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Lung adenocarcinoma (LUAD) is caused by multiple biological factors. Therefore, it will
be more meaningful to study the prognosis from the perspective of omics integration.
Given the significance of epigenetic modification and immunity in tumorigenesis and
development, we tried to combine aberrant methylation and tumor infiltration CD8 T cell-
related genes to build a prognostic model, to explore the key biomarkers of early-stage
LUAD. On the basis of RNA-seq and methylation microarray data downloaded from The
Cancer Genome Atlas (TCGA), differentially expressed genes and aberrant methylated
genes were calculated with “DEseq2” and “ChAMP” packages, respectively. A Chi-
square test was performed to obtain methylation driver genes. Weighted correlation
network analysis (WGCNA) was utilized to mine cancer biomarkers related to CD8
T cells. With the consequences of univariate Cox proportional hazards analysis and
least absolute shrinkage and selection operator (LASSO) COX regression analysis, the
prognostic index based on 17 methylation driver genes (ZNF677, FAM83A, TRIM58,
CLDN6, NKD1, NFE2L3, FKBP5, ITGA5, ASCL2, SLC24A4, WNT3A, TMEM171,
PTPRH, ITPKB, ITGA2, SLC6A17, and CCDC81) and four CD8 T cell-related genes
(SPDL1, E2F7, TK1, and TYMS) was successfully established, which could make
valuable predictions for the survival risk of patients with early-stage LUAD.

Keywords: lung adenocarcinoma, methylation, CD8 T cell, prognostic model, survival analysis

INTRODUCTION

Lung cancer accounts for a large proportion of tumor-related deaths, with 1.7 million deaths
worldwide annually (Muller et al., 2019), which can be classified into SCLC and NSCLC. The
most common subtype of NSCLC is LUAD (Herbst et al., 2008). Although early diagnosis and
treatment techniques have improved significantly in the past few decades, the 5-year OS rate of

Abbreviations: AUC, area under curve; FC, fold change; FDA, Food and Drug Administration; GDC, Genomic Data
Commons; GDSC, Genomics of Drug Sensitivity in Cancer; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; LASSO, least absolute shrinkage and selection operator; LUAD, lung adenocarcinoma; NSCLC, non-small-cell
lung cancer; OS, overall survival; ROC, receiver operating characteristic; SCLC, small-cell lung cancer; TCGA, The Cancer
Genome Atlas; WGCNA, weighted correlation network analysis.
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LUAD patients is still less than 15% (Yang et al., 2019). Moreover,
there was no OS benefit for most pathological stage I patients
who were received adjuvant therapy (Pignon et al., 2008; Strauss
et al., 2008).Therefore, there is an imminent need to seek
more accurate predictors from patients with early-stage LUAD
to distinguish high-risk subgroups, which can benefit from
personalized therapy.

Accumulating evidence suggests that the progression of LUAD
is controlled not only by the inherent genetic changes of cancer
cells but also by epigenetic and environmental factors, such
as abnormal methylation. DNA methylation is a key element
of epigenetic modifications and plays an important role in
regulating cellular functions and carcinogenesis (Bernstein et al.,
2007; Zheng et al., 2017). Many LUAD prognostic models
have been established using methylation data, and a series of
methylation-related biomarkers have been discovered (Kuo et al.,
2016; Li et al., 2019). CD8 T cell is also a factor. Cancer-
infiltrating CD8 T cells have a vital effect on the immune response
in lung cancer (Hiraoka et al., 2006; Nakanishi et al., 2009;
Bos and Sherman, 2010). The outcome of tumor development,
as well as the responsiveness to cancer immunotherapy, can
be influenced by the total number of T cells found within
a tumor. Hence, several immune-related prognostic models
have been developed (Li et al., 2017; Zhang et al., 2020). In
short, previous prognostic models of LUAD only focused on
a single biological factor. Given the significance of epigenetic
modification and immunity in tumorigenesis and development,
we tried to combine aberrant methylation and tumor infiltration
CD8 T cells-related genes to build a prognostic model, and to
explore the key biomarkers of early-stage LUAD.

MATERIALS AND METHODS

Data Retrieving and Analyzing
Methylation and mRNA microarray data were retrieved from
TCGA (Tomczak et al., 2015). Our study focused on 363 samples,
including 345 cancer tissues and 18 normal tissues, which
have corresponding DNA methylation, mRNA expression, and
complete clinical follow-up information. These samples are early-
stage LUAD, including tumor stage I and II. GSE72094 dataset
from GEO was used as the validation data, which contained 321
stage I and stage II LUAD patients.

Candidate Methylation Driver Gene
Selection
Differentially expressed mRNAs between cancer and normal
samples were identified with “DEseq2” package in R (Love et al.,
2014). Genes with | FC| ≥ 1.5 and adjusted P ≤ 0.05 were
identified as differentially expressed. Aberrant methylated genes
were calculated with “ChAMP” package (Tian et al., 2017).
Genes with FC ≥ 0.25 and adjusted P ≤ 10−5 were identified
as aberrant methylated. The correlation between differentially
expressed genes and aberrantly methylated genes was calculated
using Pearson method. Genes with correlation coefficient ≤−0.3
and adjusted P ≤ 0.05 were labeled as methylation driver genes.

To further explore the functions of these methylation driver
genes, GO and KEGG enrichment analysis were performed with
the “clusterProfiler” package in R (Yu et al., 2012).

Candidate CD8 T Cell-Related Gene
Selection
CD8 T cell is extremely important for immune defense against
intracellular pathogens and tumor surveillance. The patient
survival and response to immunotherapy can be predicted by
tumor-infiltrating CD8 T cells in many cancer types (Pagès
et al., 2005; Galon et al., 2006; Azimi et al., 2012; Herbst
et al., 2014; Tumeh et al., 2014; Eroglu et al., 2018; Peranzoni
et al., 2018; Savas et al., 2018). The total proportion of 22
kinds of immune cells was obtained with CIBERSORT analysis
(Newman et al., 2015). Based on transcriptome profiling data
and CIBERSORT immune fractions, we employed the WGCNA
algorithm (Langfelder and Horvath, 2008) to identify the co-
expression module that was most correlated with CD8 T cells.

Construction of Risk Assessment
Signature
Here, we combined methylation driver genes and CD8 T
cell-related genes as candidate omics genes. First, univariate
Cox proportional hazards regression analysis was conducted to
initially screen for genes that were significantly related to OS
(P ≤ 0.05). Then, LASSO Cox regression model was established
with “glmnet” package (Friedman et al., 2010). Finally, genes
with non-zero beta values were identified as potential prognosis
biomarkers. Risk score was calculated by the following formula:

Risk score =
N∑

i=1

Coefficient(Genei) × Expression(Genei)

The expression value of each gene was normalized by log2.
Specifically, risk assessment signature was established based
on 17 methylation driver genes (ZNF677, FAM83A, TRIM58,
CLDN6, NKD1, NFE2L3, FKBP5, ITGA5, ASCL2, SLC24A4,
WNT3A, TMEM171, PTPRH, ITPKB, ITGA2, SLC6A17,
and CCDC81) and four CD8 T cell-related genes (SPDL1,
E2F7, TK1, and TYMS).

Next, patients were sorted into high-risk (n = 173) and low-
risk groups (n = 174) with the median risk score as the cutoff.
Kaplan–Meier analysis and log-rank tests were used to compare
the difference in prognostic time. The ROC curve was adopted to
evaluate the predictive capability of the risk assessment signature
with the “ROCR” package in R (Sing et al., 2005).

Construction of Prognostic Nomogram
A genomic-clinical nomogram was established to quantitatively
predict the survival probability of each patient. The prediction
ability of the nomogram was measured by AUC. The AUC
value is between 0.5 and 1.0, and a larger AUC indicates better
performance. A calibration curve was derived by comparing the
predicted value of the nomogram with the observed survival rates
of 3 and 5 years. The prognostic nomogram and calibration curve
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were generated with the “rms” package (Harrell, 2016). The time-
dependent ROC curve was produced with “timeROC” package
(Blanche et al., 2013).

The Further Prognostic Value of
Candidate Omics Genes
To further evaluate the prognostic value of these candidate omics
genes, gene expression value was used as grouping indicator
to perform survival analysis. The median gene expression was
designed as a cut-off value for comparing difference in survival
rate. P ≤ 0.05 was regarded as statistically significant. Kaplan–
Meier plot was conducted.

RESULTS

Clinicopathological Characteristics of
Patients
The clinical information of 877 samples was acquired from
TCGA. We selected patients with tumor stage I and II. A total
of 345 patients with complete clinical follow-up information,
mRNA, and methylation microarray data were eventually
retained as further study objects. The clinicopathological
characteristics are shown in Table 1. The study flowchart is shown
in Figure 1.

Potential Methylation Driver Genes
We identified 4501 up-expressed and 2688 down-expressed
genes in cancer tissues compared to normal tissues. A total

TABLE 1 | Clinicopathologic characteristics of early-stage LUAD patients.

Total (N = 345)

Female 188 (54.5%)

Male 157 (45.5%)

Age (years)

Mean (SD) 65.4 (9.95)

Median (Min, Max) 66.0 (33.0, 88.0)

Missing 9 (2.6%)

Vital_status

Alive 240 (69.6%)

Dead 105 (30.4%)

Smoking

No 9 (2.6%)

Yes 336 (97.4%)

Race

Asian 4 (1.2%)

Black or African American 38 (11.0%)

Not reported 29 (8.4%)

Stage

Stage i 5 (1.4%)

Stage ia 115 (33.3%)

Stage ib 118 (34.2%)

Stage ii 1 (0.3%)

Stage iia 49 (14.2%)

Stage iib 57 (16.5%)

FIGURE 1 | The workflow of the study.

of 2672 aberrant methylated genes were observed, including
1529 hypermethylation and 1143 hypomethylation genes. Then,
277 methylation driver genes were acquired (Figure 2A
and Supplementary Table S1), whose mRNA expression was
significantly negatively correlated with their corresponding
methylation levels. That is, 193 genes with hypermethylation
may lead to decreased mRNA expression level and 84 genes
with hypomethylation may lead to increased mRNA expression
level. The top six negatively correlated genes are shown
in Figure 2B, including CSF3R, SCARF1, HYAL1, DUSP4,
GATA6, and ZNF677.

Gene Ontology analysis deciphered that 277 genes were
enriched in 199 GO biological process terms (adjust P ≤ 0.05)
(Supplementary Table S2). The top 10 biological process
terms are shown in Figure 3A. These genes were mainly
concentrated in mesodermal cell differentiation, positive
regulation of angiogenesis, embryonic organ development,
cell fate commitment, and so on. Additionally, 25 pathways
were significantly associated with these genes (P < 0.05)
according to KEGG pathway analysis (Supplementary
Table S3). The most enriched pathways were PI3K-Akt
signaling pathway, proteoglycans in cancer, MAPK signaling
pathway, signaling pathways regulating pluripotency of stem
cells, and so on (Figure 3B).

Candidate CD8 T Cell-Related Genes
We use WGCNA to explore key modules and genes related to
CIBERSORT immune fraction. In order to ensure the scale-free
nature of the co-expression network, a power of β = 5 was adopted
as the optimal soft threshold (Supplementary Figure S1). Next,
15 non-gray modules were obtained (Figure 4A). And the
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FIGURE 2 | The methylation driver genes. (A) Heatmap of the 277 methylation driver genes. The color from blue to red indicates the trend from hypomethylation to
hypermethylation. (B) Scatter plot of the top six negatively correlated genes. The x-axis represents the RNA-seq expression value, and the y-axis represents the
methylation beta value.

turquoise module displayed the highest correlation (r = 0.4,
p = 3e-15) with CD8 T cell (Figure 4B). A total of 271 hub genes
pulled from the turquoise module were labeled as CD8 T cell-
related gene signatures by selecting the part that satisfies gene
significance > 0.2 and intramodular connectivity > 0.7.

Establishment of Risk Assessment
Signature
A total of 277 methylation driver genes and 271 CD8 T
cell-related genes were integrated into a gene set. These
genes were submitted to univariate Cox regression analysis.
241 potential candidate genes were pinpointed (P ≤ 0.05),
including 209 risk and 32 protective markers (Figure 5A).
In LASSO regression, the optimal λ value of 0.02774519 was
adopted to point the most robust prognosis signatures, following
10-fold cross-validation with 1000 repeats (Figure 5B). The
remaining 21 genes had non-zero LASSO coefficients, including
SPDL1, E2F7, TK1, TYMS, ZNF677, FAM83A, TRIM58, CLDN6,
NKD1, NFE2L3, FKBP5, ITGA5, ASCL2, SLC24A4, WNT3A,
TMEM171, PTPRH, ITPKB, ITGA2, SLC6A17, and CCDC81
(Figure 5C). Their corresponding LASSO coefficients are shown
in Figure 5D (Supplementary Table S4). Finally, the risk score
was calculated according to the formula in Section “Construction
of Risk Assessment Signature.”

The distribution of risk scores and their corresponding
survival status are shown in Figures 6A,B. There was remarkable
difference in survival rate between low-risk group and high-risk
group (P = 1.933303e-09) (Figure 6C). The AUC value of the
prediction model was 0.721, which revealed a worthy predictive

power for the survival risk of patients with early-stage LUAD
(Figure 6D). To confirm the prognostic robustness of the 21 gene
signatures, it was further confirmed in an independent external
cohort. Similarly, the OS rate of patients with higher risk scores
is significantly worse than that of patients with lower risk scores
(p = 0.0011, Figure 6E).

Construction of Prognostic Nomogram
A nomogram was established to predict the 3- and 5-year survival
probability, by integrating 21 biomarkers, age, risk score, sex,
and tumor stage. In the univariable Cox analysis, only risk
score and tumor stage were determined as independent elements
(P < 0.01). It was further confirmed that the risk score and tumor
stage were significantly related to the prognosis in multivariable
Cox analysis (P ≤ 0.01). Thus, the prognostic nomogram was
constructed by integrating these two factors (Figure 7A). In
the time-dependent ROC curve, the nomogram also displayed
a robust performance in predicting the 3- and 5-year survival
rates. The AUC was 0.78 and 0.76, respectively (Figure 7B).
The calibration curves of 3- and 5-year survival rates showed
an optimal agreement between the nomogram predictions and
actual observations (Figures 7C,D).

The Further Prognostic Value of
Candidate Omics Genes
A total of 141 CD8 T cell-related genes and 18 methylation driver
genes were significantly associated with prognostic (P ≤ 0.05;
Supplementary Table S5). The top six CD8 T cell-related genes
were ANLN, CYP4B1, R3HDM1, KIF14, CENPK, and HJURP
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FIGURE 3 | Functional enrichment analysis of methylation driver genes. (A) The top 10 enriched terms of the biological process of GO. The outer circle represents
the expression values (log2FC) of methylation driver genes in each enriched GO term. Red dots imply upregulated genes and blue dots imply downregulated genes.
The inner circle indicates the significance of GO terms. (B) The chord plot of top five KEGG enriched pathways. The left outer semicircle represents the log2FC value
of methylation driver genes, and the right semicircle corresponds to five pathway entries.

(Supplementary Figure S2). Patients with high expression of
CYP4B1 had a higher survival rate. The top three methylation
driver genes were BZW2, SLC16A3, and NKD1 (Supplementary
Figure S2). Patients with hypomethylation and high expression
of NKD1 had a higher survival rate.

Drug Target TYMS
Interestingly, TYMS is the target of the drug Pemetrexed
according to the GDSC database (Yang et al., 2013) among
21 prognostic markers. Pemetrexed can target DNA replication
by preventing both purine nucleotide and thymidine synthesis,
inhibiting several folate-dependent enzymes. Three genes were
interacting with TYMS among the 21 prognostic markers, which
were all CD8 T cell-related genes (Figure 8A). The function of
these four genes was associated with cell proliferation by GO

analysis. In addition to the FDA-approved drug Pemetrexed,
some potential drugs could also be used as inhibitors of
TYMS according to DGIdb (Cotto et al., 2018) (Figure 8A).
Patients with low expression of TYMS, E2F7, SPDL1, and
TK1 showed a very high survival probability. These patients
were characterized as low proliferation and termed as group 1
(Figure 8C). Further, we classified group 2 into group 3 and
group 4 according to our defined risk score index. Patients with
high proliferation and high-risk score group showed the worst
survival status (Figure 8D).

DISCUSSION

The importance of methylation and immunity in tumor
progression has been accepted. To date, prognostic models of
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FIGURE 4 | Key modules and its correlation with CIBERSORT immune fractions. (A) Gene modules identified by hierarchical clustering. A total of 15 non-gray
modules were generated. (B) The correlation between modules and CIBERSORT immune fractions. The turquoise module depicts the highest correlation (r = 0.4,
p = 3e-15) with CD8 T cells.
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FIGURE 5 | Construction of risk assessment signature. (A) 241 promising candidates (P ≤ 0.05), including 32 protective and 209 risk markers. (B) The optimal λ
value of 0.02774519 was selected to identify the most robust markers for prognosis in LASSO regression. (C) A combination of 21 genes remained with their
individual non-zero LASSO coefficients. (D) The distribution of LASSO coefficients of the gene signature. The blue bars represent protective biomarkers and the red
bars represent risk biomarkers.

LUAD were usually constructed using single-level biological
factor. Focused on methylation, Kuo et al. (2016) built a
prognostic panel consisting of eight signatures to predict the
survival of early-stage LUAD patients in Asian and Caucasian
populations. Li et al. (2019) revealed that methylation-driver
mRNA and lncRNA contributed to the survival of LUAD, and
eight mRNAs and four lncRNAs might be candidate biomarkers.
Focused on immunity, Zhang et al. (2020) constructed the
first TNF family-based model for predicting outcomes of
LUAD patients, Li et al. (2017) developed and validated an
individualized immune prognostic signature in early-stage non-
squamous NSCLC. However, unavoidable deficiencies existed

in previous studies. First, there is no study to integrate
the molecular signatures of methylation and immunity into
traditional prognostic systems to optimize clinical procedures
in LUAD, which represents a multi-omics perspective. Second,
there is no prognostic model using CD8 T cell-related genes
in LUAD. Here, we used WGCNA to mine cancer biomarkers
related to CD8 T cells with considering the fact that tumor
infiltration is a cancer hallmark involving gene networks. Third,
some patients who were clinically determined to be early stage
still have a poor prognosis indicating the need for further
optimization of clinical indicators. In view of the clinical
complexity of LUAD, we should not directly use whole LUAD
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FIGURE 6 | Outcomes of the prediction model. (A) The distribution of risk scores for 345 early-stage LUAD patients. (B) The distribution of survival status, sorted by
risk score. (C) Kaplan–Meier survival curve. It demonstrated the survival difference between the high-risk group and low-risk group. (D) ROC curve. It showed the
performance of the model. (E) Kaplan–Meier survival curve using the validation cohort. Patients with higher risk score exhibited worse overall survival.

data from TCGA, but should analyze the early or late LUAD
data separately.

To comprehensively explore the abnormal methylation and
immune status of early-stage LUAD patients, we combined them
with clinical outcomes to establish an omics prognostic index.
With the consequences of LASSO COX regression analysis,
the prognostic indexes based on 17 methylation driver genes
(ZNF677, FAM83A, TRIM58, CLDN6, NKD1, NFE2L3, FKBP5,
ITGA5, ASCL2, SLC24A4, WNT3A, TMEM171, PTPRH, ITPKB,
ITGA2, SLC6A17, and CCDC81) and four CD8 T cell-
related genes (SPDL1, E2F7, TK1, and TYMS) were established
(Figure 5D). According to the risk score formula, each patient
had a corresponding risk score. Patients with high risk value
had a poorer prognosis. The survival time decreased with
the increase of risk score (Figures 6B,C). We combined
the risk score and the clinical pathological variables of the
patient to construct a quantitative nomogram to predict the
survival probability in early-stage LUAD patients (Figure 7A).
Moreover, a total of 141 CD8 T cell-related genes and 18
methylation driver genes were significantly associated with
prognosis. These signatures could be labeled as independent
prognostic factors. Finally, we confirmed that this prognosis
model could make stable predictions using GEO dataset for
external verification.

Some genes involved in our study had been verified in
previous studies. Zhang et al. (2019) showed that the abnormal
overexpression of FAM83A in LUAD indicated a poor prognosis.

Xu et al. (2017) discovered that WNT3A could regulate EMT-
related proteins and promote the migration and invasion of
LUAD, and it could be used as an independent prognostic factor.
Malvi et al. (2019) found that TK1 was utilized as a potential
target for LUAD treatment, due to its momentous role in
maintaining lung tumor growth and metastasis. Shimokawa et al.
(2011) analyzed the expression of thymidylate synthase (TYMS)
in primary LUAD by immunohistochemistry and revealed that
the high expression of TYMS might be a useful marker for
predicting the recurrence of LUAD after surgery. Among the
21 prognostic markers, except for FAM83A, WNT3A, TK1, and
TYMS, none of them have been reported as biomarkers in LUAD,
and the function and mechanism of these genes in LUAD really
need further study.

We not only analyzed 543 candidate genes, including 277
methylation driver genes and 271 CD8 T cell-related genes, but
also used these two types of information to construct prognostic
models separately. First, 277 methylation driver genes were
submitted to univariate Cox regression analysis and LASSO COX
regression model. An ensemble of 20 genes (ZNF677, FAM83A,
TRIM58, RRM2, CLDN6, NKD1, NFE2L3, FKBP5, ITGA5,
HMGA2, ASCL2, SLC24A4, WNT3A, TMEM171, HOXA7,
PTPRH, ITPKB, ITGA2, SLC6A17, and CCDC81) was used to
establish the risk score with their individual non-zero LASSO
coefficients. Patients between the low-risk group and the high-
risk group showed significant differences in prognosis (P = 5.46e-
8). The AUC value of the prediction model was 0.719. Second,
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FIGURE 7 | Construction of prognostic nomogram. (A) Nomogram for predicting 3- and 5-year survival probability, by integrating 21 biomarkers, age, risk score,
sex, and tumor stage. (B) ROC curves of the nomogram. In the time-dependent ROC curve, the nomogram also displayed a robust performance in predicting the 3-
and 5-year survival rates. The AUC was 0.78 and 0.76, respectively. (C,D) The calibration curves of 3- and 5-year survival rates. They showed an optimal agreement
between the nomogram predictions and actual observations.

we performed the same process as described above on 271 CD8
T cell-related genes. A total of eight genes (CYP4B1, ECT2,
PAICS, CENPU, SPDL1, CTSV, E2F7, TK1) remained with their
individual non-zero LASSO coefficients. Patients between the
low-risk group and the high-risk group also showed significant
differences in prognosis (P = 0.00176501). The AUC value
was 0.634. In short, the prognostic model using two biological
factors had the highest AUC value, that is, 0.721. It is one
of the reasons why we tried to use both 277 methylation
driver genes and 271 CD8 T cell-related genes to construct a
prognostic model.

Pemetrexed is a new antifolate drug that can inhibit the growth
of a variety of tumors by targeting multiple folate-dependent
enzymes, such as TYMS (Shih et al., 1997). In our results, E2F7,
TK1, and SPDL1 were interacting with TYMS among the 21
prognostic markers (Figure 8A). And the expression trends of
these four genes exhibited consistency (Figure 8B). Interestingly,
patients with low expression of TYMS, E2F7, SPDL1, and TK1

showed a surprisingly high survival rate (Figure 8C). Patients
with high expression of these four genes and high risk scores
showed a very poor survival rate (Figure 8D). In summary,
early-stage LUAD patients could be divided into three groups,
including low proliferation group (group 1), high proliferation
and low risk score group (group 3), and high proliferation
and high risk score group (group 4) (Figure 8D). It had been
suggested that high expression of TYMS in various tumor types
was associated with adverse reactions to TYMS targeted drugs
(Johnston et al., 1997; Pestalozzi et al., 1997). Takezawa et al.
(2011) found that the expression of TYMS could be adopted
as a potential predictor of the response of NSCLC patients to
pemetrexed chemotherapy, because the high expression of TYMS
would reduce sensitivity to pemetrexed. Our study provided
a potential classification method for personalized medicine
of early-stage LUAD patients. Patients in group 3, with low
expression of TYMS and high risk scores, may be more suitable
for pemetrexed chemotherapy.
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FIGURE 8 | Survival analysis of four immune-related biomarkers. (A) Interaction network of TYMS, E2F7, SPDL1, and TK1. TYMS is the target of the FDA-approved
drug Pemetrexed. (B) Heatmap of CD8 T cell-related genes. (C) Kaplan–Meier survival curve. It showed the significant survival difference between patients with low
expression of TYMS, E2F7, SPDL1, TK1 (group 1), and other patients (group 2). (D) Kaplan–Meier survival curve. Group 2 was further classified into group 3 and
group 4 according to our defined risk score index. It displayed the significant survival difference among the three groups, including the low proliferation group (group
1), the high proliferation and low risk score group (group 3), and the high proliferation and high risk score group (group 4).

Although the novel epigenetic and immune-related signatures
and their corresponding prognostic model in this study are
promising, some drawbacks still existed. First, transcriptome
analysis can only reflect certain aspects of the status of CD8 T
cells, but cannot reflect overall changes. Second, although the
significance of these genes is indubitable in early-stage LUAD,
the underlying mechanism is still unclear. Last but not least,
despite the external cohort verification, the lack of experimental
verification is still the main flaw of our research. Maybe we would
conduct some experimental studies in the future to assist in
verifying the predictions obtained from bioinformatics analysis.

CONCLUSION

We utilized univariate Cox proportional hazards analysis and
LASSO COX regression analysis to screen both 277 methylation
driver genes and 271 CD8 T cell-related genes associated
with prognosis. A prediction model was established using 17
methylation driver genes and four CD8 T cell-related genes.
A nomogram combining risk score and clinicopathological
factors can intuitively predict survival probability. Our

study provides a robust model and candidate biomarkers
for personalized therapy of early-stage LUAD patients.
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