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Deep learning methods, which can predict the binding affinity of a drug–target protein

interaction, reduce the time and cost of drug discovery. In this study, we propose a novel

deep convolutional neural network called SE-OnionNet, with two squeeze-and-excitation

(SE) modules, to computationally predict the binding affinity of a protein–ligand complex.

The OnionNet is used to extract a feature map from the three-dimensional structure of

a protein–drug molecular complex. The SE module is added to the second and third

convolutional layers to improve the non-linear expression of the network to improve

model performance. Three different optimizers, stochastic gradient descent (SGD),

Adam, and Adagrad, were also used to improve the performance of the model. A majority

of protein–molecule complexes were used for training, and the comparative assessment

of scoring functions (CASF-2016) was used as the benchmark. Experimental results

show that our model performs better than OnionNet, Pafnucy, and AutoDock Vina. Finally,

we chose the macrophage migration inhibitor factor (PDB ID: 6cbg) to test the stability

and robustness of the model. We found that the prediction results were not affected by

the docking position, and thus, our model is of acceptable robustness.

Keywords: protein-ligand binding affinity, molecular docking, deep learning, convolutional neural network, drug

repositioning

INTRODUCTION

The binding affinity of small molecules to receptor proteins is the key to drug discovery and
drug repositioning (David Hecht, 2009; Ru et al., 2020; Zeng et al., 2020a). Chemical prediction
methods are often time-consuming and costly. The development of accurate prediction models for
calculating binding affinity is imperative. The OnionNet model (Zheng et al., 2019) was proposed
for predicting binding affinity using the three-dimensional structure of complexes. In the search
for a favorable docking pose, a specific scoring function is used to estimate the binding affinity
often with a low accuracy and a high false-positive rate. For example, data experiments have been
conducted using the comparative assessment of scoring functions (CASF) (Li et al., 2014a,b). We
have also previously tested the performance of AutoDock Vina on the CASF-2013 benchmark
(Gaillard, 2018). Additionally, the molecular mechanics Poisson–Boltzmann surface area method
(Rd et al., 2012) was developed to calculate the binding free energy. This method is computationally
intensive and is generally superior to the docking scoring function (Shoichet, 2004).
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It was found that the performance of machine learning
methods for predicting binding affinity is heavily dependent on
the way proteins and ligands are represented. In virtual screening
methods, for example, the output is usually analyzed using a
docking software to generate or manually extract features of the
protein–ligand interaction. This is a laborious and complicated
process, and it cannot be efficiently applied in machine learning
methods, particularly for large-scale data (Lheureux et al., 2017).

Deep learning technology aims to minimize the time taken for
the feature extraction process. The non-linear transformation of
the original dataset can reveal the principles hidden in a large-
scale dataset. Recently, deep learning technology has attracted
the attention of academia and has become a viable option for
pharmaceutical research. Dahl et al. developed a multitask deep
learning model to predict the chemical structure of molecules,
the pharmacophore of the active site, and drug levels toxic to the
active site (Lv et al., 2019; Lin et al., 2020; Zeng et al., 2020b).
Ramsundar et al. proposed a deep neural network model that
efficiently predicts drug activity and structure (Wallach et al.,
2015; Jain and Kumar, 2019; Zhao et al., 2019).

FIGURE 1 | The definition of “shell.” The interaction between proteins and ligands is defined layer by layer in a three-dimensional space.

In this study, we propose a modified deep learning model,
called SE-OnionNet, with two Squeeze-and-Excitation (SE) (Hu
et al., 2017) modules to estimate the binding affinity of a protein–
ligand complex. Specifically, the SE module is used to increase
the non-linear expression ability of the network. We first extract
the feature map from the three-dimensional structure of the
complex. The local and non-local interactions between each pair
of proteins and ligands are identified by dividing the contact
characteristics between the protein and the ligand into different
distance ranges. Then, the feature map is inputted into the
network, and a predicted value is obtained as the output. We
tested our SE-OnionNet using the scoring functions on PDBbind
(v. 2018) and CSAF-2016 benchmark (Altae-Tran et al., 2017)
and found that our model performs better than the classical
OnionNet model. In addition, we compare our model with
AutoDock Vina’s ranking function (Oleg and Olson, 2009). We
found that our model can predict significantly higher number
of complexes than AutoDock Vina. Our model can also use
predicted ligand structures, from a docking simulation, as its
input, indicating its robustness.
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MATERIALS AND METHODS

The OnionNet Model
The OnionNet model was obtained by improving the
characterization of protein–ligand complex data by Pafnucy,
which used CASF-2013 as the benchmark. The three-
dimensional structure of a protein–ligand complex is used
as the input of the network. It defines each 1 Å as a three-
dimensional box; extracts chemical information, centered on
all ligand atoms in that box; and yields a high-dimensional (21
× 21 × 21 × 10) feature map. This is, then, inputted into the
convolutional neural network model, which yields an affinity
prediction ranking as the output. In addition, the OnionNet
model defines “shell” as the boundary of each atom around a
series of ligands. The “shell” is defined as the space between
boundary K – 1 and K, with a thickness of δ (Figure 1). The nth
shell is defined as the space between boundaries k = n – 1 and k
= n, 1 ≤ n ≤ N. Intermolecular interactions between the ligand
and the protein are expressed as the number of contacts between
atoms in the nth shell.

They selected eight types of elements (EL), C, N, O, H,
P, S, halogens, and all the remaining elements (ARE), to
measure the types of contact between a ligand and the atoms
in a protein. To maintain the generalization ability of the
model, we define halogens to represent any one of the four
elements F, Cl, Br, and I. For the nth shell, considering the
different binding orientations of ligands and proteins, we used
64 features to represent the contact between the ligand and
the protein.

EL =
[

C,N,O,H, P, S, Halogen, ARE
]

,

(1)

ECTSTt =

Rn,Ts
∑

r=1

LTt
∑

l=1

Cr,l, while Ts ∈ EL,Tt ∈ EL

(2)

cr,l =

{

1,
(

k− 2
)

δ + d0 ≤ dr,l <
(

k− 1
)

δ + d0
0, dr,l <

(

k− 2
)

δ + d0, dr,l ≥
(

k− 1
)

δ + d0
,

(3)

FIGURE 2 | A squeeze-and-excitation block. The squeeze operation compresses the features along the spatial dimension and turns each two-dimensional feature

channel into a real number. The excitation operation, which is similar to the gate mechanism in the recurrent neural network, generates weights for each feature

channel. The reweight operation completes the recalibration of the original feature in the channel dimension.

FIGURE 3 | The structure of our model. It is composed of three layers of convolution, two SE blocks, and four layers of dense layer. SE blocks can not only effectively

enhance the performance but also are computationally lightweight and impose only a slight increase in model complexity and computational burden.
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For each element pair, ECTSTt , the number of contacts is the
sum of Cr,l between Rn,Ts and LTt , where Cr,l, Rn,Ts , and LTt
are the number of contacts, atoms in the protein, and atoms in
the ligand, respectively. The dr,l represents the distance between
atom r and atom l, and the distance between the atom in the
ligand to the nearest point of the boundary is defined as d0, if
dr,l is within (k – 2)δ + d0 ≤ dr,l < (k – 1)δ + d0, then r and l
is equal to 1; otherwise, it is equal to 0. In our study, we used the
same values of d0 and δ as those used in OnionNet.

The SE Module
The SE module is inspired by SENet, which was the champion of
the ImageNet Large Scale Visual Recognition Challenge 2017. It
allows for simple yet easy expansion within the existing network
structure. The SENet network focuses on the relationships
between channels, aiming to automatically learn the importance
of different channel features. The SE module is shown in
Figure 2.

The SE module performs a squeeze operation on the feature
map to obtain the channel-level global features, and an excitation
operation is performed on the global features to learn the
relationship between the channels. The weight of the different
channels is multiplied by the original feature map to obtain
the final feature map. Essentially, the SE module performs
an attention or a gating operation on the channel dimension.
This mechanism can pay more attention to channel features,
which have a large amount of information, while suppressing
unimportant channel features. The SE module was embedded in
our original network architecture.

Our SE-OnionNet Model
In general, the SE-OnionNet model was designed by embedding
SE modules, for their ability to perform attention operations,
in the OnionNet network. Specifically, for each complex, two-
dimensional information, as a feature map, is extracted from the
three-dimensional structure. Then, the feature map is entered
into a three-layer convolutional network to flatten and pass them
onto the four fully connected layers with 400, 200, and 100
units, respectively. Finally, an output layer is generated with
the predicted protein–ligand binding affinity score, pKa. The SE
module is added to the second and third convolutional layers to
improve the non-linear expression of the network. The structure
of the SE-OnionNet model is shown in Figure 3.

We trained our model using the loss function in OnionNet,
shown as follows:

Loss = α (1− R) + (1− α)RMSE, (4)

Where R and RMSE are the Pearson’s correlation coefficient and
root mean square error, respectively. α denotes an adjustable
positive parameter that is <1. The value of α is set to be 0.8
in our model. The purpose of training is to obtain a higher R
value and a lower RMSE value. We applied batch regularization
to all layers except the last one, in order to avoid overfitting.
For this, we tried many methods and finally chose to apply
regularization between the convolutional layer and the dense
layer. Adagrad was selected as the optimizer of SE-OnionNet

after comparison with stochastic gradient descent (SGD) and
Adam (Kingma and Ba, 2015).

Evaluation Metrics
The Pearson’s correlation coefficient (R), denoted in Equation
(9), and the standard deviation (SD) are used to evaluate the
performance of the model during the training process. The
binding affinity, pKa, is expressed as the negative logarithm of
Kx, as follows:

pKa = −log10Kx, (5)

Where Kx represents the inhibition constant (K i), dissociation
constant (Kd), or semi-inhibitory concentration (IC50).

The accuracy of the model is evaluated by RMSE, calculated
using Equation (6), to quantify the relative deviation between the
predicted and experimentally measured values of pKa.

RMSE =

√

√

√

√

1

N

N
∑

i=1

(pKapredict − pKatrue )2, (6)

FIGURE 4 | The datasets used in the model. The original PDBbind v.2018

dataset was filtered to retain only protein–ligand complexes with measured K i

or Kd binding affinity and divided into training set, validating set, and testing

set.
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We also estimated the regression SD, calculated using the
following equation:

SD =

√

√

√

√

1

N − 1

N
∑

i=1

(
(

a ∗ pKa + b
)

− pKatrue )
2
, (7)

where a and b are the slope and intercept of the linear regression
line between the predicted pKa and actual pKa values.

The mean absolute error (MAE), calculated using Equation
(8), is used to evaluate the prediction error.

MAE =
1

N

∑

|pKapredict − pKatrue |, (8)

Finally, R calculated by Equation (9) is used to estimate the
relationship between the predicted pKa and actual pKa.

R =
E

[(

pKapredict − pKapredict

)

(

pKatrue − pKatrue

)

]

SDpKapredict · SDpKatrue
, (9)

where SDpKapredict and SDpKatrue are the standard deviations
of the pKa predicted by our network and the actual
pKa, respectively.

Datasets
The three-dimensional complexes used for the training and
testing of our model are from the PDBbind database (v. 2018)
(http://www.pdbbind.org.cn/). The dataset consists of both the
general set, which includes 11,663 complexes, and the refined set,
which includes 4,463 complexes, and the general set was used to
train our model. We then randomly selected 4,000 complexes
from the refined set for validation, and the rest were used as
testing sets. The datasets used in themodel are shown in Figure 4.

The CASF-2016 benchmark was selected to verify our model
(Su et al., 2018). Compared with CASF-2013, CASF-2016 has
improved in several aspects such as test set construction,
evaluation method, and selection of scoring function. The CASF-
2016 benchmark offers the following: (1) A larger and higher
quality test set can be constructed; (2) there is an improved series
of evaluation methods; and (3) 25 scoring functions can be tested
for exemplary application.

TABLE 1 | Performance of SE-OnionNet.

Dataset R RMSE MAE SD

Training set 0.990 0.256 0.152 0.198

Validating set 0.814 1.584 0.823 1.221

V2013 core set 0.812 1.692 1.323 1.423

V2018 core set 0.853 1.592 0.912 1.253

FIGURE 5 | Loss and accuracy under different optimizers.
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RESULTS

Performance Comparison With Different
Optimizers
One of the central steps of the contemporary deep learning
pipeline is to select an optimizer. Considering the sparsity of
the feature map, we tried three popularly used optimizers: SGD,
Adam (Kingma and Ba, 2015), and Adagrad (Duchi et al., 2011).
The number of iterations for the optimization algorithm was set

to 100, and the learning rate was set to 0.001. We found that
Adagrad was the fastest optimizing algorithm with an accuracy
higher than that of SGD and Adam. The loss and accuracy of the
three optimizers, from 0 to 100 epoch(s), are shown in Figure 5.

Performance of the SE-OnionNet Model
Our SE-OnionNet model performed well in the experiments
conducted using the v. 2013 core and v. 2018 core datasets (see
Table 1).

FIGURE 6 | Predictions for two test sets (core sets from PDBbind v. 2013 and v. 2018): training set and validation set.
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For each complex in the dataset, the affinity was predicted
and compared with the real value. The prediction accuracy of
the model was evaluated based on the values of R, RMSE, SD,
and MAE. The R values of our model were found to be 0.990,
0.814, 0.812, and 0.853 for the training set, validating set, and two
testing sets, respectively, and these values are higher than those of
the original model. The RMSE values calculated using Equation
(6) were 1.584, 1.692, and 1.592 for the validating set and two

TABLE 2 | Performance comparison of different scoring functions.

Scoring functions SD R

SE-OnionNet 1.20 0.83

OnionNet 1.26 0.82

Pafnucy 1.37 0.78

AutoDock Vina 1.61 0.62

testing sets, respectively, demonstrating that the pKa predicted
by our model is highly correlated with the actual pKa value.

We also analyzed the correlation between predicted pKa and
measured pKa of the different datasets using a scatter plot
(Figure 6). As expected, the values were highly correlated not
only in the training set but also in the validating and testing sets.

DISCUSSION

Stability of SE-OnionNet
It is well-known that the stability of the deep learningmodel plays
an important role. To test the model’s stability, we compared
the SD and R values of SE-OnionNet, OnionNet, Pafnucy, and
AutoDock Vina using CASF-2016. The results are shown in
Table 2. The SD and R values of our model are 1.20 and 0.83,
while in the OnionNet, these are 1.26 and 0.82, respectively,
indicating that our model is slightly better than OnionNet.
Simultaneously, the indices SD and R of our model are better

FIGURE 7 | The interaction diagram between the macrophage migration inhibitor factor (PDB ID: 6cbg) and 3-(1H-pyrazol-4-yl)benzoic acid (EWG). (A) Molecular

docking between the macrophage migration inhibitor factor (PDB ID: 6cbg) and 3-(1H-pyrazol-4-yl)benzoic acid (EWG). (B) Local two dimensional display of the

interaction diagram between the macrophage migration inhibitor factor (PDB ID: 6cbg) and 3-(1H-pyrazol-4-yl)benzoic acid (EWG). (C) Three dimensional display of

the interaction diagram between the macrophage migration inhibitor factor (PDB ID: 6cbg) and 3-(1H-pyrazol-4-yl)benzoic acid (EWG). (D) Hydrogen bond coloring

display of the interaction diagram between the macrophage migration inhibitor factor (PDB ID: 6cbg) and 3-(1H-pyrazol-4-yl)benzoic acid (EWG).
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than those of Pafnucy and AutoDock Vina. Overall, our model
based on deep learning performed better than other traditional
scoring models.

Robustness of SE-OnionNet
To further investigate whether the SE-OnionNet model
improved the robustness of the original model, we selected the
macrophage migration inhibitor factor (PDB ID: 6cbg) and its
ligand is 3-(1H-pyrazol-4-yl)benzoic acid (EWG) from the PDB
refined dataset. The index pKd (pKa for our study) provided in
the PDBbind database is 3.95. We first extracted the proto-ligand
(EWG) from the protein and redocked it using AutoDock Vina
(Figure 7). This was used as an input for our model to obtain
the pKa value. The predicted index pKa of the complex, docked
using AutoDock Vina, by our model was 5.645 and was not lower
than the indexed pKd provided in the PDBbind database.

CONCLUSION

In this study, a modified deep learning model SE-OnionNet,
with an attention mechanism to improve the performance of
the model, is constructed. Based on the SENet model, we added
SE modules to each of the two convolutional layers, except the
first one, to improve the non-linear expression of the network
and, thus, the performance of the model. We used three different
optimizers, SGD, Adam, and Adagrad, to optimize the network,
and finally, chose the superior Adagrad as our optimizer. Using
CASF-2016, we found that the SE-OnionNet model outperforms
the original model. Finally, for the purpose of testing the
stability and robustness of the network, we chose the macrophage
migration inhibitor factor (PDB ID: 6cbg) as an example. We

found that our model is robust and the prediction results are not
affected by docking orientation. We plan to add more modules
to improve the performance of the model. Additionally, our
study also motivates the formulation of innovative approaches
to process the three-dimensional structure of a protein–ligand
complex. Furthermore, it is worthwhile to use spiking neural
networks [e.g., spiking neural P systems (Song et al., 2016, 2017,
2018, 2019a,b)] for drug discovery.
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