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Plant height (PH) plays a pivotal role in plant morphological architecture and is
associated with yield potential in wheat. For the quantitative trait locus (QTL) analysis,
a recombinant inbred line population was developed between varieties differing
significantly in PH. Two major QTL were identified on chromosomes 4B (QPh.sicau-
4B) and 6D (QPh.sicau-6D) in multiple environments, which were then validated in two
different backgrounds by using closely linked markers. QPh.sicau-4B explained 10.1–
21.3% of the phenotypic variance, and the location corresponded to the dwarfing gene
Rht-B1. QPh.sicau-6D might be a novel QTL for PH, explaining 6.6–13.6% of the
phenotypic variance and affecting spike length, thousand-kernel weight, and spikelet
compactness. Three candidate genes associated with plant growth and development
were identified in the physical interval of QPh.sicau-6D. Collectively, we identified a novel
stable and major PH QTL, QPh.sicau-6D, which could aid in the development of closely
linked markers for marker-assisted breeding and cloning genes underlying this QTL.

Keywords: wheat, plant height, quantitative trait locus, validation, candidate gene

INTRODUCTION

Bread wheat (Triticum aestivum L.) is an important staple crop, ranking the third after maize and
rice in terms of yield in China (Edae et al., 2014; Liu et al., 2018). According to the Food and
Agriculture Organization of the United Nations1, the global wheat grain yield in 2017 was 771.7
million tons, contributing to approximately 20% of the calories consumed by humans. Plant height
(PH) is an important yield component trait associated with plant morphological architecture and
other yield-related traits, such as spike length, spikelet number per spike, spikelet compactness (SC),
and thousand-kernel weight (TKW), thus affecting the yield potential (Sakamoto and Matsuoka,
2004; Gao et al., 2015; Kowalsk et al., 2016; Guan et al., 2018). To develop high grain yield lines,
Donald (1968) proposed the idea of breeding crop ideotypes with a relatively short PH, single culm,
strong stem, and large and erect ear.

1http://www.fao.org/faostat/en/#data
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In view of the importance of PH in wheat yield, it is imperative
to identify more candidate genes responsible for PH from wheat
germplasm resources. In the past two decades, numerous major
and minor QTL influencing PH have been identified on 21
chromosomes in wheat, and some of them have been applied
in wheat breeding (Peng et al., 1999; Liu et al., 2002; Griffiths
et al., 2012; Würschum et al., 2015; Tian et al., 2017; Hassan
et al., 2019). Additionally, several PH genes have been cloned,
such as Rht-B1 and Rht-D1 (located on chromosome 4B and 4D,
respectively), and highly adopted in breeding practices during the
green revolution; they encode the DELLA proteins, participating
in gibberellin signaling, and thereby affecting PH (Peng et al.,
1999; Pearce et al., 2011). Rht18 encodes a gibberellic acid (GA) 2-
oxidase protein, which regulates the balance of GA intermediates
and inactive GA, leading to a semi-dwarf phenotype in wheat
(Ford et al., 2018). In Arabidopsis, extensively studied dwarf
mutants such as the yda and pat10mutants, which are defective in
growth and development, have been shown to significantly differ
from the wild-type plants in terms of PH (Lukowitz et al., 2004;
Zhou et al., 2013).

In this study, a recombinant inbred lines (RILs)
population was used for QTL mapping of PH with a
genetic map using the 90K SNP array and phenotyping in
six environments to identify major QTL for PH. The effects
of the major QTL for PH were further assessed in different
genetic backgrounds.

MATERIALS AND METHODS

Plant Materials
Three populations of RILs were generated by single-seed descent
in the field in Sichuan Agricultural University, Wenjiang
(103◦51′E, 30◦43′N), with H461 as a common parent. These three
populations were as follows: H461/CN16 (HCN; 249 F8 lines),
H461/CM107 (HCM; 200 F7 lines), and H461/MM37 (HMM;
142 F6 lines).

The HCN population was used for QTL mapping, whereas the
other populations (HCM and HMM) were used for validating the
major QTL identified in the HCN population.

Phenotypic Evaluation
The three populations were planted in six different environments
for phenotypic evaluation: Wenjiang in 2015 and 2019 (2015WJ
and 2019WJ); Chongzhou (103◦38′E, 30◦32′N) in 2015, 2017,
and 2019 (2015CZ, 2017CZ, and 2019CZ); and Ya’an (103◦0′E,
29◦58′N) in 2015 (2015YA). Each plot consisted of three rows,
with a length of 1.5 m and an inter-row spacing of 30 cm; the
sowing density was 15 seeds per row. For each plot, five plants
were randomly chosen to measure PH, from the plant base to
the tip of the spike, and calculate the mean PH. The main spike
of five plants were selected to measure the spikelet number per
spike (SN) and spike length (SL). The TKW was measured using
an electronic balance with three replications. Flowering time
(FT) was recorded as the date when half of the plants in each
plot flowered after sowing. The SC was calculated by dividing
the SL by the SN.

Analysis of variance (ANOVA) and calculation of Pearson’s
correlation coefficients among different environments
were performed using SPSS 22 (IBM SPSS, Armonk, NY,
United States). Frequency distribution was processed using MS
Excel, and the best linear unbiased prediction (BLUP) for target
traits was calculated using R version 3.5.2 (Team, 2013). Broad-
sense heritability (h2) was calculated across environments as
described by Smith et al. (1998). The correlations between PH and
the factors SN, SL, SC, TKW, and FT were calculated based on
the BLUP values, and Student’s t-test was performed to determine
significant differences between two groups using SPSS 22.

QTL Mapping
The HCN population was used for constructing a whole-genome
genetic linkage map using the 90K SNP array (Wang et al.,
2016) for QTL mapping, consisting of 7808 SNP polymorphic
markers in parents distributed in 50 linkage groups and covers
a total genetic distance of 3486.44 cM, with an average distance
of 0.45 cM between the adjacent markers.

MapQTL 6.0 (Van Ooijen and Kyazma, 2009) was used for the
QTL analysis. Kruskal–Wallis test was used to evaluate the degree
of association between markers and PH. Interval mapping (IM)
was then used to identify major QTL and markers significantly
associated with PH. For each trial, a test of 1000 permutations
was performed to identify the LOD threshold corresponding
to a genome-wide false discovery rate of 1%. Based on the
permutation test, threshold LOD values between 2.4 and 3.3 were
used to confirm the presence of a QTL. The QTL were named
based on the International Rules of Genetic Nomenclature2. “Ph”
and “sicau” stand for “plant height” and “Sichuan Agricultural
University,” respectively.

Validation of the Major QTL
The flanking markers of the major QTL were mapped to the
physical map of the wheat cultivar Chinese Spring (IWGSC
RefSeq v1.0), and the sequence information in the QTL interval
was obtained. To develop Kompetitive allele specific PCR
(KASP) markers closely linked to the QTL, the partial sequence
information of the QTL interval was amplified in CN16 and H461
by PCR to search for polymorphic sites. The newly developed
KASP markers were remapped into the genetic map.

The markers closely linked to the QTL were used for
identifying alleles in different genetic backgrounds (populations
HCM and CMM). The lines were classified into two groups:
genotypes with homozygous alleles from H461 (designated AA)
and those with homozygous alleles from alternative parents
(designated BB). The mean PH from homozygotes was used
for measuring the QTL effects, and Student’s t-test was used to
determine the significance of differences between the two groups
in each population.

Predicted Candidate Genes
The gene information of the QTL interval was obtained from
IWGSC RefSeq v1.1 annotation. Expression values as transcripts
per million (TPM) were obtained from the expVIP Wheat

2http://wheat.pw.usda.gov/ggpages/wgc/98/Intro.htm

Frontiers in Genetics | www.frontiersin.org 2 October 2020 | Volume 11 | Article 602495

http://wheat.pw.usda.gov/ggpages/wgc/98/Intro.htm
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-602495 October 19, 2020 Time: 16:55 # 3

Wang et al. Plant Height QTL in Wheat

TABLE 1 | Phenotypic variation of the mapping population H461 × CN16 and parental lines in different environments.

Trait Environment Parents Population

H461 CN16 Range Mean SD h2

2015WJ 79.00** 61.60 64.32–115.84 84.72 8.08

2015YA 82.80** 74.02 62.47–114.44 83.25 8.87

PH 2015CZ 85.76** 75.20 64.42–124.20 87.45 8.89

2017CZ 85.13** 76.75 55.33–111.17 79.73 9.14

2019WJ 86.94** 70.61 51.50–109.00 78.60 8.36

2019CZ 88.22** 76.17 58.10–110.78 81.10 7.80

BLUP 82.33 73.75 63.01–105.93 80.53 5.71 0.83

SN BLUP 22.50 19.71 19.75–23.55 21.30 0.55 0.65

SL BLUP 14.06 10.92 10.41–13.95 12.13 0.56 0.72

SC BLUP 1.60 1.80 1.51–1.99 1.77 0.09 0.80

TKW BLUP 52.49 44.66 38.99–58.31 49.41 3.35 0.81

FT BLUP 142.06 141.10 137.78–149.16 141.75 2.12 0.84

SD, standard deviation; h2, broad-sense heritability; BLUP, phenotype values based on BLUP. **indicates significant differences at P < 0.01.

Expression Browser3 (Borrill et al., 2016), genes with a low
expression (TPM < 0.5) in various tissues were excluded and
the mean expression values were visualized by TBtools (Chen
et al., 2020). The remaining genes were annotated by KOBAS v3.0
(Ai and Kong, 2018) BLAST against the corresponding protein
sequences in rice and Arabidopsis thaliana. The genomic DNA
of parents was extracted from the leaf samples using the Plant
Genomic DNA kit (Biotechnologies, CA) and used to amplify
candidate genes for sequence analysis.

RESULTS

Phenotyping of the HCN Population
In different environments, the PH of H461 ranged from 79.00
to 88.22 cm, and that of CN16 ranged from 61.60 to 76.75 cm.
Moreover, significant differences in PH were observed between
H461 and CN16 (Table 1). The frequency of PH in the HCN
population showed continuous distribution, ranging from 51.50
to 124.2 cm (Table 1 and Supplementary Figure S1); this
implied that PH was affected by multiple loci. The h2 of PH was
0.83, and Pearson’s correlation coefficients between the different
environments ranged from 0.232 to 0.872 (P < 0.01; Table 2).

3http://www.wheat-expression.com/

TABLE 2 | Correlation coefficients for plant height (PH) in the HCN population
evaluated in different environments.

2015WJ 2015YA 2015CZ 2017CZ 2019WJ

2015YA 0.334**

2015CZ 0.549** 0.661**

2017CZ 0.613** 0.242** 0.444**

2019WJ 0.570** 0.232** 0.405** 0.633**

2019CZ 0.632** 0.314** 0.477** 0.644** 0.872**

**indicates significant differences at P < 0.01.

The BLUP values of PH, SN, SL, SC, TKW, and FT are shown
in Table 1. Phenotypic correlation coefficients between PH and
other spike-related traits were obtained based on the BLUP values
(Table 3). PH was highly significantly correlated with the TKW
(P < 0.01) and significantly correlated with the SN and SL
(P < 0.05). No significant correlation was observed between PH
and SC or FT (Table 3).

Identification of QTL for PH
Three QTL for PH were identified using the IM analysis
(Table 4). The first QTL (QPh.sicau-4B) was located on
the short arm of chromosome 4B, between the markers
Tdurum_contig64772_417 and Excalibur_rep_c113261_400.
QPh.sicau-4B was a stable major QTL with the additive effects
from H461, and it explained 10.1–21.3% of the phenotypic
variance, with LOD values ranging from 4.15 to 9.39. It was
identified in five environments and the combined analysis
(BLUP). The second QTL (QPh.sicau-6D) was located on the
short arm of chromosome 6D, between the markers IACX10982
and BS00063175_51. QPh.sicau-6D was a stable major QTL with
the additive effects from H461; it explained 6.6%–13.6% of the
phenotypic variance, with LOD values ranging from 2.67 to 5.80,
identified in all environments and using BLUP. The third QTL

TABLE 3 | Correlation coefficients among the BLUP value for plant height (PH)
with spikelet number per spike (SN), spike length (SL), spikelet compactness (SC),
thousand kernel weight (TKW) and flowering time (FT).

Trait PH

SN 0.180*

SL 0.182*

SC −0.075

TKW 0.249**

FT 0.073

**and *indicate significant correlations at P < 0.05 and P < 0.01, respectively.
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TABLE 4 | Quantitative trait loci (QTL) for plant height identified in the H461 × CN16 recombinant inbred line population evaluated in different environments.

QTL Environment Interval (cM) Flanking markers LOD PVE (%)a Addb

QPh.sicau-4B 2015WJ 94.00∼102.26 Tdurum_contig64772_417 and BS00023766_51 9.39 21.3 3.79

2015CZ 94.00∼101.67 Tdurum_contig64772_417 and Excalibur_rep_c113261_400 7.76 17.9 3.97

2015YA 94.00∼101.67 Tdurum_contig64772_417 and Excalibur_rep_c113261_400 5.19 12.7 3.35

2019WJ 94.00∼102.26 Tdurum_contig64772_417 and BS00023766_51 4.15 10.1 2.70

2019CZ 94.00∼102.26 Tdurum_contig64772_417 and BS00023766_51 4.84 11.6 2.70

BLUP 94.00∼101.67 Tdurum_contig64772_417 and Excalibur_rep_c113261_400 6.19 14.4 2.28

QPh.sicau-6D 2015WJ 25.02∼31.43 Kukri_c34967_226 and BS00063175_51 3.97 9.6 2.54

2015CZ 25.02∼31.43 Kukri_c34967_226 and BS00063175_51 3.49 8.5 2.64

2015YA 28.53∼31.43 IACX10982 and BS00063175_51 3.30 8.3 2.58

2017CZ 25.02∼31.43 Kukri_c34967_226 and BS00063175_51 5.71 13.4 3.37

2019WJ 25.02∼31.43 Kukri_c34967_226 and BS00063175_51 2.84 7.0 2.24

2019CZ 25.02∼31.43 Kukri_c34967_226 and BS00063175_51 2.67 6.6 2.03

BLUP 28.53∼31.43 IACX10982 and BS00063175_51 5.80 13.6 2.13

QPh.sicau-3B 2017CZ 96.74∼98.46 BS00099633_51 and Kukri_c6907_80 3.27 7.9 2.65

a Percentage of the phenotypic variation explained. b Additive effect.

FIGURE 1 | Effects of the QPh.sicau-4B and QPh.sicau-6D on PH in HCN population (A: carrying both the additive alleles of the two major QTL; B: only carrying the
additive allele of QPh.sicau-4B; C: only carrying the additive allele of QPh.sicau-6D; and D: not carrying the additive alleles of the two major QTL). **indicates
significant differences at P < 0.01.

(QPh.sicau-3B) was located on 3B, identified only in 2017CZ,
and it explained 7.9% of the phenotypic variance.

Effects of the Two Major PH QTL on PH
and Other Panicle Traits
To identify the effect of the two major PH QTL (QPh.sicau-
4B and QPh.sicau-6D) for other panicle traits, the BLUP values
across six environments were used. For QPh.sicau-4B, lines with
homozygous alleles from H461 and lines with homozygous alleles
from CN16, classified into two groups, showed a significant
difference (P < 0.05) for FT (Supplementary Figure S2). For
QPh.sicau-6D, lines with homozygous alleles from H461 and
those with homozygous alleles from CN16, classified into two

groups, showed significant differences (P < 0.05) for SL, SC, and
TKW (Supplementary Figure S3).

For PH, the HCN population could be divided into the
following four groups based on markers: (A) carrying both
the additive alleles of two major QTL, (B) only carrying the
additive allele of QPh.sicau-4B, (C) only carrying the additive
allele of QPh.sicau-6D, and (D) not carrying the additive alleles
of QPh.sicau-4B and QPh.sicau-6D. Comparative analyses among
the four groups showed that the group A had the highest effect
on PH, which was significantly higher than that of the groups
B, C, and D. Furthermore, the groups B and C had significantly
higher effects than that of the group D. Thus, QPh.sicau-4B and
QPh.sicau-6D might significantly affect PH, with both having a
significant effects on PH (Figure 1).
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FIGURE 2 | Genetic map of the major QTL QPh.sicau-4B with the marker KASP-4B.

Validation of QTL in Different Genetic
Backgrounds
Based on the QTL mapping results and Sanger sequencing of the
PCR products of H461 and CN16, two KASP markers (KASP-
4B and KASP-6D, Supplementary Table S1) were developed and
used to reconstruct the genetic map. The KASP-4B marker was
found to be closely linked to QPh.sicau-4B, whereas the KASP-6D
marker was closely linked to QPh.sicau-6D (Figures 2, 3).

Two populations (HCM and HMM) were used for evaluating
the effects of the two major QTL in different genetic backgrounds,
and the KASP markers were used to identify the genotype. For

QPh.sicau-4B, KASP-4B was used to identify the alleles in the
HCM and HMM populations and were classified into two groups.
Significant differences (P < 0.05) were detected between “AA”
and “BB” genotypes in three environments for HCM and four
environments for HMM (Table 5). The differences in PH ranged
from 2.56 to 9.24% in the HCM and HMM populations. For
QPh.sicau-6D, KASP-6D was used to identify the alleles in the
HCM and HMM populations and were classified into two groups.
Significant differences (P < 0.05) were detected between “AA”
and “BB” genotypes in four environments for HCM and four
environments for HMM (Table 6). The differences in PH ranged
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FIGURE 3 | Genetic map of the major QTL QPh.sicau-6D with the marker
KASP-6D.

from 3.77 to 12.41% in the HCM and HMM populations. And
the effects of Qph.sicau-6D was higher than Qph.sicau-4B in the
validation populations, which may be responsible by different
genetic backgrounds.

Potential Candidate Genes
A total of 224 high-confidence (HC) genes were selected from
the QPh.sicau-4B and QPh.sicau-6D intervals, and 62 HC genes
with low expression in various tissues were excluded (Figure 4).

Finally, 47 HC genes from QPh.sicau-4B were selected for
gene annotation, including Rht-B1. And 115 HC genes from
QPh.sicau-6D were selected for gene annotation, including YDA,
BUB1, and PAT10 (Supplementary Table S2 and Table 7).

Sequence analysis of the four candidate genes, revealed 2 SNPs
and 1 insertion/deletion (indel) between H461 and CN16 for
Rht-B1, one T for C substitution (C(190)T) converts the codon
(CGA) to a translational stop codon (TGA) in CN16 (Figure 5A).
For TraesCS6D02G227300, 1 SNP in the intron region between
H461 and CN16 was found (Figure 5B). Five SNPs in the coding
sequence, 4 SNPs in the intron region, and 1 SNP in the promoter
region for TraesCS6D02G233000 were detected between H461
and CN16 (Figure 5C). However, no sequence variation between
H461 and CN16 was identified for TraesCS6D02G234900.

DISCUSSION

Plant height is a critical trait that influences plant architecture
and grain yield potential in wheat, and it is controlled by multiple
genes functioning together (Spielmeyer et al., 2007; Singh et al.,
2016). Exploring PH QTL and genes is essential for wheat
breeding, and the identification of QTL associated with PH on
different chromosomes has been widely reported (Zhang et al.,
2010; Liu et al., 2014; Gao et al., 2015; Chai et al., 2018). In
this study, two stable and major QTL for PH were identified in
different environments and were validated in different genetic
backgrounds. QPh.sicau-4B was located in a 7.67-cM interval and
mapped between 26.49 and 31.88 Mb on the physical map of
chromosome 4B (Figures 2, 4). QPh.sicau-6D was located in a
2.9-cM interval and mapped between 315.06 and 339.69 Mb on
the physical map of chromosome 6D (Figures 3, 4).

QPh.sicau-6D Is a Novel QTL for PH
QPh.sicau-6D was physically mapped between 315.06 and
339.69 Mb of chromosome 6D. Several known QTL responsible
for PH have been mapped on chromosome 6D, including
QPh.spa-6D, and QPh.cau-6D (Supplementary Table S3). We

TABLE 5 | Effects of QPh.sicau-4B in two validation populations.

Population Environment Parenta AAb BBc Difference P-value

Parent1 Parent2

HCM 2015YA 82.80 76.25 92.50 89.43 3.43%* <0.05

HCM 2015WJ 79.00 71.19 93.07 90.22 3.16%* <0.05

HCM 2015CZ 85.76 73.22 94.63 90.61 4.44%** <0.01

HCM 2017CZ 85.13 84.44 86.25 84.03 2.64% 0.09

HCM BLUP 82.33 72.3 89.58 87.34 2.56%* <0.05

HMM 2015WJ 79.00 58.36 84.29 77.42 8.87%** <0.01

HMM 2017CZ 85.13 80.33 86.80 79.46 9.24%** <0.01

HMM 2019WJ 86.94 70.83 75.82 70.79 7.11%* <0.05

HMM 2019CZ 88.22 56.25 82.67 76.21 8.48%** <0.01

HMM BLUP 82.33 70.53 82.09 76.14 7.81%** <0.01

**and *indicate extremely significant difference and significant difference, respectively. a“Parent1” represents H461, “Parent2” represents CM107 or MM37. b“AA”
represents homozygous alleles from H461. c“BB” represents homozygous alleles from non-H461 parents.

Frontiers in Genetics | www.frontiersin.org 6 October 2020 | Volume 11 | Article 602495

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-602495 October 19, 2020 Time: 16:55 # 7

Wang et al. Plant Height QTL in Wheat

TABLE 6 | Effects of QPh.sicau-6D in two validation populations.

Population Environment Parenta AAb BBc Difference P-value

Parent1 Parent2

HCM 2015YA 82.80 76.25 93.92 89.27 5.21%** <0.01

HCM 2015WJ 79.00 71.19 93.19 88.45 5.36%** <0.01

HCM 2015CZ 85.76 73.22 94.76 89.61 5.75%** <0.01

HCM 2017CZ 85.13 84.44 86.78 83.56 3.85%** 0.01

HCM BLUP 82.33 72.3 90.01 86.74 3.77%** <0.01

HMM 2015WJ 79.00 58.36 85.95 77.25 11.26%** <0.01

HMM 2017CZ 85.13 80.33 89.50 79.62 12.41%** <0.01

HMM 2019WJ 86.94 70.83 76.25 71.29 6.96%* <0.05

HMM 2019CZ 88.22 56.25 83.02 76.70 8.24%** <0.01

HMM BLUP 82.33 70.53 82.96 76.36 8.64%** <0.01

**and *indicate extremely significant difference and significant difference, respectively. a“Parent1” represents H461, “Parent2” represents CM107 or MM37. b“AA”
represents homozygous alleles from H461. c“BB” represents homozygous alleles from non-H461 parents.

tried to compare the physical positions of these QTL to assess
their relationship with QPh.sicau-6D. Physical mapping showed
that QPh.spa-6D (Singh et al., 2016) was mapped to intervals 3.6–
5.8 Mb of the chromosome 6D, was far away from QPh.sicau-6D,
indicating that they were different loci. The confidence interval
of QPh.cau-6D (Guan et al., 2018) was mapped between 283.97
and 292.07 Mb on the physical map. No physical interval of
QPh.cau-6D overlapped with QPh.sicau-6D, verifying that they
were different loci. These comparisons implied thatQPh.sicau-6D
was likely a novel QTL for PH.

QPh.cau-4B.2 (Guan et al., 2018) and QPH.caas-4BS.2 (Gao
et al., 2015) were mapped to intervals 29.0–35.5 Mb and
21.4–46.6 Mb, respectively, in the 4B chromosome physical
map (Supplementary Table S3). Furthermore, the two QTL
overlapped with QPh.sicau-4B, implying that QPh.sicau-4B
was likely the same locus as QPh.cau-4B.2 and QPH.caas-
4BS.2.

Correlations Between the Major PH QTL
and Other Spike-Related Traits
Gao et al. (2015) and Guan et al. (2018) reported that PH was
significantly positively correlated with the TKW but not with
the other spike-related traits. Zhai et al. (2016) reported that PH
was positively correlated with the SL but negatively correlated
with the SN and SC. In this study, Pearson’s correlation analysis
showed that PH was positively correlated with the SL, SN, and
TKW (Table 3). This might be because of lines carrying different
PH QTL that affect the correlation of PH with other traits.
Further analysis of QTL responsible for significant differences

TABLE 7 | The information of the candidate genes.

Gene ID Gene name

TraesCS4B02G043100 Rht1b

TraesCS6D02G227300 YDA

TraesCS6D02G233000 HUB1

TraesCS6D02G234900 PAT10

in the SL, SC, and TKW between lines with different alleles
at QPh.sicau-6D (Supplementary Figure S3) suggested that
QPh.sicau-6D confers pleiotropic effects on the SL, TKW, and
SC. This interesting perspective warrants further investigation.
Additionally, QPh.sicau-4B and QPh.sicau-6D demonstrated
superimposed effects on PH (Figure 1), which will allow these
two QTL to be simultaneously applied for modifying plant
morphological architecture.

Candidate Genes for QPh.sicau-4B and
QPh.sicau-6D
In wheat, several reduced height (Rht) genes have been cloned,
e.g., Rht-b1, Rht-d1 (Peng et al., 1999), and Rht18 (Ford et al.,
2018). Rht-B1 encodes a DELLA transcription factor protein,
which participates in gibberellin signaling and thus confers the
dwarfing trait to the plant (Peng et al., 1999; Sun, 2010). In
the QPh.sicau-4B interval, 24 genes with low expression were
removed (Figure 4), and 47 genes were further annotated using
KOBAS 3.0 (Supplementary Table S2), which included Rht-
B1. The sequence analysis of the Rht-B1 region revealed that a
T for C substitution (C(190)T) converts the codon (CGA) to
a translational stop codon (TGA) in CN16 (Figure 5), which
corresponded to dwarfing gene Rht-B1b (Pearce et al., 2011).
Thus, QPh.sicau-4B possibly corresponded to dwarfing gene
Rht-B1.

In the QPh.sicau-6D interval, 38 genes with low expression
were removed (Figure 4), and 115 genes were further annotated
using KOBAS 3.0 (Supplementary Table S2). Among these
genes, three have been reported to be involved in plant
growth and development and to affect PH in Arabidopsis and
rice. YDA encodes a ubiquitously expressed MAPKK kinase
and is sensitive to the hormone signal transduction pathway
in dwarf phenotype mutants (Lukowitz et al., 2004). PAT10
encodes an S-acyltransferase protein, which is critical for
development, and the pat10 mutant demonstrates characteristics
such as slow cell expansion and cell division and dwarfism
(Zhou et al., 2013). HUB1 is an important regulatory gene
for normal plant development as it is involved in histone
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FIGURE 4 | The genes expression of in various tissues in the QPh.sicau-4B interval and QPh.sicau-6D interval from the expVIP Wheat Expression Brower (A:
physical map of chromosome 4B and chromosome 6D, B: root, C: leaf, D: spike, E: grain).

FIGURE 5 | Sequence analysis of the candidate genes showing the SNPs and Indels between H461 and CN16. The nucleotide of H461 and CN16 are shown in red
and black, respectively (A: Rht-1B, B: TraesCS6D02G227300, C: TraesCS6D02G233000).
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H2B monoubiquitination; the hub1 mutants showed a dwarf
phenotype compared with the wild type in Arabidopsis and rice
(Fleury et al., 2007; Cao et al., 2015). Of these three candidate
genes (TraesCS6D02G227300, TraesCS6D02G233000, and
TraesCS6D02G234900) for QPh.sicau-6D, TraesCS6D02G233000
has five SNPs in the coding sequence and five SNPs in the non-
coding sequence between H461 and CN16 (Figure 5), which led
to the substitution of three amino acids (V/A, R/G, T/N). Thus,
the gene TraesCS6D02G233000 might be the candidate gene for
further research on QPh.sicau-6D.

CONCLUSION

In conclusion, two major stable QTL controlling PH
were identified in the HCN population across different
environments and were validated in the HCM and HMM
populations. QPh.sicau-4B possibly corresponded to dwarfing
gene Rht-B1. QPh.sicau-6D appears to be a novel QTL
for PH, with pleiotropic effects on the SL, TKW, and
SC, and thus, QPh.sicau-6D is a potential locus worth
exploring further for genetic improvement in wheat
breeding programs.
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