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Bulk transcriptomic analyses of autism spectrum disorder (ASD) have revealed
dysregulated pathways, while the brain cell type-specific molecular pathology of ASD
still needs to be studied. Machine learning-based studies can be conducted for ASD,
prioritizing high-confidence gene candidates and promoting the design of effective
interventions. Using human brain nucleus gene expression of ASD and controls, we
construct cell type-specific predictive models for ASD based on individual genes and
gene sets, respectively, to screen cell type-specific ASD-associated genes and gene
sets. These two kinds of predictive models can predict the diagnosis of a nucleus with
known cell type. Then, we construct a multi-label predictive model for predicting the cell
type and diagnosis of a nucleus at the same time. Our findings suggest that layer 2/3
and layer 4 excitatory neurons, layer 5/6 cortico-cortical projection neurons, parvalbumin
interneurons, and protoplasmic astrocytes are preferentially affected in ASD. The
functions of genes with predictive power for ASD are different and the top important
genes are distinct across different cells, highlighting the cell-type heterogeneity of
ASD. The constructed predictive models can promote the diagnosis of ASD, and the
prioritized cell type-specific ASD-associated genes and gene sets may be used as
potential biomarkers of ASD.

Keywords: autism spectrum disorder, cell type-specific, predictive model, gene set, biomarker

INTRODUCTION

Autism spectrum disorder (ASD) represents a group of neurodevelopmental disorders,
characterized by substantial phenotypic and genetic heterogeneity. Genetic studies have identified
variants that contribute to the risk of developing ASD (Iossifov et al., 2012; Neale et al., 2012;
O’Roak et al., 2012; Sanders et al., 2012; De Rubeis et al., 2014; Gaugler et al., 2014; Turner et al.,
2016; Satterstrom et al., 2020). However, it remains perplexing how these reported variants lead
to the pathogenesis of ASD. A major mode of action is that these genetic variants cause gene
expression alternations; direct analysis of gene expression in disease-relevant tissue is thus valuable
for understanding the molecular mechanism of ASD. As ASD is believed to result from functional
aberrations within brains, bulk transcriptomic analyses between autistic and normal brains have
been applied for identifying aberrant gene expression patterns in ASD (Voineagu et al., 2011; Gupta
et al., 2014; Guan et al., 2016; Parikshak et al., 2016). However, the brain is a highly heterogeneous
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organ including different cell types that are highly
interconnected. Genes may demonstrate diverse functions
across different brain cell types. In ASD, different functions may
be dysregulated and causal genes may be distinct across different
cells. Although bulk transcriptomic studies revealed convergence
of disease pathology on common pathways, the brain cell
type-specific molecular pathology of ASD is still needed to study.

Recently, the newly available single-nucleus RNA-sequencing
data of ASD (Velmeshev et al., 2019) makes it possible to study
the cell-type heterogeneity of ASD directly. The authors identified
differentially expressed (DE) genes between ASD and control
groups in a cell type-specific way and analyzed the functions of
the cell type-specific DE genes to characterize the heterogeneity
of dysregulated gene expression patterns among brain cell
types in ASD. As genes interact with others, the integrity of
disease gene modules instead of individual genes may determine
the manifestation of a disease in cells (Kitsak et al., 2016;
Mohammadi et al., 2019). Therefore, in addition to identifying
the individual cell type-specific risk genes, it is essential to identify
cell type-specific gene sets/modules associated with ASD.

There have been more and more studies evaluating the
effectiveness of machine learning for diagnosing ASD, exploring
its genetic underpinnings, and designing effective interventions
(Hyde et al., 2019). These studies were based on different kinds of
datasets, such as behavior evaluation based on Autism Diagnostic
Observation Schedule (ADOS) (Duda et al., 2014; Levy et al.,
2017) and Autism Diagnostic Interview-Revised (ADI-R) (Wall
et al., 2012; Duda et al., 2016), brain images for magnetic
resonance image (MRI) (Chen et al., 2011; Heinsfeld et al.,
2018) and electroencephalogram (EEG) (Bosl et al., 2018), and
genetic profiles (Kong et al., 2012; Cogill and Wang, 2016;
Guan et al., 2016; Oh et al., 2017). To detect ASD candidate
genes, several predictive models were constructed based on gene
expression profiling, including the one built using DE genes
between ASD and controls based on gene expression microarrays
of blood (Kong et al., 2012) and the one built using aberrant gene
expression in ASD based on bulk transcriptomic data of brains
(Guan et al., 2016). Actually, for identifying ASD risk genes,
genetic and genomic studies were usually performed, such as
genome-wide association studies, copy number variation studies,
and whole exome sequencing; these methods are expensive and
time-consuming, and the generated potential candidate genes
are numerous and not easy to be validated (Cogill and Wang,
2016). Gene screening methods based on machine learning can
prioritize genes and identify high-confidence candidates, which
may provide new insights for the experimental studies.

In this study, to characterize the cell-type heterogeneity of
ASD and to take advantage of the potential of gene expression
signature being diagnostic biomarkers for ASD, we analyze the
human brain nucleus gene expression data of ASD and controls
published in Velmeshev et al. (2019) and construct multiple
kinds of classification models for ASD using the algorithm of
partial least squares (PLS), identifying cell type-specific genes and
gene sets associated with ASD. Firstly, we construct cell type-
specific predictive models based on individual genes to screen
cell type-specific genes associated with ASD. Then, we construct
cell type-specific gene set-based predictive models to screen cell

type-specific gene sets associated with ASD. These two kinds
of predictive models can be applied to predict the diagnosis
of a given nucleus with known cell type. Lastly, we further
construct a multi-label predictive model for predicting the cell
type and diagnosis of a given nucleus at the same time. Our
results suggest that it may be feasible to use brain cell/nucleus
gene expression for ASD detection and the constructed predictive
models can promote the diagnosis of ASD. Our analytical
pipeline prioritizes ASD-associated cell type-specific genes and
gene sets, highlighting the cell-type heterogeneity of ASD.

MATERIALS AND METHODS

Human Brain Nucleus Gene Expression
Data
We used the single-nucleus RNA-seq data published in
Velmeshev et al. (2019), which includes 104,559 nuclei from
41 post-mortem tissue samples from the prefrontal cortex
and anterior cingulate cortex of 15 ASD patients and 16
control subjects. The nuclei were divided into 17 cell types,
including fibrous astrocytes (AST-FB), protoplasmic astrocytes
(AST-PP), endothelial, parvalbumin interneurons (IN-PV),
somatostatin interneurons (IN-SST), SV2C interneurons (IN-
SV2C), VIP interneurons (IN-VIP), layer 2/3 excitatory neurons
(L2/3), layer 4 excitatory neurons (L4), layer 5/6 corticofugal
projection neurons (L5/6), layer 5/6 cortico-cortical projection
neurons (L5/6-CC), microglia, maturing neurons (Neu-mat),
NRGN-expressing neurons I (Neu-NRGN-I), NRGN-expressing
neurons II (Neu-NRGN-II), oligodendrocytes, and OPC. We
downloaded the matrices of raw counts from the website of
autism.cells.ucsc.edu. Then, we preprocessed the data with R
package of scran (Lun et al., 2016), including the quality control
of nuclei and genes, removing a minority of nuclei from different
cell cycle phases, and normalizing the gene expression data.
Next, nuclear and mitochondrial genes downloaded from Human
MitoCarta2.0 (Calvo et al., 2016) were excluded. We used the
function of plotExplanatoryVariables in scran to check if any
factors, including region, age, sex, PMI (post-mortem interval),
RIN (RNA integrity number), Capbatch (10X capture batch), and
Seqbatch (sequencing batch), may contribute to the heterogeneity
of gene expression. It can calculate the percentage of the variance
of the expression values that is explained by the factors for each
gene. By checking the distribution of percentages across all genes,
we found that the expression profiles of most genes are not
strongly associated with the factors and the factors thus do not
need to be explicitly modeled in the downstream analyses (Lun
et al., 2016). We applied scran to obtain highly variable genes,
which include a total of 12,036 genes. We used the expression
level of 12,036 genes for downstream analyses, which contains
85,125 nuclei, including 3655, 7085, 1991, 3719, 4190, 1836, 5621,
12,795, 6518, 3402, 4385, 2495, 3532, 589, 1459, 12206, and 9647
nuclei from cell types of AST-FB, AST-PP, endothelial, IN-PV,
IN-SST, IN-SV2C, IN-VIP, L2/3, L4, L5/6, L5/6-CC, microglia,
Neu-mat, Neu-NRGN-I, Neu-NRGN-II, oligodendrocytes, and
OPC, respectively.
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Annotated Gene Sets
A total of 913 ASD candidate genes were downloaded from
Simons Foundation Autism Research Initiative (SFARI) (release
of March 4, 2020), which include 119, 144, 219, and 472 genes
from categories of S (syndromic), 1 (high confidence), 2 (strong
candidate), and 3 (suggestive evidence). For gene set analysis,
three kinds of annotated gene sets from Molecular Signatures
Database (MSigDB) (Liberzon et al., 2011) were used, including
H: hallmark gene sets, C2: curated gene sets (containing gene
sets from chemical and genetic perturbations, and canonical
pathways of Biocarta, KEGG, PID, and Reactome), and C5: GO
gene sets. By intersecting the genes in gene sets and our analyzed
gene expression matrix, we kept 3741 gene sets containing more
than 30 overlapping genes.

The Algorithm of Partial Least Squares
Partial least squares (Wold, 1966) regression combines features
from principal component analysis and multiple regression. It has
the ability to address the problem of modeling multicollinearity,
noisy, and even incomplete highly dimensional data (Boulesteix
and Strimmer, 2006). PLS can solve both single- and multi-label
classification problems. Partial least squares discriminant analysis
(PLS-DA) is a PLS regression, with the dependent variable
being categorical. Suppose X is an n × m matrix containing n
observations of m genes and Y is an n × p matrix containing
n observations of p response variables, then X and Y can be
decomposed by:

X = TPT
+ E, Y = UQT

+ F

where T and U are n× k score matrices (called component scores
or latent variables) of X and Y, respectively, P and Q are m × k
and p × k orthogonal loading matrices, and E and F are the
residual matrices. The decompositions of X and Y are made so
as to maximize the covariance between T and U. Then, based
on T, P, U, and Q, we can first fit U and T, and then the linear
relationship between X and Y can be obtained.

Recursive Feature Elimination With
Cross-Validation
Recursive feature elimination (RFE) (Guyon et al., 2002) is a
backward feature selection method, which is a recursive process.
It first builds a model using all features based on an algorithm
specified, such as PLS in our study, and computes a measure
of importance for each feature. The least important features are
removed. Then, the model is re-built using the left features,
importance scores are computed, and the least important features
are removed until the specified number of features is reached.
RFE attempts to eliminate dependencies and collinearity that may
exist in the model. It requires a specified number of features to
keep. To find the optimal number of features, RFE with cross-
validation (RFECV) is usually used to score feature subsets of
different sizes and select the best scoring one. Then, the optimal
feature subset is used to build the final model.

The Construction of Predictive Models
The R package of caret (Kuhn, 2008) was adopted to construct
predictive models based on the algorithm of PLS. Firstly, for each
cell type, we extracted the gene expression data of nuclei from
the cell type and constructed a cell type-specific predictive model.
Secondly, for each cell type and each annotated gene set, we
extracted the expression data of nuclei from the cell type in the
genes included in the gene set and constructed a cell type-specific
gene set-based predictive model. These two kinds of predictive
models can predict the diagnosis of a nucleus with known cell
type. Specifically, we split the extracted gene expression data
into a training set and a test set at a ratio of 7:3 using stratified
sampling. For the training set, we selected the optimal model by
applying 10-fold cross-validation for 10 times and tuning over
the model hyperparameter (the number of PLS components)
with grid search from 1 to 15 with a step of 1. To evaluate
the model performance, the area under the receiver operating
characteristic (ROC) curve (denoted as AUC) was used, because
this metric can deal well with the problem of label imbalance and
not be influenced by the selection of threshold. Then, from the
optimal model, we obtained the predictive probability of each
nucleus being a nucleus from ASD patients. Next, we used R
package of pROC (Robin et al., 2011) to obtain the best threshold
on training set and the threshold was used to determine the
predictive performances on training set and test set. For each
predictive model, we calculated the importance of each gene
using the function of varImp in caret.

In order to predict the cell type and diagnosis of a given
nucleus at the same time, we constructed a multi-label predictive
model based on PLS using R package of mlr (Bischl et al., 2016).
For each nucleus, we used 18 labels to describe it, with 1 label
being the diagnosis and the other 17 cell-type labels obtained
using one-hot encoding. We split the whole gene expression
data including all cell types and all genes into a training set
and a test set at a ratio of 7:3 using stratified sampling. Based
on the training set, we selected the optimal model by applying
five-fold cross-validation for five times and tuning over the
model hyperparameter with grid search from 1 to 15 with a
step of 1. Hamming loss, which is the fraction of labels that
are predicted incorrectly to the total number of labels, was used
as a performance indicator. Then, from the optimal model, we
obtained the predictive probability of each nucleus belonging to
each label. For the labels of cell types, the predictive cell type of
each nucleus was set as the cell type whose predictive probability
is the largest. For the diagnosis label, we extracted the predictive
probability of training set and applied ROC analysis to obtain
the optimal cut-off on training set for determining the predictive
diagnosis of each nucleus in training and test sets.

RESULTS

Methodological Overview
After normalization, we used the function of
plotExplanatoryVariables in scran (Lun et al., 2016) to calculate
the percentage of the variance of the expression values that
is explained by factors, including region, age, sex, PMI, RIN,
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Capbatch (10X capture batch), and Seqbatch (sequencing batch),
for each gene (Supplementary Figure 1A). We found that the
expression profiles of most genes are not strongly associated
with the factors and the factors thus do not need to be explicitly
modeled in the downstream analyses. Then, we obtained highly
variable genes, a total of 12,036 genes, and used their expression
level for downstream analyses. The density plot of the percentage
of variance explained by each factor across highly variable genes
can be seen in Supplementary Figure 1B.

Then we constructed multiple kinds of predictive models for
ASD. The overview of our analytical method can be seen in
Figure 1. Firstly, to screen genes associated with ASD in each
cell type, we constructed cell type-specific predictive models,
which can predict the diagnosis of a nucleus whose cell type
is known, using the algorithm of PLS (see section “Materials
and Methods”). Specifically, for each cell type, we extracted the
gene expression data of the nuclei from the cell type and split
the data into training and test sets. We selected the optimal
model based on the training set, and then obtained the predictive
probability of each nucleus being a nucleus from ASD patients.
Next, ROC analysis was performed to obtain the best threshold
on training set, and the threshold was used to determine the
predictive performance on training and test sets. To prioritize
genes, we calculated the importance of each gene in the cell type-
specific predictive model. In addition, in order to use less genes to
achieve similar performances, we performed RFECV (see section
“Materials and Methods”) to reduce the number of genes used
to re-construct cell type-specific predictive models. The optimal
genes obtained using RFECV were denoted as RFE genes, which
were used for the downstream analyses to depict the cell-type
heterogeneity of ASD.

Secondly, to screen gene sets associated with ASD in each cell
type, we constructed cell type-specific gene set-based predictive
models using PLS. Specifically, for each cell type and each
gene set, we extracted the expression level of the nuclei from

the cell type in the genes included in the considered gene set
and constructed a predictive model. To prioritize gene sets, we
ranked gene sets using their predictive performance on the test
set and kept the gene sets whose predictive accuracy (ACC),
sensitivity (SN), and specificity (SP) are larger than 70% as cell
type-specific gene sets associated with ASD. Besides, for the
total genes included in these identified gene sets, we calculated
their frequency and averaged importance, and used the genes
with top averaged importance to re-construct cell type-specific
predictive models.

Lastly, we further constructed a multi-label predictive model
using PLS, which can predict the cell type and the diagnosis of
a given nuclei at the same time. For the labels of cell types, the
predictive cell type of each nucleus was set as the cell type whose
predictive probability is the largest. For the diagnosis label, we
extracted the predictive probability of training set and applied
ROC analysis to obtain the optimal cut-off for determining the
predictive diagnosis of each nucleus in training and test sets.

Cell Type-Specific Genes Associated
With ASD
For each of the 17 cell types, we first constructed a cell
type-specific predictive model using all genes (Table 1 and
Supplementary File 1). To score genes in each cell type,
we calculated the importance of genes and ranked the genes
(Supplementary File 2). Next, in order to use less genes to
achieve similar performances, we used the genes with top 500,
1000, and 1500 importance respectively to construct cell type-
specific predictive models. We found out that using top 1000
genes made the model performance better than the one using
top 500, while approaching the one using top 1500 genes
(Supplementary File 1). Therefore, for each cell type, we applied
RFECV to reduce the number of genes to up to 1000 and obtain
the optimal gene subset, which was then used to re-construct

FIGURE 1 | The methodological overview.
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TABLE 1 | The classification performances of cell type-specific predictive models built using all genes.

Cell type (ASD/control) Training set Test set

ACC SN SP AUC ACC SN SP AUC

AST-FB (2033/1622) 0.91 0.92 0.9 0.97 0.72 0.78 0.63 0.79

AST-PP (4749/2336) 0.93 0.93 0.93 0.98 0.84 0.87 0.79 0.90

Endothelial (850/1141) 0.92 0.91 0.92 0.97 0.76 0.70 0.80 0.83

IN-PV (1811/1908) 0.95 0.94 0.96 0.99 0.80 0.77 0.82 0.88

IN-SST (1945/2245) 0.94 0.92 0.95 0.98 0.76 0.70 0.81 0.83

IN-SV2C (990/846) 0.98 0.98 0.97 1.00 0.80 0.83 0.76 0.88

IN-VIP (3098/2523) 0.89 0.88 0.91 0.96 0.79 0.79 0.78 0.86

L2/3 (6962/5833) 0.95 0.95 0.95 0.99 0.89 0.90 0.88 0.96

L4 (3415/3103) 0.93 0.91 0.94 0.98 0.83 0.80 0.87 0.91

L5/6 (1710/1692) 0.93 0.93 0.93 0.98 0.78 0.77 0.80 0.86

L5/6-CC (2279/2106) 0.97 0.98 0.97 1.00 0.85 0.88 0.82 0.93

Microglia (1174/1321) 0.91 0.90 0.93 0.97 0.76 0.73 0.78 0.84

Neu-mat (1853/1679) 0.85 0.82 0.88 0.93 0.75 0.70 0.80 0.83

Neu-NRGN-I (321/268) 0.97 0.99 0.94 0.99 0.69 0.75 0.63 0.74

Neu-NRGN-II (828/631) 0.82 0.86 0.78 0.89 0.63 0.70 0.53 0.68

Oligodendrocytes (4587/7619) 0.83 0.86 0.81 0.91 0.77 0.79 0.75 0.85

OPC (5085/4562) 0.83 0.82 0.84 0.91 0.75 0.74 0.76 0.82

The number of nuclei from ASD and controls are listed. ROC analysis was applied to obtain the AUC and the optimal cut-off point on the training set, and then the optimal
cut-off was used to determine the predictive accuracy (ACC), sensitivity (SN), and specificity (SP) on the training and test sets.

a cell type-specific predictive model (see section “Materials and
Methods”). The R package of caret (Kuhn, 2008) was adopted to
perform PLS-RFE with 10-fold cross-validation for 10 times. The
sizes of evaluated gene subsets are from 100 to 1000 with a step
of 100. The optimal genes obtained using RFECV were denoted
as RFE genes. It is noted that the performances on test sets of the
cell type-specific predictive models based on RFE genes approach
the ones based on all genes (Figure 2A and Supplementary File
1); hence, we used the RFE genes for the subsequent analyses
in this section.

By examining the number of RFE genes in every cell type
(Table 2), we found that in several cell types, such as AST-PP,
IN-PV, L2/3, L4, and L5/6-CC, there are more RFE genes and
the corresponding cell type-specific predictive models have better
performances than other cell types (Figure 2A). This implies that
these cell types may be more vulnerable in ASD and more genes
may be dysregulated in these cell types. Then, for each cell type,
we also applied edgeR (Robinson et al., 2010) to identify DE genes
in ASD compared to controls. It can be seen that in the mentioned
cell types above, there are indeed more DE genes, which also
indicates that these cell types may be mainly affected by ASD.
By performing hypergeometric tests, we found that the RFE
genes are significantly overlapped with the DE genes identified by
edgeR (Table 2). Then, we checked if building cell type-specific
predictive models using edgeR genes would be better than the
ones using RFE genes, while the model performances using RFE
genes are better than the ones using edgeR genes (Supplementary
File 1). This shows that genes that are not identified by edgeR may
have predictive power for ASD. In addition, we also compared
the RFE genes with the DE genes identified in the single-nucleus
RNA-seq study of ASD (Velmeshev et al., 2019). We found
that RFE genes are significantly overlapped with Velmeshev’s

genes, especially for the cell types of microglia, L2/3, L4, and
IN-VIP (Table 2). The model performances using RFE genes
are significantly better than the ones using Velmeshev’s genes
(Supplementary File 1), which may be because the number of
Velmeshev’s genes is small. Next, we found that there are more
SFARI ASD genes overlapped with RFE genes in neuron-related
cell types. We also performed overrepresentation tests between
RFE genes and SFARI ASD genes, and found that RFE genes are
significantly overlapped with ASD genes (Table 2).

For each cell type-specific predictive model built based on
RFE genes, we calculated the importance of each RFE gene
(Supplementary File 3). Table 2 lists the top RFE genes in each
cell type. Figure 2B also demonstrates the expression of the top
three RFE genes in ASD and control groups for the representative
cell types, including AST-PP, endothelial, IN-PV, L2/3, microglia,
oligodendrocytes, and OPC. The top genes among different
cell types are distinct, implying the cell-type heterogeneity of
ASD. However, some top genes appearing in several cell types
are of note. For instance, gene BCYRN1 (brain cytoplasmic
RNA 1, a long non-coding RNA) has the largest importance in
all excitatory neurons, including L2/3, L4, L5/6, and L5/6-CC.
Gene BCYRN1 is involved in the regulation of synaptogenesis,
and there have been several literatures linking BCYRN1 and
Alzheimer’s disease, a neurological disease (Wan et al., 2017;
Hu et al., 2018), which implies the possible association between
BCYRN1 and ASD. Besides, BCYRN1 has been prioritized in a
blood-based gene expression study of ASD (Ivanov et al., 2015).

To further characterize the cell-type heterogeneity of ASD, we
compared the RFE genes across different cells. We performed
gene ontology analyses using clusterProfiler (Yu et al., 2012),
with background genes set as the genes in the analyzed gene
expression matrix. The functions of cell type-specific RFE
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TABLE 2 | The overrepresentation tests between RFE genes and differentially expressed genes identified by edgeR, differentially expressed genes identified in the study
of Velmeshev et al. (2019), and SFARI ASD genes.

Cell type Number of
RFE genes

Overlapping
genes/edgeR genes

(FDR-adjusted
P-value)

Overlapping
genes/ASD genes

(FDR-adjusted
P-value)

Overlapping
genes/Velmeshev’s

genes (FDR-adjusted
P-value)

Top five important genes

AST-FB 200 120/257 (1.5e−158) 22/299 (5.8e−09) 8/11 (1.4e−12) DPP10, TMSB4X, SPARCL1, ZFP36L1, PCDH9

AST-PP 1000 667/1464 (0.0e+00) 98/299 (2.2e−34) 33/36 (2.1e−32) *PTGDS, HSPA1A, TRPM3, RP11-179A16.1,
*CIRBP

Endothelial 500 115/146 (3.2e−134) 40/299 (6.3e−11) 29/38 (1.5e−32) HERC2P3, *AKAP12, TMSB4X, RP11-649A16.1,
RPS28

IN-PV 1000 384/695 (4.2e−251) 103/299 (2.7e−38) 14/14 (1.3e−15) AC105402.4, MTATP6P1, CNTNAP3, *CIRBP,
ARL17B

IN-SST 1000 549/1346 (5.9e−291) 104/299 (5.3e−39) 16/17 (1.5e−16) SST, AC105402.4, VGF, HSPA1A, BCYRN1

IN-SV2C 900 345/616 (7.4e−244) 100/299 (9.7e−40) 9/9 (1.1e−10) CCK, BCYRN1, AC105402.4, MEG3, HSPB1

IN-VIP 1000 676/1820 (0.0e+00) 104/299 (5.3e−39) 32/32 (7.1e−35) HSPA1A, CCK, *RPS15, MEG3, *RGS12

L2/3 1000 863/4690 (7.8e−230) 107/299 (2.9e−41) 41/41 (2.0e−44) BCYRN1, CCK, *CNTNAP2, MEG3, *CAMK2N1

L4 1000 715/2477 (1.3e−294) 113/299 (3.7e−46) 40/42 (1.2e−40) BCYRN1, CCK, *NCAM2, SLC17A7, MTATP6P1

L5/6 900 467/1069 (4.0e−281) 98/299 (2.7e−38) 5/5 (2.8e−06) BCYRN1, AC105402.4, MTATP6P1, ATP1B1,
SLC17A7

L5/6-CC 1000 701/3183 (7.1e−202) 114/299 (7.5e−47) 7/7 (3.8e−08) BCYRN1, CCK, AC105402.4, RP11-750B16.1,
MT-RNR2

Microglia 200 74/106 (4.9e−112) 20/299 (1.4e−07) 38/49 (2.5e−58) FKBP5, TMSB4X, NEAT1, SLC1A3, CHN2

Neu-mat 900 351/476 (1.7e−312) 116/299 (2.9e−53) 1/1 (7.5e−02) AC105402.4, XIST, CAMK2N1, MEG3, ROBO2

Neu-NRGN-I 100 2/2 (6.8e−05) 12/299 (7.0e−06) 4/6 (8.7e−08) RP11-750B16.1, *PTMA, NRGN, GNAO1, TSPAN7

Neu-NRGN-II 100 7/8 (1.9e−14) 6/299 (3.8e−02) 2/4 (4.4e−04) PRNP, NRGN, STMN1, RP11-750B16.1 PLP1

Oligodendrocytes 600 410/1420 (9.4e−253) 57/299 (9.5e−19) 14/14 (1.2e−18) *PTGDS, NRXN1, CNDP1, *ABCA2, CREB5

OPC 900 528/1413 (1.9e−285) 102/299 (2.9e−41) 3/3 (4.4e−04) GPC5, TMSB4X, HSPH1, *CNTNAP2, *OLIG1

The number of overlapping genes; the number of edgeR genes, Velmeshev’s genes, and ASD genes; and the FDR-adjusted hypergeometric test P-values are shown.
The genes with top five importance are listed, of which edgeR genes are in boldface, SFARI ASD genes are underlined, and Velmeshev’s genes are marked with *.

genes are different among different cell types (Supplementary
File 4). For instance, in IN-PV, the enriched GO terms
include neuron projection, axon, somatodendritic compartment,
and cell part morphogenesis, while in L2/3, the top GO
terms are associated with ribosome, cotranslational protein
targeting to membrane, and protein localization to endoplasmic
reticulum (Figure 2B).

Cell Type-Specific Gene Sets Associated
With ASD
In addition to screening individual genes associated with ASD,
we also constructed cell type-specific gene set-based predictive
models to screen ASD-related gene sets. For each cell type and
each gene set, we extracted the expression level of the nuclei
from the cell type in the genes included in the considered gene
set, and constructed a predictive model (see section “Materials
and Methods”). We retained the gene sets whose ACC, SN,
and SP on test set are larger than 70%, and there are 5, 1,
88, 15, and 137 gene sets identified in cell types of AST-PP,
IN-PV, L2/3, L4, and L5/6-CC, respectively (Supplementary
File 5). Figure 3A shows the top five gene sets in each of these
five cell types and the performances of corresponding cell
type-specific gene set-based predictive models. For AST-PP, the
top ASD-associated gene sets include REACTOME_DISEASE,

GO_REGULATION_OF_CELL_POPULATION_PROLIFERATI-
ON, GO_POSITIVE_REGULATION_OF_CATALYTIC_ACTIVI-
TY, GO_SIGNALING_RECEPTOR_BINDING, and GO_ENZY-
ME_LINKED_RECEPTOR_PROTEIN_SIGNALING_PATHWAY.
For other neuron cell types, the ASD-associated gene sets are
mostly related to cell junction, synapse, neuron projection,
neurogenesis, neuron differentiation, and cell projection
organization. By checking the top important genes in each cell
type-specific gene set, we found that several genes appear in the
majority of the gene sets; for example, gene HSPA1A [heat shock
protein family A (HSP70) member 1A] shows up in all AST-PP
specific ASD-associated gene sets (Figure 3B). Therefore, for
each cell type, we analyzed the frequency of each gene included in
the identified gene sets and calculated the averaged importance of
genes (Supplementary File 5). Figure 3C shows the genes with
top five averaged importance in each cell type. Gene HSPA1A is
noted in AST-PP. Actually, heat shock proteins play a central role
in the development of neurological disorders, of which HSP70
family has been shown its functions (Turturici et al., 2011), and
HSPA1A, a member of HSP70 family, has already been associated
with ASD (Lin et al., 2014). As to gene CCK (cholecystokinin),
it is prioritized in excitatory neurons, which is a kind of gut
peptide hormone. Gut peptide hormones have been found across
different brain regions, and many of them are involved with
ASD-related deficits (Qi and Zhang, 2020).
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FIGURE 2 | (A) The classification performance on test set of cell type-specific predictive models built using RFE genes. ROC analysis was applied to obtain the AUC
and the optimal cut-off point on the training set, and then the optimal cut-off was used to determine the predictive accuracy (ACC), sensitivity (SN), and specificity
(SP) on the test set. For the cell types of AST-PP, endothelial, IN-PV, L2/3, microglia, oligodendrocytes, and OPC, (B) the expression of the top three important genes
in ASD and control groups is shown along with the top enriched GO terms with the RFE genes. The GO terms belonging to molecular functions, cellular component,
and biological process are shown in blue, orange, and green, respectively.

Next, based on the genes with averaged importance >10% in
corresponding cell types, we re-constructed a cell type-specific
predictive model for each of these five cell types. It is noted that
their predictive performances are even better than the ones of the
cell type-specific gene set-based predictive models (Figure 3D).
We checked the functions of these genes (Supplementary File
6) and found that their functions are distinct, especially among
AST-PP, IN-PV, and excitatory neurons (Figure 3E). In AST-PP,
the top genes are associated with the functions of enzyme-
linked receptor protein signaling pathway, transmembrane
receptor protein tyrosine kinase signaling pathway, positive
regulation of phosphorus and phosphate metabolic process,
and cellular component morphogenesis. In IN-PV, the top
genes are related to synaptic and postsynaptic membrane,
cation channel complex, and neuron projection. As to the
cell types of excitatory neurons, the top genes are associated
with ribosome, SRP-dependent cotranslational protein targeting

to membrane, nuclear-transcribed mRNA catabolic process,
nonsense-mediated decay, and protein targeting to ER.

A Multi-Label Classification Model
Predicting Cell Type and Diagnosis
To predict the cell type and diagnosis of a given nucleus at the
same time, we applied PLS to construct a multi-label predictive
model (see section “Materials and Methods”). We split the whole
gene expression data to a training set and a test set. For the
diagnosis label, we extracted the predictive probability of training
set and applied ROC analysis to obtain the optimal cut-off for
determining the predictive diagnosis of each nucleus in training
and test sets. For the cell type labels, the predictive cell type of
each nucleus was set as the cell type whose predictive probability
is the largest. The Hamming loss of the multi-label predictive
model is 0.02, and the accuracy achieves 72.8 with 92.7% accuracy
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FIGURE 3 | (A) The identified top five gene sets associated with ASD by constructing cell type-specific gene set-based predictive models. The number of
overlapping genes between the gene expression data and the gene set, the total number of genes in the gene set, and the performances of corresponding cell
type-specific gene set-based predictive models are shown. For each cell type, (B) illustrates the top five gene sets and the genes with top five importance in each
gene set, and (C) plots the genes with top averaged importance. (D) The performances of predictive models built using genes with averaged importance >10% and
(E) the enriched GO terms with these genes. The GO terms belonging to molecular functions, cellular component, and biological process are shown in blue, orange,
and green, respectively.

for cell-type labels and 78.5% accuracy for diagnosis label. Then,
we examined the predictive performance of the model by cell type
and by label. For each cell type, Figure 4 illustrates the proportion
of the number of nuclei predicted as each cell type to the
total number of nuclei, the proportion of correct and incorrect
predictions for the label of diagnosis, and the proportion of
correct predictions for all labels in the test set. It can be seen
that for most cell types, the predictive cell types are correct,
except for AST-FB, Neu-mat, and Neu-NRGN-I. Because AST-
FB and AST-PP are cell clusters of astrocytes and they may have
similar gene expression patterns, a part of nuclei from AST-FB is
predicted as AST-PP. As both Neu-NRGN-I and Neu-NRGN-II
are NRGN-expressing neurons, nuclei from Neu-NRGN-I were
mostly predicted as Neu-NRGN-II. As to Neu-mat, more than
40% nuclei were predicted as L2/3, which may indicate that the
gene expression patterns between Neu-mat and L2/3 are similar.
For most cell types, the predictive accuracy of diagnosis label is
larger than 70%, and the top highest accuracy values appear in
L2/3, L5/6-CC, IN-SV2C, L4, and AST-PP, showing that these cell
types may be more vulnerable in ASD.

DISCUSSION

Genetic studies have identified variants associated with
ASD, while the causal variants and the specific cell types in
which the disease-risk variants may be active are unclear.
Genes may demonstrate diverse functions across different
brain cell types. Different functions may be dysregulated
and causal genes may be distinct across different brain
cells in ASD. Recently, the newly available single-nucleus
RNA-sequencing data of ASD (Velmeshev et al., 2019)
makes it possible to study the cell-type heterogeneity of
ASD directly. The authors identified DE genes between
ASD and controls in a cell type-specific way and found
that the top DE neuronal genes were identified in L2/3
and IN-VIP, and the top DE genes in non-neuronal cell
types were identified in AST-PP and microglia. The relative
changes of DE genes in L2/3 and microglia were the
most predictive of clinical severity of ASD patients and
the cell types that are recurrently affected across multiple
patients included L2/3 and L5/6-CC. They concluded that
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FIGURE 4 | For each cell type, (left) the proportion of the number of nuclei predicted as each cell type to the total number of nuclei, (middle) the proportion of
correct and incorrect predictions for the label of diagnosis, and (right) the proportion of correct predictions for all labels in the test set.

synaptic signaling of upper-layer excitatory neurons and the
molecular state of microglia are preferentially affected in
ASD, and the dysregulation of specific groups of genes in
cortico-cortical projection neurons correlates with clinical
severity of ASD.

Actually, except for genetic and genomic studies, gene
prioritization studies (Kong et al., 2012; Cogill and Wang, 2016;
Guan et al., 2016; Oh et al., 2017) can be applied to detect
ASD risk genes, which can help to identify high-confidence
gene candidates. In this study, to characterize the cell-type
heterogeneity of ASD and to identify cell type-specific genes and
gene sets associated with ASD, we constructed multiple kinds
of predictive models based on the human brain nucleus gene
expression data of ASD and controls (Velmeshev et al., 2019).
By constructing cell type-specific predictive models based on
individual genes, we found that AST-PP, IN-PV, L2/3, L4, and
L5/6-CC may be more vulnerable in ASD. They have more
RFE genes and the corresponding cell type-specific predictive
models have better performances. Actually, they have more
DE genes identified by edgeR and more SFARI ASD genes.
These indicate that more genes may be dysregulated in these
cell types, and these cell types may be mainly affected by
ASD. In addition, we also compared the RFE genes with the

DE genes identified in the single-nucleus RNA-seq study of
ASD (Velmeshev et al., 2019). We found that RFE genes are
significantly overlapped with Velmeshev’s genes for all cell
types, especially for microglia, L2/3, L4, and IN-VIP. The
functions of genes with predictive power for ASD are different,
and the top important genes are distinct across different cell
types, highlighting the cell-type heterogeneity of ASD. However,
some genes appearing as top important genes in several cell
types are of note. For instance, gene BCYRN1 has the largest
importance in all excitatory neurons, including L2/3, L4, L5/6,
and L5/6-CC. Gene BCYRN1 is involved in the regulation of
synaptogenesis, and there have been several literatures linking
BCYRN1 and Alzheimer’s disease, a neurological disease (Wan
et al., 2017; Hu et al., 2018), which implies the possible
association between BCYRN1 and ASD. Besides, BCYRN1 has
been prioritized in a blood-based gene expression study of ASD
(Ivanov et al., 2015).

As genes interact with others, the integrity of disease
gene modules instead of individual genes may determine
the manifestation of a disease in cells (Kitsak et al., 2016;
Mohammadi et al., 2019). Therefore, in addition to identifying
the individual cell type-specific risk genes, it is valuable
to identify cell type-specific gene sets/modules associated
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with ASD. By constructing cell type-specific gene set-based
predictive models, we also noted cell types of AST-PP,
IN-PV, L2/3, L4, and L5/6-CC. The identified gene sets
specific to these cell types are different. For AST-PP, the
ASD-associated gene sets include REACTOME_DISEASE,
GO_REGULATION_OF_CELL_POPULATION_PROLIFERATI-
ON, GO_POSITIVE_REGULATION_OF_CATALYTIC_ACTIVI-
TY, GO_SIGNALING_RECEPTOR_BINDING, and GO_ENZY-
ME_LINKED_RECEPTOR_PROTEIN_SIGNALING_PATHWAY.
For the other four neuronal cell types, the ASD-associated
gene sets are mostly related to cell junction, synapse, neuron
projection, neurogenesis, neuron differentiation, and cell
projection organization. We found that gene HSPA1A appears as
the most important gene in all AST-PP specific ASD-associated
gene sets. Actually, heat shock proteins play a central role in
the development of neurological disorders, of which the HSP70
family has been shown its functions (Turturici et al., 2011), and
HSPA1A, a member of HSP70 family, has already been associated
with ASD (Lin et al., 2014). Gene CCK is prioritized in L2/3,
L4, and L5/6-CC, which is a kind of gut peptide hormone.
Gut peptide hormones have been found across different brain
regions, and many of them are involved with ASD-related deficits
(Qi and Zhang, 2020).

Overall, we found that the functions of genes with predictive
power for ASD are different and the top important genes
are distinct across different cell types, depicting the cell-type
heterogeneity of ASD. The findings suggest that L2/3, L4, L5/6-
CC, AST-PP, and IN-PV are mainly affected in ASD. The results
show that it may be feasible to use single cell/nucleus gene
expression for ASD detection and the constructed predictive
models can promote the diagnosis of ASD. Our method
prioritizes ASD-associated cell type-specific genes and gene sets,
which may be used as potential biomarkers of ASD, promoting
the design of effective interventions.
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