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Although best practices have emerged on how to analyse and interpret personal

genomes, the utility of whole genome screening remains underdeveloped. A large

amount of information can be gathered from various types of analyses via whole genome

sequencing including pathogenicity screening, genetic risk scoring, fitness, nutrition, and

pharmacogenomic analysis. We recognize different levels of confidence when assessing

the validity of genetic markers and apply rigorous standards for evaluation of phenotype

associations. We illustrate the application of this approach on a family of five. By applying

analyses of whole genomes from different methodological perspectives, we are able to

build a more comprehensive picture to assist decision making in preventative healthcare

and well-being management. Our interpretation and reporting outputs provide input for

a clinician to develop a healthcare plan for the individual, based on genetic and other

healthcare data.

Keywords: whole genome sequencing, personal genomics, interpretation, precision medicine, genetic risk score,

pharmacogenomics, nutrigenomics

INTRODUCTION

A great deal of literature has been generated over the past decade defining best practices for clinical
interpretation of personal genomes (Nykamp et al., 2017; Biesecker et al., 2018; Brandt et al., 2019;
Machini et al., 2019). Some additional approaches involve the simultaneous analysis of parents
and child, for example in the case of pediatric diagnosis for children with rare diseases (Wright
et al., 2018). Other studies have used family genomes to assign the precise chromosomal position of
variants (Roach et al., 2011). To our knowledge, however, the use of genome analysis for screening
and disease prevention remains underdeveloped. To address this shortcoming, our current study
sheds light on two areas. First, we provide a comprehensive whole genome analysis of pathogenicity
screening, genetic risk, pharmacogenomic, fitness, and nutrition trait analysis. Second, we discuss
the joint interpretation of these results within the perspective of a family of five for whom we
have deep phenotypic knowledge, allowing us to find “true positive” predictions based on the
family observations.
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In the past, we have performed assessment of personal
genome analysis for the same set of family individuals using
direct to consumer data and crowdsourcing methods (Glusman
et al., 2012; Corpas et al., 2015). We were limited by the
amount of data available at the time (DNA chip or exome)
as well as a lack of reference data sources and analysis
platforms to help with the interpretation that have appeared in
recent years [e.g., gnomAD (Karczewski et al., 2019), ClinVar
(Landrum et al., 2014)]. In this new iteration, we perform
whole genome sequencing analysis for the same family of five
and expand from our previous research to encompass a more
comprehensive set of analyses and individual genomic data
following published standard practice for interpretation of results
as much as possible. Following standard practice is not always
possible given that authoritative guidelines for interpretation
of variants (Richards et al., 2015) are mostly applied to
pathogenicity screening, rather than preventative healthcare
using personal genomes. We were indeed able to perform a
pathogenicity screening for the five members of the family
quintet. For four genomes we also report genetic risk scores
for 49 phenotypes using published Genome Wide Association
Study (GWAS) markers (see Supplementary Table 1). We make
a distinction between our genetic marker score notation
and polygenic risk scores in the literature (Khera et al.,
2018; Georgi et al., 2019; Meisner et al., 2019; Palmer,
2019; Torkamani and Topol, 2019) as we only use markers
reported above a certain threshold of probability (as defined by
GWAS studies).

To date, genome analysis of pathogenicity screening,
genetic risk scoring for cardiovascular disease and some
pharmacogenomics characterization has been performed
by the MedSeq project for 100 individuals (Machini et al.,
2019). Compared to this study, we offer novel perspectives
on several fronts: (1) Our genetic risk analysis encompasses
mental, metabolic, and autoimmune diseases, in addition
to only cardiovascular being done in the MedSeq Project.
(2) We include a systematic curation of known nutrition
and fitness markers following newly developed guidelines to
evaluate the scientific validity of gene x lifestyle interventions
(Grimaldi et al., 2017). (3) Our deep phenotype and clinical
knowledge of analyzed participants, helps us interpret and
report results in a familial context within a wellness and
prevention point of view. In addition, this work provides a
proof-of-principle approach about an application of genetic
risk scores within a family-oriented preventative healthcare
and well-being case, recognizing that we are studying only
one family and therefore this represents only an illustration of
our proposed methodology for comprehensive whole genome
analysis. Whenever possible, we use established guidelines from
the American College for Medical Genetics and Genomics
(ACMG), Food and Drug Administration (FDA), the Clinical
Pharmacogenetics Implementation Consortium (CPIC),
and other specialized organizations. We also discuss how
different whole genome analysis methods can be integrated
into more actionable outcomes for the individual and his or
her relatives.

METHODS

Ethical Framework
This project builds on prior work (Glusman et al., 2012; Corpas
et al., 2015). We started as an open source project in 2010
using the data available from direct to consumer providers.
As the project evolved and exome sequencing was performed,
a consent form was created and signed for the collection of
samples, analysis, and publishing of results. This form identified
participants as voluntary donors of their genetic data to the
public domain and educated participants, making them aware
of the potential discomforts and risks that doing this research
might bring.

Here we base our analysis on the whole genome rather than
the exome. To facilitate this work, further collection of samples
has been performed in order to sequence and analyse whole
personal genomes for this family. All participants underwent
a new consent process and signed a consent form accepting
the terms and conditions of this work as well as the potential
consequences of performing such analysis. When developing
the consent framework, we drew on the Personal Genome
Project UK (PGP-UK Consortium, 2018) as an example of
a rigorous approach to informed consent. As a result, the
consent process developed for this work included the following
elements: (a) participants underwent extensive training on the
risks of genetic analysis including the risks of publishing personal
genetic data; (b) participants completed an exam to demonstrate
their comprehension of the risks and protocols associated with
participating in genetic analysis which may be published and
(c) participants were judged truly capable of giving informed
consent. Consent forms were signed by all family individuals or
their next to kin (in the case of a deceased member). This ethical
framework has been independently assessed and approved by
the Ethics Committee of Universidad Internacional de La Rioja
(code PI:029/2020).

Family Dataset
We selected this family dataset for two reasons: (1) We
have performed and published in the past decade two studies
describing state of the art personal genomics analysis for a
family of related individuals using array chip data and Illumina
exome data (Glusman et al., 2012; Corpas et al., 2015). (2)
The accumulated genetic studies and follow up of the disease
and lifestyle history of the family through their continuous
research have afforded us a deep knowledge of their phenotypes
and disease history. Figure 1 shows the family pedigree. In it
we have individuals PT00010A (Aunt), who is the sister of
PT00008A (Mother). PT00007A (Father) is Mother’s spouse and
both have two children (PT00009A and PT00002A; Daughter
and Son). From here onwards, and for simplicity, we refer to
family members as (Aunt, Father, Mother, Daughter, Son). All
individuals of the family except Aunt had their DNA sequenced
from saliva, whereas Aunt’s DNA was sequenced from hair (see
Supplementary Materials for details). This is because at the
time of sample collection Aunt was already deceased (see next
section for phenotypic details). Thirty-six hairs were retrieved
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FIGURE 1 | Family pedigree showing the relationship, gender (square: male, circle: female), and sample used for whole genome sequencing (saliva/hair). The crossed

circle indicates a deceased individual.

from a personal comb only she used and her DNA extracted
from hair roots using a different protocol described in the
Supplementary Materials.

When we analyzed the variant output of all samples,
we benchmarked against Fabric Genomics Clinical Grade
Scoring Rules (http://help.fabricgenomics.com/hc/en-us/
articles/206433937-Appendix-4-Clinical-Grade-Scoring-
Rules; accessed 7/January/2020), where Clinical Grade is a
measure of a variant file’s overall quality and fitness for clinical
interpretation. The hair sample failed the criteria for clinical-
grade coverage, genotype quality, homozygous/heterozygous
ratio, and transition/transversion ratio (Table 1).

We performed a further analysis of quality of variants by
counting those that pass the default standard filters of quality
for interpretation given our analysis software (Table 2; see
Supplementary Materials). For Aunt, we eliminated all variants
below the threshold of QUAL < 20. The performance of
the variant count and the level of coverage was sufficient to
include Aunt in pathogenicity screening, but not sufficient for
participation in the rest of the analysis.

Family History of Lifestyle and Disease
We conducted research into the family disease and lifestyle
history. This research consisted of face-to-face interviews with
all family members, during which they were asked about past
illnesses, hospitalizations, reasons of death for past relatives and
any ongoing condition that they think might related to the
phenotypes and traits we analyse in this study. At the time of
our last interview (October 2020), Mother and Father are in
their mid-eighties, a similar age Aunt would be, had she not

passed due to metastasised melanoma at age 79. Daughter is in
her late fifties and Son mid-forties. All members of the family
have been diagnosed obese or overweight at some point in their
adulthood years. Childhood obesity was present in both Son and
Daughter. Mother had a benign breast tumor removed in her
early forties. She has also suffered from a history of low blood
pressure and was diagnosed with chronic inflammation of her
colon in her sixties, suffering from lower abdominal pain ever
since. Father has a history of high blood pressure and heart
problems. He has recently been diagnosed with atrial fibrillation.
He displays difficulty breathing at moderate exertion levels and
has been taking anticoagulants to prevent thromboembolism as
a consequence of his atrial fibrillation, with some episodes of
adverse drug reactions to warfarin. He is suspected to be lactose
intolerant. In addition to her metastasised melanoma, before
Aunt’s passing she suffered from several episodes of venous
thromboembolism, treated with anticoagulants (warfarin). There
is no history in the family of diabetes or Parkinson’s disease,
although the father of both Mother and Aunt was diagnosed
with Alzheimer’s disease in his mid-eighties. Apart from Aunt’s
melanoma, there is no history of any other malignancy known
to the family, no major mental health episodes or alcohol
dependence diagnosed to date. All family members except
Mother reported being light smokers for a period of their lives,
all having quit more than a decade ago except daughter who still
smokes several cigarettes a day.

Pathogenicity Screening
All single nucleotide variants and indels were filtered according
to three different gene panels: (1) genes present in the
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TABLE 1 | Statistics for clinical grade measures of the quality of the variant file.

Sample ID Coverage Genotype

quality

Homozygous/

heterozygous

ratio

Transition/

transversion

ratio

PT00002A (Son) 43.0* 94.3 0.51* 2.81*

PT00007A (Father) 25.0 95.9* 0.51* 2.81*

PT00008A (Mother) 24.0 95.7* 0.51* 2.79*

PT00009A (Daughter) 29.0 97.8* 0.48 2.79*

PT00010A (Aunt) 2.0 4.7 0.11 1.06

Star-marked values (*) indicates the quality is of clinical standards and no-

star values that it is below clinical standards (see Fabric Genomics Clinical

Grade Scoring Rules [http://help.fabricgenomics.com/hc/en-us/articles/206433937-

Appendix-4-Clinical-Grade-Scoring-Rules]). Coverage in values with a star indicates

that the median coverage of coding variants exceeds 40. Genotype quality with a

starred value: more than 95% of the coding variants have a quality above 40. Starred

homozygous/heterozygous ratio: the ratio for the coding variants is between 0.5 and 0.61.

Starred transition/transversion ratio: The ratio for the coding variants is between 2.71 and

3.08. None of the quality measures for clinical grade sampling was met by Aunt, whereas

clinical grade quality measures are reached by other individuals.

TABLE 2 | The total number of variants for all saliva samples and the total number

of coding variants for each family member.

Sample ID Total number of variants Total number of

coding variants

PT00002A (Son) 4,956,742 27,286

PT00007A (Father) 4,650,536 27,504

PT00008A (Mather) 4,695,886 27,329

PT00009A (Daughter) 4,812,818 27,400

PT00010A (Aunt) 970,018 16,182

OMIM morbid list (Amberger et al., 2015), (2) ACMG 59
genes (Kalia et al., 2017), and (3) a Hereditary Cancer
panel of 52 genes (https://info.fabricgenomics.com/ace; accessed
10/February/2020). All three panels required pathogenic or
likely pathogenic alleles matching ClinVar (Landrum et al.,
2014) evidence. The variant prioritization was based on their
ClinVar evidence, their frequency in gnomAD (Karczewski
et al., 2019), the 1000 Genomes Project (The 1000 Genomes
Project Consortium, 2015) and their predicted variant effect (i.e.,
loss of function, non-synonymous or other). Our selection of
frequency threshold is based on the gnomAD database (https://
gnomad.broadinstitute.org/faq) criteria of common variant sites,
defined as frequency >0.01. For each of the variants that
passed the filtering, we classified them following the guidelines
proposed by the ACMG (Richards et al., 2015) into 5
categories; from most to least pathogenic these categories
are: pathogenic, likely pathogenic, uncertain significance, likely
benign, benign. Relevant scientific literature as well as a number
of algorithms were also used to assess each prioritized variant
[i.e., OMICIA (Coonrod et al., 2013), VAAST (Hu et al.,
2013), VVP (Flygare et al., 2018), and CADD (Rentzsch et al.,
2019)].

Genetic Risk Scores
Genetic risk scores, also called genetic predisposition scores,
aim to quantify the cumulative effects of a number of variants
affecting multiple genes, which may individually confer only
small risk susceptibility. Genetic risk scores are not diagnostic,
as a high-risk score does not necessarily mean that a person will
develop a condition, and a low score does not mean that they will
not develop it. Nevertheless, genetic risk scores may be pointers
for further exploration when looking for potential preventative
interventions, particularly for multigenic conditions like diabetes
type 2, hypertension or many mental illnesses. They can be
useful when other independent sources of risk information are
also concordant [e.g., genotype/phenotype additional knowledge
(Fahed et al., 2020), family history, imaging data]. A database
of 4,688 published GWAS SNPs was generated encompassing 49
common diseases (we call these common diseases “phenotypes”
from now onwards; Supplementary Table 1), their risk alleles
and weighted contributions (odds ratio or beta scores). These
phenotypes were selected according to GWAS Catalog criteria
(https://www.ebi.ac.uk/gwas) as having studies including a
primary GWAS analysis, defined as array-based genotyping and
analysis of 100,000+ pre-QC SNPs selected to tag variation across
the genome and without regard to gene content. Individual SNP-
trait associations were collected with a statistical significance
(SNP-trait p-value <1.0 x 10−5) in the overall (initial GWAS
and replication) population. To create genetic risk scores, each
collected SNP marker was required to possess (a) the risk allele
and (b) the measurement or effect size that this risk allele confers
to the individual that carries this mutation. A genetic risk score
was calculated as the sum of the weights of all the phenotype’s risk
alleles observed in the individual divided by the total number of
alleles reported for that phenotype. We used the final (Phase 3)
dataset of the 1000 Genomes Project containing data for 2,504
individuals from 26 populations to calculate their genetic risk
scores for each of the 49 phenotypes. The 1000 Genomes Project
individuals became our background distribution of genetic risks
against which to measure how far from the mean each of the
family participant lies. We required that the identified GWAS
SNPs are also present in the 1000 Genomes Project since
individuals from the 1000 Genomes Project were used as a
background population to which compare the participant’s score.
In order to control for potential differences in results due to the
ethnic diversity of the background population, we also performed
the analysis using a background population of only the 503
European (CEU) participants in the 1000 Genomes Project, given
that all family members are of European origin.

We plotted the genetic risk score of each family member
to establish whether he or she lies on the higher tail of the
distribution of scores in relation to the calculated risk scores
of 1000 Genomes Project individuals. In order to evaluate
whether a member of the family had a reportable genetic risk,
we applied a two standard deviations (2SD) threshold from
the mean genetic risk score of the background 1000 Genomes
individual distribution for a particular phenotype (equivalent to
the top 5 percentile normal distribution of a predicted risk).
We use a threshold of 2SD to give confidence that results
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are not attributable to chance. Furthermore, scores from both
1000 Genome individuals and family members are calculated
independently. Multiple testing correction is not performed
since the objective here is to identify family members in the
extreme risk tail of the 1000 Genomes background distribution
of calculated scores. For completeness, we also noted those
phenotypes for which a greater than one standard deviation
(1SD) from the mean background genetic risk is reached by the
tested family individual.

Pharmacogenomics
We analyzed three well-known genes influencing
pharmacogenomic responses, all of them forming part of
the Cytochrome P450 family: CYP2D6, CYP2C9, CYP2C19. In
order to extract relevant pharmacogenomic data, we rely on
Food and Drug Administration (FDA) and European Medicines
Agency (EMA) guidance sourced via the PharmGKB database
(https://www.pharmgkb.org). We also take guidance from the
Clinical Pharmacogenetics Implementation Consortium (CPIC;
https://cpicpgx.org), the Association for Molecular Pathology
and College of American Pathologists (https://www.amp.org),
and the American College of Medical Genetics and Genomics
(https://www.acmg.net). In order to perform the genotyping of
pharmacological genes we allow the extraction of non-variant
positions if required.

The testing of specific positions within a gene provides an
accurate representation of the metaboliser status of an individual
for that particular gene. For instance, if we were to assume that
an individual has a nucleotide change 1846G>A in CYP2D6,
this polymorphism is determinant for allele ∗4. If there are no
other variants, it is presumed that the other allele this person
harbors is a wild haplotype, being denoted as ∗4/∗1 [see (Nofziger
et al., 2020) for more detail]. Once both haplotypes for an
individual are identified, a lookup table is referenced where the
pharmacological effect of the observed haplotypes are indexed.

Pharmacological analysis also depends on whether analyzed
genes have their copy number altered. We performed a
consensus-based algorithm prediction using the short-read
sequencing data for Father, Mother, Daughter and Son
(Supplementary Materials). This analysis did not yield
significant evidence for presence of copy number alterations in
all Cytochrome P450 genes analyzed here.

Fitness and Nutrition
Besides pathogenicity screening, genetic risk scoring, and
pharmacogenomics, there is further useful information that can
be extracted fromwhole genomes using genotyping. In particular,
we identify two areas of interest that provide further information
about a person’s genetic load: fitness and nutrition. We recognize
that these areas of genetic analysis are less developed than
pathogenicity screening, and so we add rigor to the analysis
by first evaluating the quality of supporting evidence before
testing for the presence of variants in the family. To evaluate
the scientific validity and evidence for genotype-based dietary or
fitness advice, we first performed a literature search to identify
an initial list of potential genetic markers, and then adopted the
proposed recommendations of Grimaldi et al. (2017) for specific

gene x interactions and their relation to a health outcome. This
framework allows us to establish levels of confidence for each of
the SNPs or groups of SNPs we analyse for fitness and nutrition,
according to a set of peer-reviewed guidelines. These guidelines
differentiate four levels of scientific evidence assessment:

• “Convincing”: gene x interaction is based on at least 3
studies with high subject numbers, showing the relation and
mechanistic knowledge.

• “Probable” is based on several studies showing the relation
and/or some mechanistic understanding.

• “Possible”: based on a few studies showing the relation.
• “Not demonstrated” is any level of evidence below the

established above.

The levels of assessment above rely on the following criteria:

• “Study quality rating”: either A, B, C or D, based on whether a
study is (a) interventional or observational; (b) prospective or
retrospective, (c) whether it is randomized, placebo controlled
and blinded; (d) the number of subjects with effect alleles
(where possible); (e) the effect magnitude; (f) P-values, false
discovery rate and multiple testing and; (g) replications in
other populations and meta-analyses.

• “Type of gene x interaction”: direct phenotype, intermediate
phenotype, or indirect phenotype.

• “Nature of genetic variant”: causal, in linkage disequilibrium
with functional variant or associated but unknown function.

• “Biological plausibility,” rated as high, medium, low, or
unknown, based on our critical assessment of current
understanding of the physiological effect of identified SNPs.

Our initial selection and classification of genotyping markers for
fitness and nutrition are shown in Tables 3, 4. We then assess
each marker according to the above criteria of scientific evidence,
carrying forwards for analysis in the family participants those
classified as convincing (fitness n = 2; nutrition n = 13) and
probable (fitness n= 5; nutrition n= 1).

Having made the selection of relevant SNPs according to
the above framework, we proceed to analyse the family. The
trait analysis is performed as follows. First, a list of all the
positions of the SNPs to be tested is created. All those positions
are queried in the VCF files for each of the family members
and all observed alleles are then recorded. The observed alleles
are then interpreted via lookup tables collected from the
scientific literature.

An exception to the above approach concerns the phenotype
susceptibility to VO2max trainability, where we use a specific
study. To calculate the VO2Max trainability genetic score, we
follow the methodology outlined in Bouchard et al. (2011), that
identifies SNPs associated with improvements in VO2Max. This
study provides a panel of 21 SNPs that accounted for 49% of the
variance in VO2Max trainability.

RESULTS

Pathogenicity Screening
Figure 2 shows a summary of the pedigree and filtered variants
found listed within each individual. For Son, when searching for
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TABLE 3 | Summary of fitness trait analysis candidates assessed according to the scientific validity score as proposed by Grimaldi et al. (2017).

Category Trait RSID Gene Study

quality

rating

Type of gene x

trait interaction

Nature

of

genetic

variant

Biological

plausibility

Number of

independent

studies

Total

number

subjects

studied

Knowledge

of

biological

mechanism

involved

Scientific

validity

score

References

Fitness VO2max 21 SNPs Multiple A Direct phenotype Causal High 35 >1000 Medium Convincing Rice et al., 2012; Ghosh et al.,

2013; Williams et al., 2017

Fitness Muscle

performance

rs1815739 ACTN3 A Indirect phenotype Causal High 24 >1000 High Convincing Kikuchi et al., 2014, 2015, 2017b;

Schadock et al., 2015; Yvert

et al., 2015, 2016; Baumert et al.,

2016; Itaka et al., 2016; Min et al.,

2016; Del Coso et al., 2017,

2019a,b; Galeandro et al., 2017;

Houweling et al., 2018; Zhang

et al., 2019; Baltazar-Martins

et al., 2020; Calvano Küchler

et al., 2020; Murtagh et al., 2020;

Płóciennik et al., 2020

Fitness Caffeine

sensitivity/Increased

exercise

performance with

caffeine

rs762551 CYP1A2 C Direct phenotype Causal High 7 250 High Probable Pataky et al., 2016; Salinero et al.,

2017; Guest et al., 2018; Puente

et al., 2018; Carswell et al., 2020;

Grgic et al., 2020; Muñoz et al.,

2020

Fitness Endurance rs4253778 PPARA B Indirect phenotype Causal Medium 6 3267 High Probable Ahmetov et al., 2009; Ahmetov

and Fedotovskaya, 2015;

Lopez-Leon et al., 2016; Petr

et al., 2019; Johansen et al.,

2020; Murtagh et al., 2020

Fitness Lactate blood levels rs1049434 MCT1 B Direct phenotype Causal High 4 2048 High Probable Cupeiro et al., 2012;

Fedotovskaya et al., 2014;

Ben-Zaken et al., 2015; Kikuchi

et al., 2017a

Fitness Osmotic balance

by water support

rs1049305 AQP1 B Indirect phenotype Causal High 3 2613 Medium Probable Saunders et al., 2015; Rivera and

Fahey, 2019; Rivera et al., 2020

Fitness Performance rs12594956 NRF-2 C Indirect phenotype Causal High 4 1598 Medium Probable He et al., 2007; Eynon et al.,

2010, 2013; Peplonska et al.,

2017

Fitness Glucose

transportation and

lipid and glucose

oxidation

rs8192678 PPARGC1A C Indirect phenotype Causal High 5 409 Medium Possible Petr et al., 2018

Fitness Endurance rs12722 COL5A1 C Indirect phenotype Causal High 3 952 Medium Possible O’Connell et al., 2013; Bertuzzi

et al., 2014; Murtagh et al., 2020

Fitness Elite endurance rs4994 ADRB3 D Indirect phenotype Causal High 2 453 Low Not

demonstrated

Gómez-Gallego et al., 2010;

Santiago et al., 2011

A total of 10 fitness traits were identified for their gene x interaction assessment. We classified as “Convincing” those traits whose gene x interaction is based on at least 3 studies with high subject numbers, showing the relation

and mechanistic knowledge. A trait classified as “Probable” is based on several studies showing the relation and/or some mechanistic understanding. A trait is deemed “Possible” if based on a few studies showing the relation. “Not

demonstrated” are those traits for which any level of evidence is below the established criteria above.
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TABLE 4 | Summary of nutrition trait analysis candidates assessed according to the scientific validity score as proposed by Grimaldi et al. (2017).

Category Trait RSID Gene Study

quality

rating

Type of gene x

trait interaction

Nature

of

genetic

variant

Biological

plausibility

Number of

independent

studies

Total

number

subjects

studied

Knowledge

of

biological

mechanism

involved

Scientific

validity

score

References

Nutrition Homocystine levels rs1801133 MTHFR A Direct phenotype Causal High 70 >100000 High Convincing Boccia et al., 2008, 2009; Clarke

et al., 2011; Liew and Gupta,

2015

Mental

health /

Nutrition

Alzheimer’s rs429358,

rs7412

APOE A Direct phenotype Causal High 146 >100000 High Convincing Martins et al., 2006; Zhang et al.,

2015; Rasmussen et al., 2018

Nutrition Alcohol

dependence

rs1229984 ADH1B A Direct phenotype Causal High 59 >100000 High Convincing Jorgenson et al., 2017; Katsarou

et al., 2017; Masaoka et al.,

2017; Wolf et al., 2017; Hubacek

et al., 2018; Justice et al., 2018;

Polimanti and Gelernter, 2018;

Walters et al., 2018; Yokoyama

et al., 2018, 2019, 2020a,b,c;

Howe et al., 2019; Johnson

et al., 2019; Lai et al., 2019; Sun

et al., 2019;

Szentkereszty-Kovács et al.,

2019; Thompson et al., 2020

Nutrition Greater total body

adiposity

rs9939609 FTO A Direct phenotype Causal High 25 >100000 Medium Convincing Bollepalli et al., 2010; Dedoussis

et al., 2011; Mangge et al.,

2011; Dwivedi et al., 2012;

Lauria et al., 2012; Meng et al.,

2014; Zhang et al., 2014; Zhao

et al., 2014a; Qi et al., 2015a;

Quan et al., 2015; Duicu et al.,

2016; García-Solís et al., 2016;

Livingstone et al., 2016; Bordoni

et al., 2017; Almeida et al., 2018;

Ferreira Todendi et al., 2019;

Ranzenhofer et al., 2019;

Todendi et al., 2020

Nutrition Vitamin D

Metabolism

rs4588 GC B Direct phenotype Causal High 21 >100000 High Convincing Robien et al., 2013; Nissen et al.,

2014, 2015; Pekkinen et al.,

2014; Braithwaite et al., 2015;

Madden et al., 2015; Touvier

et al., 2015; Petersen et al.,

2017; Yao et al., 2017;

Chuaychoo et al., 2018;

Karuwanarint et al., 2018;

Al-Daghri et al., 2019; Bahrami

et al., 2019; Enlund-Cerullo et al.,

2019; Mehramiz et al., 2019;

Rahimi et al., 2019; Zhou et al.,

2019; Gibbs et al., 2020a,b

(Continued)
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TABLE 4 | Continued

Category Trait RSID Gene Study

quality

rating

Type of gene x

trait interaction

Nature

of

genetic

variant

Biological

plausibility

Number of

independent

studies

Total

number

subjects

studied

Knowledge

of

biological

mechanism

involved

Scientific

validity

score

References

Nutrition Vitamin B12 level rs602662 FUT2 A Direct phenotype Causal High 6 >9000 High Convincing Hazra et al., 2009; Tanaka et al.,

2009; Tanwar et al., 2013; Allin

et al., 2017; Nongmaithem et al.,

2017; Zhao and Schooling, 2017

Nutrition Vitamin C level rs33972313 SLC23A1 A Direct phenotype Causal High 12 >100000 High Convincing Timpson et al., 2010; Duell et al.,

2013; Amir Shaghaghi et al.,

2014; Kobylecki et al., 2015,

2018; Wade et al., 2015;

Ravindran et al., 2019

Nutrition Vitamin E level rs964184 BUD13/ZNF259 B Direct phenotype Causal High 4 >10000 High Convincing Major et al., 2011, 2012, 2014;

Wang and Xu, 2019

Nutrition Iron Overload

/Hemochromatosis

rs1800562 HFE B Direct phenotype Causal High 4 >5000 High Convincing McLaren et al., 2011; Katsarou

et al., 2016; Barton et al., 2018;

Wilman et al., 2019

Nutrition Saturated fat / risk

of T2D

rs1137101 LEPR C Indirect phenotype Causal High 12 >10000 Medium Convincing Domínguez-Reyes et al., 2015;

Yang et al., 2016

Nutrition Polyunsaturated

Fatty Acids

rs174547 FADS1 C Direct phenotype Causal High 11 3713 Medium Convincing Huang et al., 2017; Ching et al.,

2019; Wang et al., 2020

Nutrition Lactose

persistence

rs4988235 MCM6-LCT A Direct phenotype Causal High >10 >100000 High Convincing Baffour-Awuah et al., 2015

Nutrition Celiac disease rs2187668 HLA-DQA1 A Direct phenotype Causal High Many 7249 High Convincing van Heel et al., 2007; Hunt et al.,

2008

Nutrition Saturated fat rs5082 APOA2 B Direct phenotype Causal High 3 2856 Medium Probable Yabuta et al., 2016; Moran et al.,

2019; Amengual et al., 2020;

Graßmann et al., 2020

Nutrition Vitamin A level rs6564851 BCO1 C Direct phenotype Causal High 4 328 Medium Possible Delgado-Lista et al., 2007; Smith

et al., 2013; Noorshahi et al.,

2016

Nutrition Total

Carbohydrates

rs7578326 IRS1 B Indirect phenotype Causal High 2 ∼2000 Medium Possible Zheng et al., 2013; Mahmutovic

et al., 2019

Nutrition Total

Carbohydrates

rs2943641 IRS1 B Indirect phenotype Causal High 2 ∼2000 Medium Possible Zheng et al., 2013; Mahmutovic

et al., 2019

Nutrition Sugar rs7903146 TCF7L2 A Indirect phenotype Causal High 2 26905 Medium Possible Hindy et al., 2012, 2016

Nutrition Alcohol metabolism rs698 ADH1C C Direct phenotype Causal High Many >100000 High Possible Bierut et al., 2010; Martínez

et al., 2010; Olfson and Bierut,

2012; Kranzler et al., 2019

Nutrition Sweet Foods /

Sweet Tooth

rs838133 FGF21 A Direct phenotype Causal Medium 1 6514 High Not

demonstrated

Søberg et al., 2017

(Continued)
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TABLE 4 | Continued

Category Trait RSID Gene Study

quality

rating

Type of gene x

trait interaction

Nature

of

genetic

variant

Biological

plausibility

Number of

independent

studies

Total

number

subjects

studied

Knowledge

of

biological

mechanism

involved

Scientific

validity

score

References

Nutrition Vitamin B6 level rs4654748 ALPL B Direct phenotype Causal High 1 ∼3000 High Not

demonstrated

Tanaka et al., 2009

Nutrition Total

Carbohydrates

rs2241201 MMAB C Indirect phenotype Causal High 1 920 Low Not

demonstrated

Junyent et al., 2009

Nutrition Fiber rs4457053 ZBED3 B Indirect phenotype Causal High 1 26905 Medium Not

demonstrated

Hindy et al., 2016

Nutrition Fiber rs10923931 NOTCH2 B Indirect phenotype Causal High 1 26905 Medium Not

demonstrated

Hindy et al., 2016

Nutrition Sugar rs12255372 TCF7L2 B Indirect phenotype Causal High 2 26979 Medium Not

demonstrated

Hindy et al., 2016; López-Ortiz

et al., 2016

Nutrition Total fat rs324420 FAAH C Direct phenotype Causal High 5 >5000 Medium Not

demonstrated

Jensen et al., 2007; de Luis

et al., 2011; Knoll et al., 2012;

Balsevich et al., 2018; Doris

et al., 2019

Nutrition Saturated fat rs12449157 GFOD2 D Direct phenotype Causal High 1 41 Medium Not

demonstrated

Guevara-Cruz et al., 2013

Nutrition Omega-3 Fatty

Acids

rs17300539 ADIPOQ C Direct phenotype Causal High 1 310 Medium Not

demonstrated

Alsaleh et al., 2013

Nutrition Saturated Fatty

Acids

rs1800629 TNF C Indirect phenotype Causal High 2 472 Medium Not

demonstrated

Cormier et al., 2016; Oki et al.,

2017

Nutrition Protein rs12785878 DHCR7 D Indirect phenotype Causal High 1 732 Medium Not

demonstrated

Qi et al., 2015b

Nutrition Calcium rs2228570 VDR C Direct phenotype Causal High 3 >5000 Medium Not

demonstrated

Jenab et al., 2009; Slattery et al.,

2010; Zhou et al., 2015

Nutrition Zinc rs73924411 SLC30A3 D Direct phenotype Causal High 2 350 Low Not

demonstrated

da Rocha et al., 2014a,b

A total of 32 nutrition traits were identified for their gene x interaction assessment. We classified as “Convincing” those traits whose gene x interaction is based on at least 3 studies with high subject numbers, showing the relation

and mechanistic knowledge. A trait classified as “Probable” is based on several studies showing the relation and/or some mechanistic understanding. A trait is deemed “Possible” if based on a few studies showing the relation. “Not

demonstrated” are those traits for which any level of evidence is below the established criteria above.

F
ro
n
tie
rs

in
G
e
n
e
tic
s
|w

w
w
.fro

n
tie
rsin

.o
rg

9
M
a
rc
h
2
0
2
1
|
V
o
lu
m
e
1
2
|A

rtic
le
5
3
5
1
2
3

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Corpas et al. Family Whole Genome Interpretation

FIGURE 2 | Family pedigree showing the relationship, gender (square: male, circle: female), and variants found listed within each individual. Green variants are inferred

as benign, blue are variants of unknown significance and yellow pathogenic variants according to ACMG scoring. The crossed circle indicates a deceased individual.

pathogenic or likely pathogenic mutations within a panel of 4,100
OMIM morbid genes, we found that only two mutations passed
our prioritization and filtering criteria (see Methods section).
No other mutations passed the threshold criteria within the
ACMG59 and Hereditary Cancer panels. The first mutation
is a heterozygous missense change of C → T; c.200C>T;
p.Thr67Ile within the CTH gene. This change has been associated
to cystathioninuria, a disorder observed in 1 out of 20,000
individuals (ORPHANET, Pavan et al., 2017). However, the ExAC
(Lek et al., 2016) frequency in non-Finnish European is (∼1 in
100), so much higher than the prevalence of the disorder.We also
observe that this missense variant is not excessively constrained:
its missense z-score is −0.127428 (excessively constrained genes
are those with a missense z-score > 3.09, corresponding to
a p-value < 0.001). Multiple lines of computational evidence
suggest no impact on the gene. Our current assessment is that
this variant is benign according to the ACMG scoring and
inferred classification and is therefore not considered any further.
The second mutation for Son corresponds to chr11:111764842
(rs1805076) producing C → T; c.269G>A; p.Gly90Asp in
PPP2R1B. This gene encodes a regulatory subunit of protein
phosphatase 2. Protein phosphatase 2 is one of the four major
Ser/Thr phosphatases, and it is implicated in the negative control
of cell growth and division. While ClinVar evidence suggests a
matching allele to cause lung cancer, the computational and other
sources of evidence are inconclusive, hence we infer this variant
to be of uncertain significance (VUS).

For Father two variants pass the filters. The first variant is
selected from the 4100 genes OMIM panel and corresponds
to the heterozygous missense change of C → T; c.200C>T;

p.Thr67Ile within the CTH gene, which is the same one Son has.
We set the same classification as above and conclude it to be a
benign variant as well. The second variant is located in the MET
gene, part or our Hereditary Cancer panel, on chr7:116771936
(rs56391007) and produces C → T; c.3029C>T; p.Thr1010Ile.
This gene encodes a member of the receptor tyrosine kinase
family of proteins and the product of the proto-oncogene MET.
TheMET gene is associated with autosomal dominant hereditary
papillary renal cell carcinoma (Takahashi et al., 2002). According
to ORPHANET (Pavan et al., 2017), the prevalence of this cancer
is less than 1 in 1,500,000, while the allele frequency of this variant
is 1 in ∼89 in non-Finnish European, higher than expected for
the disorder. There are seven pathogenic and 15 likely pathogenic
ClinVar missense variants in this gene while there are two benign
and 25 likely benign ClinVar missense variants in this gene.
Evidence thus indicates that missense variants are not a common
mechanism of disease. In addition, there are multiple sources that
point to this mutation being both pathogenic and likely benign.
We conclude that this variant is of uncertain significance.

The first selected mutation for Mother comes from the
OMIM disease gene panel and is the same as the one previously
reported for Son corresponding to chr11:111764842 (rs1805076)
producing C → T; c.269G>A; p.Gly90Asp in PPP2R1B. We
apply the same criteria as above, inferring this variant effect
being of uncertain significance. The second variant selected for
interpretation in Mother corresponds to a heterozygous stop
gained mutation in chr13:32339267 (rs886040553) producing the
change A → T; c.4912A>T; p.Lys1638Ter in the BRCA2 gene.
The gene is included both in the ACMG 59 and our Hereditary
Cancer gene panel. The impact of this mutation is stop-gained
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in a splice site. ClinVar evidence contains several entries in its
classification history all matching the allele and all pathogenic.
This variant is absent from gnomAD or the 1000 genomes
project. We thus classify this entry as pathogenic according to
the ACMG scoring and inferred classification and as associated to
hereditary breast and ovarian cancer syndrome. However, since
the gene is autosomal recessive, both alleles need to be affected in
order to cause the disorder.

For Daughter we did not find any mutation in the panels
OMIM disease genes and ACMG 59 after our filtering criteria.
One mutation passes our criteria for the Hereditary Cancer
panel, corresponding to the variant located in chr7:116771936
(rs56391007) producing C → T; c.3029C>T; p.Thr1010Ile,
located in the MET gene, identified for Father as well. As above,
we conclude that this variant is of uncertain significance.

We prioritize the filtered variants from Aunt’s variant file.
After performing the selection of variants above the VCF
threshold quality of 20, we identify three variants. Among
these three variants, we decided to discard a homozygous
variant corresponding to chr1:25563142 (rs121908326) in the
LDLRAP1 gene, as this one did not qualify to have a
sufficient genotype quality (minimum acceptable threshold
= 40). Among the remaining two variants, the first one
corresponds to chr11:111764842 (rs1805076), producing C →

T; c.269G>A; p.Gly90Asp in PPP2R1B, already observed
in Son and Mother. We apply the same criteria as above,
inferring this variant effect being of uncertain significance. The
remaining heterozygous variant, chr11:108272812 (rs587776549)
in the ATM gene, produces a frameshift mutation CATC
→ CTGATc.3245_3247delinsTGAT p.His1082LeufsTer14. The
ATM protein plays a critical role assisting cells in recognizing
damaged or broken DNA strands, enabling them to repair
broken strands and work on maintenance of the stability of
the cell’s genetic information. The mutation identified here has
been described as pathogenic, involved in ataxia-telangiectasia
syndrome and has also been linked to a hereditary cancer
predisposition (Laake et al., 2000). Mutations to the ATM gene
have a 20% to 30% lifetime risk of lymphoid, gastric, breast,
central nervous system and skin, including melanoma (Choi
et al., 2016). We conclude this variant as being pathogenic.

Given the limitations of the VCF file produced for Aunt,
for the reminder of the results section, we are only able to
perform further analyses for Father, Mother, Daughter and Son;
analyses which include genetic risk scores, pharmacogenomics
and nutrition/fitness traits.

Genetic Risk Scores
From our initial list of 49 GWAS phenotypes
(Supplementary Table 1), we identified members of the
family who have a risk score (or predisposition) of one or two
standard deviations (SD) from the average risk score of the 1000
genomes population for the same condition. Table 5 shows the
phenotypes whose genetic score from the initial list is more than
2SD (yellow) and those with more than 1SD (green). The GWAS
studies from which the genetic risk SNPs originated are sourced
in the “Reference Studies” column.

First, we find that no one phenotype in yellow (>2SD) occurs
in isolation. There is either another member of the family in
yellow or green (>1SD). This occurs for the predicted higher
risks of ulcerative colitis and nicotine withdrawal symptoms.
Second, we observe that related phenotypes with high risk
overlap (although not always) in the same family individual.
For instance, ulcerative colitis is a subtype of inflammatory
bowel disease (Ronald et al., 2006; Wu et al., 2009a; Uhlig
and Muise, 2017). We find that Mother and Daughter have
risks overlapping both phenotypes whereas Son only ulcerative
colitis. Father has a risk for three of the four phenotypes for
the mental health category. For the disorders where we observe
this overlapping phenotype risk, there is scientific literature
(Ronald et al., 2006; Wu et al., 2009a; Uhlig and Muise, 2017)
supporting this pattern. Third, there are high risk phenotypes
in a parent also observed in their offspring. For instance,
ulcerative colitis is not present in Father but it is predicted
high risk in Mother together with both children displaying
inherited risk.

If we describe results according to categories, for general
health, we thus find that ulcerative colitis constitutes
a phenotype where the risk of the condition is shared
among several family members (Mother, Daughter, Son;
Supplementary Figures 1A,B). The high risk for ulcerative
colitis also overlaps with the higher than average (>1SD) risk
of inflammatory bowel disease in two same family members
(Mother, Daughter). For cancer there is a more elevated
than normal (>1SD) predicted risk of breast cancer among
Mother and Daughter, with some isolated moderately high
(>1SD) predicted risks of bladder carcinoma for Daughter,
glaucoma for Son and prostate cancer for Father. For mental
health, Father has higher than normal (>1SD) predicted
risk on bipolar disorder, depression, and posttraumatic
disorder. Mental health diseases share similar markers thus
influencing the greater number of potentially deleterious yet
related phenotypes observed in Father. For dependence and
withdrawal symptoms phenotypes we find that the paternal
line has a higher than average alcohol (>1SD) dependence
predicted risk whereas the maternal line passes on to Son a
high predicted risk (>2SD) of nicotine withdrawal symptoms.
Phenotypes in green (>1SD) that are not shared with other
family members are not considered any further. Graphical
representation of the ulcerative colitis results using both
the whole 1000 Genomes background population (2,504
individuals) and only the Europeans (503) may be found in
Supplementary Figure 1.

Pharmacogenomics
We analyzed the metaboliser status of three cytochrome
P450 genes (CYP2C9, CYP2C19, CYP2D6) affecting
pharmacological responses in Father, Mother, Daughter,
and Son. We also look at some pharmacology-related SNPs in
additional genes.

CYP2C9 is responsible for themetabolic clearance of up to 15–
20% of all drugs undergoing Phase 1 metabolisation, including
warfarin, phenytoin, and oral hypoglycaemics (source: Get to
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TABLE 5 | Phenotypes for family members with <1SD genetic risk score.

Category Phenotype Father Mother Daughter Son Reference Studies

General health Inflammatory bowel disease Liu et al., 2015

Ulcerative colitis Berndt et al., 2013

Obesity Berndt et al., 2013

Lipids Triglycerides Willer et al., 2013

Cancer Bladder carcinoma Kiemeney et al., 2008, 2010; Wu et al., 2009b; Rothman et al.,

2010; Rafnar et al., 2011, 2014; Figueroa et al., 2014; Matsuda

et al., 2015; Wang et al., 2016

Breast cancer Howard et al., 2018

Glaucoma Choquet et al., 2018

Prostate cancer Schumacher et al., 2018

Mental health Bipolar disorder Ferreira et al., 2008; Smith et al., 2009; Cichon et al., 2011;

Psychiatric and Consortium Bipolar Disorder Working Group,

2011; Mühleisen et al., 2014; Hou et al., 2016; Ikeda et al.,

2018

Depression Howard et al., 2018

Posttraumatic stress disorder Nievergelt et al., 2015; Stein et al., 2016

Schizophrenia Schizophrenia Working Group of the Psychiatric Genomics

Consortium, 2014

Dependence /withdrawal Alcohol dependence Gelernter et al., 2014; Mbarek et al., 2015

Nicotine withdrawal Hällfors et al., 2019

Fitness Heart rate recovery Ramírez et al., 2018

Nutrition Caffeine metabolism Cornelis et al., 2016

Appearance Male pattern baldness Pirastu et al., 2017

We then calculate their average score and standard deviation (SD). For each family participant we calculate their genetic risk score in the same way as individuals from the 1000

Genomes Project and mark as yellow if his/her risk score is >2SD of the 1000 Genomes Project average and green if his/her risk score is >1SD of the average in 1000 Genomes Project

individuals. Both Son and Mother have a >2SD risk score for nicotine withdrawal symptoms. For ulcerative colitis, Mother and Son have a >2SD score (yellow) and Daughter a >1SD

score (green). The increased risk of inflammatory bowel disease for both Mother and Daughter overlaps with their predicted ulcerative colitis susceptibility. Father has a >2SD risk of

autism spectrum disorder. Autism spectrum disorder genetic risk appears also for the two children (>1SD; Daughter, Son). The alcohol dependence genetic risk score reflects another

paternal line predicted predisposition inherited by both children. Since no one in the family to date has been predicted to suffer from autism spectrum disorder or alcohol dependence,

it is not possible to confirm this result. A slightly increased risk of obesity in Father and Son is also predicted by this multigenic risk score calculation.

Know an Enzyme: CYP2C91). Some of the more potent CYP2C9
inhibitors include amiodarone, fluorouracil, metronidazole, and
sulphaphenazole. Dangerous drug-drug interaction can arise
when an inhibitor is added to a therapeutic regime that includes
drugs with a low therapeutic index, such as s-warfarin. Inducers,
such as rifampicin, can substantially increase CYP2C9 activity
(source: Get to Know an Enzyme: CYP2C9). For CYP2C9,
Father, Mother and Son have a predicted metaboliser status of
intermediate (∗1/∗2). For Daughter, the predicted metaboliser
status for CYP2C9 is poor (∗2/∗2).

Warfarin is an anticoagulant used in the prevention and
treatment of venous thrombosis, pulmonary embolism, and
the complications associated with atrial fibrillation and/or
cardiac valve replacement (Dean, 2018). Warfarin metabolism is
influenced by genetic polymorphisms in CYP2C9 and VKORC1
(Biss et al., 2012). Carriers of the common allelic variants (∗2
or ∗3) of the CYP2C9 are associated with a lower warfarin dose
requirement accompanied by a greater tendency to experience
haemorrhagic complications. In addition, adults with VKORC1

1Get to Know an Enzyme: CYP2C9 Pharmacy Times. Available at: https://www.
pharmacytimes.com/publications/issue/2008/2008-03/2008-03-8462 [accessed
October 15, 2019].

(rs9923231) CC alleles require higher warfarin doses than TC or
TT. Based on these alleles, we found that Son and Father have
a ∗1/∗2 CYP2C9 variant and a TT for rs9923231. Mother has a
∗1/∗2 CYP2C9 variant and a CT for rs9923231. Daughter has a
∗2/∗2 CYP2C9 variant and a TT for rs9923231. This makes Son,
Father and Mother intermediate metabolisers and Daughter a
poor metaboliser of warfarin.

CYP2C19 is a liver enzyme that acts on at least 10% of drugs
in current clinical use (source: Genetics Home Reference2; see
references), most notably the antiplatelet treatment clopidogrel
(Plavix) but also drugs that treat pain associated with ulcers,
such as omeprazole, antiseizure drugs such as mephenytoin, the
antimalarial proguanil, and the anxiolytic diazepam. For this
gene we found Son, Mother and Daughter to be predicted normal
metabolisers (∗1/∗1) whereas Father is predicted an intermediate
metaboliser (∗17/∗4A).

For CYP2D6, the final cytochrome we analyse here, we are
able to estimate themetabolism and elimination of approximately
25% of clinically used drugs including the opiate codeine
(Wang et al., 2009). CYP2D6 is highly polymorphic in the

2Genetics Home Reference CYP2C19 gene. Genetics Home Reference. Available
at: https://ghr.nlm.nih.gov/gene/CYP2C19 [accessed October 15, 2019].
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human population, with marked inter-racial variation observed.
Individuals are identified as ultra-rapid (UM), extensive (EM),
intermediate (IM) or poor metaboliser (PM), according to the
number of functional alleles.

For members of this family we find that there is considerable
variation in the alleles detected. For Son and Father, we find
them to be predicted extensive metabolisers (∗2/∗41 and ∗1/∗2,
respectively). Mother has the following star alleles ∗10/∗2/∗41/∗4
[activity score: 0.5–1 (Gaedigk et al., 2018)] which make
her predicted range between an intermediate and extensive
metaboliser. Daughter has ∗10/∗4/∗20, which makes her a poor
or intermediate predicted metaboliser (activity score 0–0.5).

rs12979860 is a SNP near the IL28B gene, encoding
interferon-lambda-3 (IFN-lambda-3). This SNP influences
hepatitis C treatment-induced viral clearance. It is associated
with an approximately twofold change in response to pegylated
interferon-alpha (PEG-IFN-alpha) plus ribavirin (RBV)
treatment, both among patients of European ancestry (p = 1.06
x 10e-25). Research indicates that the virus was eradicated in
∼80% of CC patients, compared to only about 25% of those with
TT, while CT response was intermediate (Elkader and Sproule,
2005). We found that Son and Father carry a CC genotype,
whereas Mother and Daughter carry a CT genotype.

Fitness Trait Analysis
Filtering
First, we performed a filtering of the SNPs associated with fitness
traits in order to determine which of them should be applied
to our family cohort. The full results of our filtering can be
found in Table 3. From a total of 10 markers initially selected
for genotyping, we classified two as “Convincing” (VO2max,
and rs1815739 for ACTN3), five as “Probable,” two as “Possible”
and one “Not demonstrated.” As an example of the application
of this framework, in Table 3, the best studied SNP marker is
rs1815739 for ACTN3. We identified 24 studies for rs1815739 in
fitness, most of which suggested a significant decrease in muscle
performance by the effect allele (also known as X allele). Based
on these studies, we classify the biological plausibility of this
marker as high. Our scientific evidence assessment for rs1815739
is “Convincing.”. For “increased performance with caffeine,” we
assess existing scientific evidence as “Probable” because despite
finding 7 studies, the total number of participants summed by all
seven studies is only 250. Within those, there is also one study
not showing significant differences in performance with coffee
intervention (Pataky et al., 2016; Salinero et al., 2017; Guest et al.,
2018; Puente et al., 2018; Carswell et al., 2020; Grgic et al., 2020;
Muñoz et al., 2020).

For family trait analysis, we only apply those markers that
are either classified as “Convincing” or “Probable”. In the next
section we describe in detail our selected fitness analysis results.

Fitness Trait Analysis Performed on the Family Cohort
Table 6 summarizes the fitness traits analyzed for 4 family
members. Concerning VO2Max trainability, training response
markers within the 21 SNP panel show Son scoring 13/21
favorable alleles, Father and Mother 16/21 favorable alleles and
Daughter scores 15/21 favorable alleles. This contrasts with ≥19

of these alleles associated with elite athletes (Bouchard et al., 2011;
Rice et al., 2012; Ghosh et al., 2013; Williams et al., 2017).

TheACTN3 R577X (rs1815739) C>T base substitution results
in the transformation of an arginine amino acid (R) to a
premature stop codon (X). X allele homozygotes are deficient in
the alpha-actinin-3 protein, which is associated with a lower fast-
twitch fiber percentage and potentially increased injury risk (Yang
et al., 2003; Massidda et al., 2019). We found that Father, Mother
and Daughter have a CT genotype (XR); whereas Son, harbors a
homozygote X allele genotype (XX).

A polymorphism in the CYP1A2 gene (rs762551; AA
genotype) has been associated with improved exercise
performance when combined with caffeine intake, with no effect
for those with the AC genotype and diminished performance in
those with the CC genotype (Guest et al., 2018). We found that
most family members (Son, Father, and Daughter) had an AA
genotype for this SNP, whereas Mother had a CA genotype.

The role of the peroxisome proliferator activated receptor
alpha (PPARA) gene intron 7 G/C polymorphism (rs4253778) is
also tested in the family. Athletes with high ability in endurance
sports have a higher frequency of the G allele (Lopez-Leon et al.,
2016). We found that Son and Mother did not have any of the G
allele, whereas Father and Daughter had a G allele each.

For the MCT1 gene’s rs1049434, we find all family members
to have the TT genotype, associated with lower lactate levels
(Cupeiro et al., 2012; Fedotovskaya et al., 2014; Ben-Zaken
et al., 2015; Kikuchi et al., 2017a). For the AQP1 gene, which is
associated with osmotic balance and fluid loss when exercising,
possession of the C allele has been associated with faster
cardiorespiratory endurance (Rivera and Fahey, 2019). For this
gene, we found C (favorable) alleles in Son, Father, and Daughter,
while no C alleles were found in Mother. Finally, for rs12594956
in NRF-2, we find that the genotypes observed (CA/CC) in all
family members are not associated with the effect allele (He et al.,
2007; Eynon et al., 2010, 2013; Peplonska et al., 2017).

Nutrition Trait Analysis
Our analysis includes markers involved in the metabolism of
main components of diet: carbohydrates, fats, and proteins. We
also look at metabolization of essential nutritional components
such as vitamins, minerals, and specific dietary substances
like lactose, whose metabolism is strongly linked to a genetic
marker according to our suggested framework. Table 7

provides a summary of the nutrition markers explained in
this section.

Filtering
We performed a filtering of the SNPs associated with nutrition
traits to select SNPS to be applied to our family cohort. The full
results of our filtering can be found in Table 5. From a total
of 32 markers initially selected for analysis, we classified 13 as
“Convincing,” one as “Probable,” five as “Possible”, and 12 “Not
demonstrated.” An example of convincing scientific evidence for
nutrition interventions in Table 4 includesMTHFR (rs1801133).
This SNP is said to affect homocysteine concentrations, which are
influenced by dietary folate (Boccia et al., 2008, 2009; Clarke et al.,
2011; Liew and Gupta, 2015). A large number of studies (n= 70)
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TABLE 6 | Summary of fitness trait analysis for 4 family members.

Trait RSID Gene Scientific validity score Father Mother Daughter Son

VO2Max 21 Multiple Convincing 16/21 16/21 15/21 13/21

Muscle performance rs1815739 ACTN3 Convincing XR XR XR XX

Caffeine sensitivity/Increased

exercise performance with caffeine

rs762551 CYP1A2 Probable AA CA AA AA

Endurance rs4253778 PPARA Probable GC CC GC CC

Lactate blood levels rs1049434 MCT1 Probable TT TT TT TT

Osmotic balance by water support rs1049305 AQP1 Probable GC GG GC GC

Performance rs12594956 NRF-2 Probable CA CC CC CA

The table shows the observed genotype or (for VO2max) favorable alleles for those traits whose scientific evidence assessment was judged as “Convincing” or “Probable”.

TABLE 7 | Summary of nutrition trait analysis for the 4 family members.

Trait RSID Gene Scientific validity score Father Mother Daughter Son

Homocystine levels rs1801133 MTHFR Convincing GA GA AA GG

Vitamin B12 level rs602662 FUT2 Convincing GA GG GA GG

Vitamin C level rs33972313 SLC23A1 Convincing CC CC CC CC

Vitamin D Metabolism rs4588 GC Convincing GT GT GT GG

Vitamin E level rs964184 BUD13 / ZNF259 Convincing CC GG GC GC

Greater total body adiposity rs9939609 FTO Convincing AA TT TA TA

Saturated fat rs5082 APOA2 Probable AA GA AA AA

Polyunsaturated Fatty Acids rs174547 FADS1 Convincing TT TT TT TT

Saturated fat/risk of T2D rs1137101 LEPR Convincing AG AG GG AG

Iron Overload /Hemochromatosis rs1800562 HFE Convincing GG GG GG GG

Celiac disease rs2187668 HLA-DQA1 Convincing CC CC CC CC

Lactose persistence rs4988235 MCM6-LCT Convincing GG AA GA GA

Alzheimer’s rs429358, rs7412 APOE Convincing ε3/ε3 ε3/ε3 ε3/ε3 ε3/ε3

Alcohol dependence rs1229984 ADH1B Convincing CC TC CC CC

The table follows the scientific validity score presented in Methods and the observed genotype for the specific trait. We only analyse those traits for which there is a convincing or probable

genotype x diet intervention scientific evidence. From among these, here we only show those with a predicted effect, except in the case of Alzheimer’s and Coronary Artery Disease.

have been performed to date about this interaction, including
randomized trials. We evaluate this interaction as having a high
biological plausibility. An example of nutritionmarker we classify
as possible is BCO1 (rs6564851). According to our research
(Table 4), there are 4 studies with a number of total subjects
analyzed of 328 (Yabuta et al., 2016; Moran et al., 2019; Amengual
et al., 2020; Graßmann et al., 2020). Our judgement of the
underlying knowledge of the biological mechanism involved is
medium and there are some cases where a potential intervention
may not have the desired effect. We do not include this marker in
our subsequent analyses.

Same as in the fitness category, for family trait analysis we only
apply those markers that are either classified as “Convincing” or
“Probable.” In the next section we describe in detail our selected
nutrition trait analysis results.

Nutrition Trait Analysis Performed on the Family

Cohort
The B vitamins contribute to DNA synthesis and methylation,
with homocysteine as a by-product of their metabolism
associated with coronary heart disease, stroke, and neurological

disease (Tanaka et al., 2009). “A” alleles in the rs1801133 SNP
within the MTHFR gene have been associated with higher
homocysteine levels and reduced folic acid processing (Tanaka
et al., 2009). We note that Father and Mother have one A
allele whereas Daughter has the two A (“detrimental”) alleles.
Son has the two G alleles genotype. Next, the presence of the
A allele in rs602662 SNP in FUT2, has been associated with
higher B12 concentrations (Tanaka et al., 2009). We found
the presence of an A allele in Father and Daughter, and no
A allele presence in the other individuals. With regards to
circulating concentrations of vitamin C (L-ascorbic acid), a
variation at rs33972313 (SLC23A1 gene) has been associated
with a reduction in circulating concentrations of L-ascorbic acid
(Timpson et al., 2010). None of the family members have the
predicted detrimental allele. With regards to vitamin D, rs4588
was genotyped. Son was found homozygous for the major allele
(GG) and the rest of the family heterozygous for the minor allele
(GT). The effect allele for higher a-tocopherol concentration in
plasma (G) is found in both alleles in Mother (GG) and one allele
in Son and Daughter (Major et al., 2011, 2012, 2014; Wang and
Xu, 2019).
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With regards to dietary fat, we analyse a number of SNPs in
genes involved in nutrition: FTO, APOA2, FADS1, and LEPR.
With regards to rs9939609 FTO variant alleles (homozygous
= AA and heterozygous = AT), both Son and Daughter are
heterozygous for the risk allele and Father is homozygous for the
risk allele. Each additional copy of the rs9939609A allele has been
associated with a BMI increase of a mean of 0.10 Z-score units,
equivalent to ∼0.4 kg/m2 (Sonestedt et al., 2009; Tanofsky-Kraff
et al., 2009; Zhao et al., 2014b). For the observed genotypes in
APOA2 and FADS1, there is no associated effect (Yabuta et al.,
2016; Huang et al., 2017; Ching et al., 2019; Moran et al., 2019;
Amengual et al., 2020; Graßmann et al., 2020; Wang et al., 2020).
For LEPR, a study found that rs1137101 AG and GG carriers with
a high fat total intake had 3.0 times higher risk of obesity and
4.1 times higher risk of high cholesterol levels than those with a
low intake of total fat (Domínguez-Reyes et al., 2015). All family
members are carriers of the risk allele (G) of rs1137101.

The HFE protein interacts with other proteins on the cell
surface to detect the amount of iron in the body (Katsarou
et al., 2019). For rs1800562, a SNP in HFE, an A allele was
not observed in any of the individuals analyzed here. This A
allele causes ∼85% of all cases of hemochromatosis (Katsarou
et al., 2019). The rs2187668 SNP’s CC alleles in all family
members have not been associated with Celiac disease (van Heel
et al., 2007; Hunt et al., 2008). MCM6-LCT regulates lactose
persistence. According to a recent study (Mattar et al., 2012),
both genotypes of rs4988235 GA and AA were associated with
the lactase-persistence phenotype, indicating that the presence
of one single lactase-persistence allele in the heterozygous state
has a dominant effect, rendering the person a lactose digester,
whereas the genotype CC, when the lactase-persistence allele T is
absent, is consistent with lactose maldigestion. Father’s genotype
was found to be CC associated with an increased likelihood of
being lactose intolerant.

DISCUSSION

Our main objective is to provide insight into the current
development status of personal genomics, using whole genome
sequencing, illustrated by a use case of a family of five. To that
end, we provide pathogenicity screening, genetic risk scoring,
pharmacogenomics and fitness and nutrition trait analysis of
the family. This approach is tailored for the situation where
knowledge of the disease and lifestyle history of the family is
used to “validate” some of the findings. A main limitation of this
approach is the post-hoc reasoning that only allows to find true
positive predictions based on the family observations. In contrast,
those risks and phenotypes that are not reflected in the family so
far can neither be confirmed nor rejected as it is unclear whether
those predictions are “wrong” or whether the conditions have not
had their time of onset yet. In addition, there are other limitations
stemming from the different methodologies and resources used
for analysis and interpretation, which we summarize in Table 8.

For instance, short read whole genome sequencing provides
a limited capacity for detecting copy number and structural
variants, which are particularly relevant for Pharmacogenomic

analysis. To mitigate this shortcoming, we run prediction
algorithms (Supplementary Materials) and find no significant
prediction of copy number changes in pharmacologically
important genes.

For pathogenicity screening, current standards and literature
focus on genes (e.g., American College of Medical Genetics
and Genomics), and therefore pathogenicity screening does
not typically cover intergenic regions. Knowledge bases used
for variant annotation may contain inconsistent or incomplete
information, and therefore we only report variants where there
is consensus among both literature, database and bioinformatic
algorithm prediction, within a set of established guidelines.
Moreover, while the field of genetics is evolving constantly, it
is also a well-known limitation that many variants are currently
classified as unknown significance. We do not report variants
of unknown significance, but ensure that we use databases that
remain current so that we can deploy the latest variant research
in the analysis.

Concerning trait analysis in fitness and nutrition, we set a
framework for selection and validation of fitness and nutrition
markers to mitigate the limitations specific to phenotypes in
these areas (smaller study sizes, weaker phenotype – genotype
relationships). Application of this framework results in a
reduction in the number of markers we were able to test in
our family members. Although this filtering has restricted the
number of resulting inferences, it has increased the robustness
of the analysis.

Finally, the genetic risk analysis we provide here has not
been tested in an independent population, and as such serves
as an illustration of a potential approach and a template for
further work.

Patterns of Inheritance in Pathogenicity
Screening
When screening for pathogenicity we find that Son and Father
have C → T; c.200C>T; p.Thr67Ile within the CTH gene.
Father and Daughter share the mutation C → T; c.3029C>T;
p.Thr1010Ile, located in the MET gene. Son and Mother share
C → T; c.269G>A; p.Gly90Asp in PPP2R1B. All of these
mutations are not deemed reportable due to the unknown
significance nature of the inferences. The reportable variant is
the A → T; c.4912A>T; p.Lys1638Ter in the BRCA2 gene for
Mother in a recessive context. Mother had a benign breast tumor
removed in her forties but it was never analyzed. Therefore, it
is not possible to ascertain whether her BRCA2 gene mutation
had any role in her benign tumor formation. Fortunately, this
mutation is heterozygous and Father does not carry a known
pathogenic mutation in this gene. Both children did not inherit
Mother’s pathogenic BRCA2 mutation and therefore are unable
to pass it on to their offspring.

Aunt passed away in 2013, aged 79, due to a metastasised
melanoma. For this participant, we transform our screening into
a quasi-diagnostic setting given that we would like to identify
a potential genetic cause for her demise. We were able to
retrieve 36 hairs 4 years after her death from one of her combs.
The DNA was carefully handled (see Supplementary Materials).
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TABLE 8 | List of known limitations of the methodologies we have performed for our analysis and the countermeasures we have adopted to contain them.

Methodology Limitations Countermeasures

Short read whole

genome sequencing

• There may be errors in the variant calls

• The whole genome is not wholly sequenceable

• Structural and copy number variants are challenging to identify

• We performed a quality filter for each variant

• Assume regions not sequenced to be gene deserts or unable to provide

useful functional annotation

• We run a consensus set of algorithms for prediction of copy

number regions

Genome screening • Screened only regions covered by genes and nearby regions

• Incomplete, inconsistent annotations

• Use of knowledge databases with conflicting results

• Selected those genes curated by OMIM where there are known

mutations

• Assumed that the vast majority of pathogenic mutations occur within or

near coding regions

• Employed a third-party protocol to interpret pathogenicity (Fabric

Protocol; see Methods)

• Inference only by overlapping evidence in OMIM and ClinVar,

supplemented by literature search, computational algorithms and allele

frequency information from established international datasets (e.g.,

gnomAD)

• Classification of pathogenicity performed by two independent experts

Genetic risk scores • GWAS only capture highly significant markers, missing less strongly

associated markers with the trait

• There may be different studies for a trait and there are challenges

when integrating them into a single genetic risk score

• GWAS is overwhelmingly European

• Genetic risk scores may capture only a small amount of genetic risk

• We choose those studies that are of greatest number of participants,

preferably from recognizable consortia, to allow the greatest possible

number of markers when defining a contribution to susceptibility

• We make use of the curation effort of the GWAS Catalog to select

studies and markers

• We compare GWAS scores with a background population (1000

Genomes Project) and check that our family participants are matched

with the same background population when looking for significant

differences with the average risk score

• We report genetic risks only for patients whose risk is in the extreme

tail of risk prediction

Pharmacogenomics • There is a large amount of variation in pharmacological genes, not all

of which can be detected

• There may be cases where it is unclear the metaboliser status of a

patient

• Short read sequencing has limited ability to assess Copy Number

Variants and therefore functional duplication or deletions of genes

may be missed

• We strictly follow FDA, CPIC, ACMG guidelines when assigning

metaboliser status

• We make sure that when the metaboliser status is unclear we provide a

range of possible eligible options

• We run a consensus approach prediction algorithm

(Supplementary Materials) to mitigate the risk that we might have

failed to detect deletions or duplications within pharmacogenomic

genes that may alter their functionality

Fitness • Small sample sizes; perhaps not so much funding available as for

global health conditions

• Skewed populations (e.g., mostly European background)

• Results often rely on self reporting of adherence to an exercise

regimen

• Focus in some studies on elite athletes, not necessarily generalisable

to the wider population

• Traits difficult to phenotype; sensors may only allow indirect

measurement (e.g., VO2max)

• Adopted an establised framework for trait analysis, so as to exclude

studies with a weaker evidentiary basis

• Systematically reviewed and assessed the literature choosing only those

markers where there is ample evidence of their effect

• No inferences of phenotype made based only on fitness

marker predictions

Nutrition • Small sample sizes; perhaps not so much funding available as for

global health conditions

• Skewed populations (e.g., mostly European background)

• Difficult to replicate results; experimental design would use extreme

fitness traits (e.g., athletes, which would contribute to

difficult replication)

• Adopted an established framework for trait analysis to so as to exclude

studies with a weaker evidentiary basis

• Systematically reviewed and assessed the literature choosing only those

markers where there is ample evidence of their effect

• No inferences of phenotype made based only on fitness

marker predictions

Validity of inference • We can only confidently assign true positives • Performed an in-depth query of the disease and lifestyle history of the

family, in order to maximize our ability to confirm positive results

• We use overlapping information about family members to

explain predictions

We were able to assess pathogenicity among those variants
that passed our strict quality filters. A heterozygous frameshift
mutation, chr11:108272812 (rs587776549) in the ATM gene was
identified. Recently, the Pan-Cancer Analysis of Whole Genomes
Consortium confirmed that many cancer driver mutations are

two-hit inactivation events (ICGC/TCGA Pan-Cancer Analysis
of Whole Genomes Consortium, 2020), with 17% of patients
having rare germline protein-truncating variants (PTVs) in
cancer-predisposition genes, DNA-damage response genes and
somatic driver genes. Biallelic inactivation due to somatic
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alteration on top of a germline PTV was observed in 4.5%
of patients overall, with 81% of these affecting known cancer-
predisposition genes (such as ATM). We thus hypothesize that
the loss of function of one copy of the ATM gene could have
contributed to her melanoma. Although Aunt’s genome only
provides information about her germline genetics and not the
actual somatic mutations that led to the disease that ended
her life, a more targeted cancer therapy (than the general
chemotherapy she was administrated with) targeting defects in
the DNA repair caused by ATM was already available while she
was still alive (Kelley et al., 2014) and was never used.

Genetic Risk Scores
We observe there is a conserved family risk of ulcerative colitis,
running in Son, Mother, and Daughter. Ulcerative colitis is a
long-term condition that results in inflammation and ulcers of
the colon and rectum. It has also been found that both Mother
and Daughter have a >1SD risk of inflammatory bowel disease,
of which ulcerative colitis is a type. The primary symptoms
of active disease are abdominal pain and diarrhea mixed with
blood. Mother has reported suffering from a recurrent abdominal
pain associated with inflammation of her colon. Her symptoms
have appeared intermittently but are more recurrent in older
age, affecting her quality of life. Given that ulcerative colitis
begins most commonly between the ages of 15 and 25 with a
second peak of onset in the 6th decade of life, Mother’s reported
symptoms are concordant with her ulcerative colitis / bowel
disease susceptibility. We also note that according to Sen and
Stark (2019), CYP2D6∗4 polymorphisms may be risk factors for
ulcerative colitis. Both Mother and Daughter display CYP2D6∗4.

Pharmacological Management
We have noted that for warfarin, the genotyping analysis has
shown that members of the family are either intermediate or
poor metabolisers. According to FDA guidance (Dean, 2012),
Daughter requires 20% of the standard initial recommended dose
and would take a more prolonged time to achieve the maximum
anticoagulant effect. Son, Father, and Mother require a 60%
of the standard initial recommended dose. This information is
particularly relevant to Father, who was recently diagnosed with
atrial fibrillation. Atrial fibrillation is a heart condition that causes
an irregular and often abnormally fast heart rate. People with
atrial fibrillation who have a high or moderate risk of having
a stroke are usually prescribed warfarin. This was the case of
Father, who was recommended to take warfarin to stop the risk
of blood clotting. It has been reported by Father, that as soon
as he started taking warfarin, he began to experience sores in
legs, changes in the skin color, and severe pain in his lower half
of the body. We note that his predicted response to warfarin is
concordant with warfarin sensitivity (Vu and Gooderham, 2017).
Hence, knowledge of this genetic predisposition would have been
helpful to the clinician when making an initial prescription.

We also note that for both Mother and Daughter their
predicted metaboliser status for CYP2D6 is either intermediate
or poor. This has important implications in the specific dosage
required by these individuals to receive the appropriate effects
for pain relievers such as codeine and tramadol (Smith et al.,

2019). So far there is some anecdotal evidence that Mother and
Daughter are not able to cope well opiates, but nothing that
was confirmed medically. Of note, the three most susceptible
individuals to ulcerative colitis, Mother, Son, and Daughter are
predicted to be normal metabolisers of drugs that treat pain
associated with ulcers, such as omeprazole (Dickinson, 1994).

Fitness
We performed an investigation of the literature to identify
candidate fitness gene x interactions and their relation to a health
outcome (see Methods section). Several limitations were noted
throughout these studies, including the robustness of significance
for identified variants, small sample sizes, limited cohorts
focused primarily on Caucasian populations, and minimal
baseline data (Williams et al., 2017). These factors are combined
with differences in exercise training programs, diet and other
environmental gene expression mediators between studies. As a
result, we are able to classify as “Convincing” (2 of 10 candidates)
or “Probable” (5 of 10). Overall, we found that fitness studies
were made with a smaller sample size compared to nutrition.
For instance,ACTN3’s rs1815739, one of the most studied fitness-
related SNPs, there are>1000 participants studied in total, which
would put this SNP among the lowest sample sizes if included in
nutrition markers, where we found seven markers with>100,000
study participants.

For all family members, the predicted genetic VO2max
trainability was predicted average or less than average,
contrasting with their lower predicted levels of blood lactate
accumulation. With the exception of Mother, the family harbor
variants in AQP1 alleles associated with endurance and fluid
balance. Their genotype also predicts a predisposition to
improved exercise performance if done with caffeine [with the
exception of Mother; (Guest et al., 2018)]. Son is unique in the
family in having the XX genotype for rs1815739 in ACTN3.
Deficiency in α-actinin-3 can be accompanied by higher body
fatness, lower muscle strength and higher muscle flexibility
and range of motion (Yang et al., 2003; Massidda et al., 2019).
A study suggested that recreational marathon runners who
have the ACTN3 XX genotype could benefit from personalized
strength training to improve their performance more than their
counterparts with other ACTN3 genotypes (Del Coso et al.,
2019b).

Nutrition
Compared to fitness studies, we found a greater number of
candidate nutrition phenotypes passed our filtering (14 out of 32
initially selected phenotypes; Table 5). Larger sample sizes and a
greater number of studies with concordant results were the main
reasons for a larger number of nutrition phenotypes passing our
filtering. As with fitness, we choose to analyse those traits whose
scientific validity score is convincing or probable and report those
that are likely to display pointers for further action or deemed
reportable given the family disease and lifestyle history.

Congruent with the general lower likelihood of predicted
alcohol dependence by rs1229984 in ADH1B, there is no history
of alcohol addiction in the family. For all members of the
family except Mother, there is a predicted increase in total
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body adiposity as suggested by FTO rs9939609. With regards
to vitamin-related traits, all family members with the exception
of Son are predicted to be less likely to respond to vitamin
D supplements. For vitamin B12 levels, Mother and Son are
predicted to harbor lower B12 levels and higher for Father
and Daughter. All family members are predicted lower serum
L-ascorbic acid.

For homocysteine levels, we found that all family members
except Son are predicted to be higher. Reduction of plasma
homocysteine levels has been observed with supplementation
of vitamin B12 and folic acid (Boccia et al., 2008; Clarke
et al., 2011; Liew and Gupta, 2015). Several other studies
have observed associations between lower circulating vitamin
B12 levels and adverse metabolic health profiles, with insulin
resistance, cardiovascular disorders, and adiposity as important
features (Hazra et al., 2009; Tanwar et al., 2013; Allin et al., 2017;
Nongmaithem et al., 2017; Zhao and Schooling, 2017).

With regards to lactose consumption, we were able to confirm
that Father, suspected to be lactose intolerant, has the lactose
intolerant genotype.

Negative Findings
When performing a screening study in an individual, for some
variants which can confer significant disease risk, it is important
to report not just positive findings, but also negative ones if
there is family history of the disease. The ApoE2, E3, and E4
isoforms, which are encoded by the ε2, ε3, and ε4 alleles of
the APOE gene, respectively, differ from one another at amino
acid residues 112 and/or 158. There is a significant association
between the ε4 allele of APOE and Alzheimer’s disease. APOE
ε4 increases the risk of Alzheimer’s disease and lowers the age
of disease onset in a gene-dose-dependent manner (Liu et al.,
2013). A small proportion of apo ε2 homozygotes, develop type
III hyperlipoproteinemia, a highly atherogenic form disorder of
lipoprotein metabolism characterized by the accumulation of
remnant particles derived from the incomplete catabolism of
triglyceride-rich lipoproteins (März et al., 2000). All the family
members whose genomes were analyzed for this study exhibit
the wild type ε3/ε3, meaning that no association to Alzheimer’s
disease is conferred. This is also further supported by analysis we
performed for family members using genetic risks of Alzheimer’s
disease (Supplementary Table 1). The fact that there is history
of Alzheimer’s disease in the maternal line, makes it interesting
to ascertain whether genetic risk for this disease is present in the
family. It was thus of special interest for the family to research this
trait, with the positive outcome that all family members display
the less risky ε3/ε3 alleles. We were also in search of negative
findings for classified pathogenic mutations that fall within any
of the ACMG 59 genes and were able to find only one positive
finding for Mother in BRCA2. Our variant analysis did not find
any other mutation within the 59 genes. As always, the fact that
no mutation was found does not necessarily mean a particular
disease might not develop.

Integration of Results
Part of the novelty of the present study revolves around the
integration of genetic screening, genetic risk scores and trait

analysis. A further layer of integration is constituted by the
familial context our participant dataset provides. As stated in
Methods, each family individual is tested independently for each
of the genetic screening panels, genetic score phenotypes and trait
analysis. Although the overlap between each of these methods
can only be partial, we now explore the degree of consistency and
support that each of the results conveys.

For obesity, the family history indicates a persistent tendency
toward this phenotype. At the level of genotyping, the rs9939609
FTO marker analysis, shown to be the most contributing to
obesity (Sonestedt et al., 2009; Tanofsky-Kraff et al., 2009; Zhao
et al., 2014b), yields all genotyped individuals except Mother
to carry the risk allele. We acknowledge that the specific
contribution of this SNP can only be small. When integrating this
genotypic result with GWAS-based genetic risk score, we observe
that the obesity risk slightly increased (>1SD) for Father and Son.

Both analysis of specific SNPs in the APOE gene (see Table 7),
and genetic risk scores do not suggest an increased risk for all
family members of Alzheimer’s disease. This is also congruent
with the observed disease history of the analyzed family, where
both parents are highly advanced in years of age (mid-eighties)
and no signs for the disease have been observed yet. This does
not rule out the possibility that any member of the family could
develop Alzheimer’s disease at any point in the future. It does
rule out, however, both parents having developed early onset
Alzheimer’s disease. For alcohol dependency, there has not been
observed any tendency of addictive behavior in the family. The
rs1229984 ADH1B marker supports this phenotype. However,
the >1SD predicted genetic risk for alcohol dependency in
Father, Daughter and Son does not. A way to reconciling this
result is that the genetic risk is moderately higher than average
and therefore it does not strongly rule out the possibility of a
false positive or random fluctuation, since the observed genetic
risk for alcohol dependence may be the result of fluctuations
in the score that are not significant. Another integration of
different analysis sources is the pathogenic heterozygous variant
for BRCA2 p.Lys1638Ter observed in Mother and her >1SD
genetic risk observed for breast cancer. An interpretation of this
finding is that she only carries one defective allele for the gene,
increasing her risk but not high enough to make it to our >2SD
average score threshold.

With regards to integrating the results of similar (yet
independent) tests performed in different individuals of the
family, we note the coincidence of phenotypic history of irritable
colon of Mother with her >2SD increased risk of ulcerative
colitis. As mentioned earlier, this >2SD phenotype risk is also
observed in Son and not so strongly in Daughter (>1SD),
suggesting a pointer for preventative action on the part of Son.

Communication and Attitudes Regarding
Actionable Results
Results for members of the family were communicated either
in person or via phone call. For Son, his results have had an
impact in his training exercise program, which has a lot more
stretching and warming up, with less emphasis on speed and
more on building up his endurance. The predicted ulcerative
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colitis risk for three members of the family was communicated
to Mother, who is already displaying some symptoms of the
disease, and to Son, who is already taking steps to bring these
results forward to his general practitioner as part of his future
health management plans. Father’s possible explanation of his
adverse reaction to warfarin has also been discussed and he has
currently discontinued taking the medicine, having discussed it
first with his cardiologist. The communication of Aunt’s result of
her mutation in theATM gene has not led to any concrete actions
by her partner.

The family has been exposed to genetic testing for a decade
(Corpas, 2012), and as such were generally comfortable knowing
results of genetic analysis. Even so, attention was paid in
particular to make sure they were aware of the ramifications of
knowing their results of tests related to more serious and harder
to treat conditions (such as ulcerative colitis).

As was the case when the same family was analyzed with
direct-to-consumer genotyping methods (Corpas, 2012), the
tendency to discuss “whose genome is best” is a recurrent pattern
that could affect other families when communicating genetic test
results. We stress the importance of discussing such results with
qualified professionals such as genetic counselors.

Compared to the communication of the results in 2012, we
also note the change in attitude toward sharing of personal
genomic data. Individuals are less keen to share their genetic
data now, arguing that their perceptions regarding the privacy of
their data have been changed by their increased awareness of the
importance of protecting individual’s personal data.

CONCLUSION

By looking at the genome from various methodological angles
and applying distinct analytical frameworks as appropriate, we
were able to build a “genetic story” of each individual. We built
this story in part through having whole genomes as the basis for
the analysis. The approach is applied here for a family, but we
believe it is also valid for individuals. Our most notable findings
for the family were around susceptibility to ulcerative colitis, and
in the areas of fitness, nutrition, and pharmacogenomics.

Concerning ulcerative colitis, when analyzing genetic risk
scores, we noted that the recurrent intestinal pain Mother
has been affected from for years is concordant with her
substantially increased risk of suffering from ulcerative colitis.
Moreover, this high risk is predicted in three out of the
five members of the family, two of them overlapping with
increased risk of inflammatory bowel disease, ulcerative colitis
being one type of this disease. We report this susceptibility to
ulcerative colitis/inflammatory bowel disease as a potential lead
for preventative intervention in at least one family member (Son)
who is currently asymptomatic.

We observed some associations for fitness and nutrition
variants which passed our quality control framework and as
such we believe are valuable for relevant nutritional and exercise
science specialists to help the family in making plans in
those areas.

We were also able to hypothesize a genetic contribution to
the development of melanoma leading to the passing of Aunt.

A pathogenic heterozygous germline mutation was reported in
her ATM gene. This gene has been described as being involved in
DNA repair and the information gathered here could have been
exploited for targeted cancer therapy if caught on time.

Concordance between an adverse reaction to warfarin and
a prediction for low dosing requirement was observed in
Father, which he has already acted on, in consultation with
his cardiologist. There were also informative results for Mother
and Daughter regarding their likely metaboliser status for
certain drugs. While not relevant to them at the moment, this
information could be shared with their physician in the event
that these drugs become necessary in the future, with the hope
of reducing trial and error in prescribing and so cutting down the
possibility of adverse reactions.

We believe that, taken together, these results represent
relevant information which the family can use, when working
with the appropriate healthcare professionals, to proactively
promote their health and well-being. Any one element of the
analysis would not allow this genetic “story” to be compellingly
told, but when all them are put together, the narrative becomes
more actionable, increasing the applicability of whole genome
screening to pre-emptive healthcare andwell-beingmanagement.
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