)
⋂

Su
|Su|

∣∣∣∣ , (21)

mlACC =
1
b

b∑
u=1

∣∣∣∣Su (θ0)
⋂

Su

Su (θ0)
⋃

Su

∣∣∣∣ , and (22)

ATR =
1
b

b∑
u=1

δ [Su (θ0) , Su] , (23)

where Su(θ0) is the set of predicted protein subcellular locations
of the u-th protein in the non-disease state, Su the set of
experimental protein subcellular locations, b the number of
proteins, | .| the cardinal operator in set theory, and

δ [Su (θ0) , Su] =
{

1 Su (θ0) = Su
0 otherwise

. (24)

Since we have introduced the virtual locative proteins in our
work, we also applied single-label performance measures. Five
statistics, including sensitivity (Sen), specificity (Spe), virtual-
locative accuracy (vlAcc), positive-predictive value (PPV) and
Matthew’s Correlation Coefficients (MCC) are applied in our
work. These statistics can be defined as follows:

Sen =
TP

TP + FN
, (25)

Spe =
TN

TN + FP
, (26)

PPV =
TP

TP + FP
, (27)

vlAcc =
TP+ TN

TP+ TN+ FP+ FN
, and (28)

MCC =
TPTN − FPFN

√
(TP + FP) (TP + FN) (TN + FP)(TN + FN)

,

(29)
where TP, TN, FP and FN are the numbers of true positives,
true negatives, false positives, and false negatives in the cross-
validation, respectively.
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Parameter Calibrations
We used a grid search strategy to find the parameter combination
of τ and α that optimize the 10-fold cross validation performances
in the non-disease state. The parameter τ in computing the
diffusion kernel was searched from 0.1 to 2.0 with step 0.1.
The parameter α in Eq(13) was searched from 0.1 to 0.3 with
a step of 0.1. Supplementary Figure 1 showed the global MCC
score under different parameters. We chose the parameter values
τ = 1.1 and α = 0.3 in our works.

RESULTS AND DISCUSSION

Prediction Performance Analysis in the
Non-disease State
We used 10-fold cross-validation to evaluate the prediction
performances in non-disease state. It should be noted that
our method is designed to find out the alteration of protein
subcellular locations, rather than the exact subcellular locations
in non-disease state. Therefore, we choose to compare our
method to Liu and Hu’s method (Liu and Hu, 2016). Since
we applied virtual locative protein concept in our work, while
Liu and Hu employed the top-k accuracy performance measure,
it is difficult to perform an exact apple-to-apple orange-to-
orange comparison. However, we managed to compare the
global sensitivity of our work to the top-1 accuracy of Liu
and Hu’s work. As our performance value was obtained by
using 10-fold cross-validation, this gives some advantage to
Liu and Hu’s work. Our global sensitivity is 0.556, while
the top-1 accuracy of Liu and Hu’s work is 0.364. Although
both values are not high enough in the general protein
subcellular location predictions, we still achieved a comparable
or little higher performance. Other global performance measure
in terms of virtual locative proteins are a specificity of
0.899, a PPV of 0.437, an accuracy of 0.857 and an MCC
of 0.412.

To make further performance assessment, we choose to
compare the multi-label performance of our method to the
Hum-mPLoc 3.0, which was developed by using gene ontology
information. Since our method does not rely on the gene
ontology annotations, which has been proved to have superior
performances in predicting protein subcellular locations, it
should be noted that the Hum-mPLoc 3.0 (Zhou et al., 2017) has
intrinsic performance advantages.

Since Hum-mPLoc 3.0 does not use identical subcellular
locations annotations as our method, we choose to compare
the overlapped locations. To achieve a fair enough comparison,
we compose a testing dataset of 3842 proteins. All these
proteins are with at least one overlapped subcellular location.
This testing dataset was fed into the Hum-mPLoc 3.0 and
our method in non-disease state. The overall multi-label
performances were compared in Table 1. It can be seen
that our method has better performance in terms of aiming,
coverage, accuracy and absolute true rate. This is an expectable
result, as our method incorporates PPI information and gene
expression profiles.

TABLE 1 | Performance comparison in non-disease state.

Measuresa Our method Hum-mPLoc 3.0

AIM 72.00% 68.10%

CVR 69.50% 65.10%

mlACC 68.60% 65.00%

ATR 64.30% 61.80%

a All performance measures are defined in Eq (20), (21), (22), and (23).

Discovery of Potentially Mis-Localized
Proteins in Cancers
We applied our method on three different type of cancers,
including leukemia, breast cancer and hepatitis carcinoma.
Table 2 gives a list of representative mis-localized proteins in
these cancer cells. For each disease, we listed the top six (0.1%
of the entire list) proteins, which are most likely to mis-localize
to an abnormal location, and the top six proteins, which are
most likely to mis-localize from their normal locations. The
corresponding location, the mis-localization score and the score
rank can also be found in Table 2. In addition, we listed some
highly ranked proteins that has been reported to be related to
cancers by other literatures.

A comprehensive list of all proteins with the mis-localization
scores can be found in supplementary data. In supplementary
data, Supplementary Tables 1–3 contain the comprehensive
lists of the localization scores under different state and mis-
localization scores of three diseases with all locations, one table
per disease. Supplementary Tables 4–15 are comprehensive
lists of sorted mis-localization scores for hepatitis in different
locations, one table per location. Supplementary Tables 16–
27 are comprehensive lists of sorted mis-localization scores for
leukemia in different locations. Supplementary Tables 28–39
are comprehensive lists of sorted mis-localization scores for
breast cancer in different locations. Supplementary Tables 40–
42 are comprehensive lists of sorted maximum mis-localization
scores, one table per disease. Supplementary Tables 43–45 are
comprehensive lists of sorted minimum mis-localization scores,
one table per disease.

Leukemia
In acute myeloid leukemia, we used 25 cases and 38 controls.
Our prediction showed that protein SETBP1 mis-localized to ER
in cancer cells, as its localization score in ER increased from
0.083 to 0.633 with a mis-localization score +658.04%, while its
localization score in nucleus dropped from 0.226 to 0.036 with the
mis-localization score −83.94%. A recent study have suggested a
direct involvement of SETBP1 in leukemia development (Oakley
et al., 2012). We predicted that EI24 mis-localized from ER in
cancer cells, as its localization score drops from 0.94 to 0.468 with
a mis-localization score −50.22%, while Zhao et al. (2005) found
that EI24/PIG8 was an ER-localized Bcl2-binding protein, which
was highly mutated in aggressive breast cancers.

Breast Cancer
For breast cancer, we used 51 cases and 31 controls. We made
a prediction that the protein B7H1 mis-localized from plasma
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TABLE 2 | Representative prediction of mis-localized proteins.

Disorder Uniprot ID Mis-localizationsa Rankb

Leukemia MAGA3_HUMAN +Cell cortex (+Inf) 1

F217B_HUMAN +Peroxisome (+Inf) 2

EI24_HUMAN [41] +Mitochondrion (+3349.02%) 3

ROP1A_HUMAN +Peroxisome(+3086.82%) 4

THYN1_HUMAN +Nucleus (+2461.70%) 5

CLGN_HUMAN +Nucleus (+2425.50%) 6

SETBP_HUMAN [40] +Endoplasmic reticulum (+658.04%) 30

TF2L1_HUMAN −Nucleus (−99.57%) 1

UPP1_HUMAN −Cell cortex (−97.49%) 2

AL1A1_HUMAN −Peroxisome (−96.63%) 3

ABCA1_HUMAN −Lysosome (−95.71%) 4

PARP4_HUMAN −Lysosome (−94.87%) 5

AL7A1_HUMAN −Peroxisome (−93.09%) 6

SETBP_HUMAN [40] −Nucleus (−83.94%) 28

EI24_HUMAN [41] −Endoplasmic reticulum(−50.22%) 348

Breast cancer TM258_HUMAN +Peroxisome (+Inf) 1

KCNKI_HUMAN +Mitochondrion (+Inf) 2

MARC2_HUMAN +Cell cortex (+Inf) 3

HEBP2_HUMAN +Lysosome (+Inf) 4

SIT1_HUMAN +Mitochondrion (+13310.16%) 5

PIM3_HUMAN +Lysosome (+9723.01%) 6

PD1L1_HUMAN [42] +Nucleolus (+290.65%) 242

INGR2_HUMAN [43] +Mitochondrion (+184.50%) 437

VGFR3_HUMAN [42] +Nucleolus (+125.16%) 755

ANO4_HUMAN −Nucleus (−98.91%) 1

ABCA1_HUMAN −Lysosome (−98.78%) 2

NDUB7_HUMAN −Mitochondrion (−98.35%) 3

TM127_HUMAN −Plasma membrane (−98.25%) 4

RUBIC_HUMAN −Endoplasmic reticulum (−96.45%) 5

TRIM4_HUMAN −Nucleus (−96.45%) 6

INGR2_HUMAN [43] −Plasma membrane (−63.74%) 595

Hepatitis carcinoma TBCA_HUMAN +Cell cortex (+Inf) 1

F217B_HUMAN +Peroxisome (+Inf) 2

HKDC1_HUMAN +Nucleus (+65006.48%) 3

SYAC_HUMAN +Peroxisome (+10652.77%) 4

RFWD3_HUMAN +Lysosome (+10599.05%) 5

ABCA1_HUMAN [10] +Lysosome (+8115.45%) 6

S10AB_HUMAN [44] +Peroxisome (+6868.17%) 12

FOXP1_HUMAN [10] +Peroxisome (+612.39%) 478

RM14_HUMAN −Cell cortex (−99.99%) 1

RM47_HUMAN −Cell cortex (−99.99%) 2

RT30_HUMAN −Cell cortex (−99.99%) 3

DUS11_HUMAN −Cell cortex (−99.99%) 4

CLGN_HUMAN −Cell cortex (−99.99%) 5

RM01_HUMAN −Cell cortex (−99.99%) 6

ABCA1_HUMAN [10] −Cell cortex (−99.28%) 249

a The mis-localization score is marked after the altered location. The “+” prefix indicates this is a new subcellular location in disease state. The “−” prefix indicates this
non-disease subcellular location is lost in the disease state. The “Inf” indicates a positive infinity value, which is produced by the zero original localization probability. b The
score ranks are sorted using the boundary values in Eq(18) and Eq(19). The mis-localization scores with value of −100% does not participate in the ranking, as it does
not necessarily indicate a completely loss of a subcellular location, but just a bias of available data.

membrane and to nucleus, as its localization score in plasma
membrane dropped from 0.243 to 0.105 with a mis-localization
score−56.76%, while its localization score in nucleolus increased
from 0.023 to 0.092 with the mis-localization score +290.65%.

This consists with the record in literature (Wang and Li, 2014).
Our method also reported that the protein VEGFR3 mis-localized
from plasma membrane and to cell nucleus, as its localization
score in cell nucleus increased from 0.047 to 0.106 (with the
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mis-localization score +125.16%). This also consists with the
record in literature (Wang and Li, 2014). The protein IFNgR2 was
annotated with location ER and Golgi apparatus in the Uniprot
database. We predicted that IFNgR2 mis-localized from plasma
membrane to mitochondria in cancer cells, as its localization
score in plasma membrane drop from 0.214 to 0.078, with
a mis-localization score −63.74%, while the localization score
in mitochondria increased from 0.136 to 0.388 (with a mis-
localization score +184.5%). It was reported that the IFNgR2
molecules can be mainly detected in mitochondria in cancer cells
(Ngo et al., 2012).

Hepatitis Carcinoma
For hepatitis carcinoma, we used 70 cases and 37 controls.
The protein S100A11 was reported to have very weak nuclear
expression in adenocarcinomas (Rehman et al., 2004), while
our method reported that it mis-localized to peroxisome, as its
localization score in peroxisome increased from 0.014 to 1.0
(with a mis-localization score +6868.17%). We predicted that
FOXP mis-localized to peroxisome, as its localization score in
peroxisome increased from 0.003 to 0.019 with mis-localization
score 612.39%. It has been reported that FOXP would lose
its nuclear localization in cancers (Hung and Link, 2011).
ABCA1 was reported to mis-localize from plasma membrane
to lysosome in cancers (Hung and Link, 2011). Our method
reported the same result, as the localization score in plasma
membrane dropped from 0.162 to 0.004 with mis-localization
score −99.28%), and lysosome from 0.012 to 0.972 (with a mis-
localization score+8115.45%).

Potential Results Validation
Using our method, we identified some proteins that may mis-
localize from or to a specific location. Some of them have been
verified by existing studies. But most of the predicted proteins
have not been verified. Due to our limited resources, we cannot
perform experimental validations. This may be considered as
a future work. It should also be noted that, there is still no
database for mis-localized proteins. The information regarding
the mis-localized proteins is still scattered in many literatures.
Establishing such kind of database is a valuable yet impacting
work, which is also in our consideration as a future work in
this research topic. Since mis-localized proteins are of great
significance on revealing the mechanism of diseases, we believe
that it is valuable to establish a database to summarize and store
relevant discoveries in future.

CONCLUSION

Computational prediction of proteins subcellular locations has
been studied for over twenty years. However, computationally

detecting disease-related mis-localized proteins was rarely
discussed. By integrating gene expression profiles and protein-
protein interaction networks, we developed a computational
approach, DPPN-SVM, to detect mis-localized proteins in
various cancers. The results indicated that our method
can successfully identify cancer-related or mis-localized
proteins that has been reported in various literatures.
Comparing to existing studies, our method not only provide
a comparable or better prediction performance in non-
disease state, but also further amplify the differentially
expressed gene information by introducing the dynamic
PPI network and the SVM classifiers with diffusion kernels.
The prediction results of our method provide candidate
proteins as spatial cancer markers, while the method of our
work gives a new way to explore the spatial distribution of
proteins within a cell.
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