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Feed efficiency is an important economic factor in poultry production, and the rate of
feed efficiency is generally evaluated using residual feed intake (RFI). The molecular
regulatory mechanisms of RFI remain unknown. Therefore, the objective of this study
was to identify candidate genes and signaling pathways related to RFI using RNA-
sequencing for low RFI (LRFI) and high RFI (HRFI) in the Xiayan chicken, a native
chicken of the Guangxi province. Chickens were divided into four groups based on
FE and sex: LRFI and HRFI for males and females, respectively. We identified a total of
1,015 and 742 differentially expressed genes associated with RFI in males and females,
respectively. The 32 and 7 Gene Ontology (GO) enrichment terms, respectively, identified
in males and females chiefly involved carbohydrate, amino acid, and energy metabolism.
Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 11
and 5 significantly enriched signaling pathways, including those for nutrient metabolism,
insulin signaling, and MAPK signaling, respectively. Protein–protein interaction (PPI)
network analysis showed that the pathways involving CAT, ACSL1, ECI2, ABCD2,
ACOX1, PCK1, HSPA2, and HSP90AA1 may have an effect on feed efficiency, and
these genes are mainly involved in the biological processes of fat metabolism and heat
stress. Gene set enrichment analysis indicated that the increased expression of genes
in LRFI chickens was related to intestinal microvilli structure and function, and to the fat
metabolism process in males. In females, the highly expressed set of genes in the LRFI
group was primarily associated with nervous system and cell development. Our findings
provide further insight into RFI regulation mechanisms in chickens.

Keywords: RNA-seq, feed efficiency, candidate genes, protein–protein interaction, gene set enrichment analysis

INTRODUCTION

Poultry is one of the healthiest meat sources due to its low fat and high protein content, and its
health factors have led to an increase in its consumption in recent years (Liu et al., 2020). This
increase in demand requires an increase in chicken feed on farms, leading to increased production
costs. The cost of feed already makes up most of the total cost of poultry production (Aggrey
et al., 2010). Therefore, improving feed efficiency plays an essential role in the production of
poultry products.

Feed efficiency is generally estimated using residual feed intake (RFI), which was proposed
in 1963 and is considered the most functional parameter for the evaluation of feed efficiency
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(Koch et al., 1963). At present, RFI has been applied in the
artificial selection of feed efficiency in mammals and poultry
(Mebratie et al., 2019; Banerjee et al., 2020; Liu and VandeHaar,
2020). There is a general agreement that RFI is a moderately
inherited characteristic, making it easy to improve the feed
efficiency of commercial breeding companies (Sell-Kubiak et al.,
2017). The current RFI breeding process is mainly based on
genomic selection and is expensive (VanRaden, 2020). However,
the genes and biological processes that account for feed efficiency
remain largely unknown. Therefore, there is an urgent need to
develop effective biomarkers to facilitate RFI selection.

With the development of next-generation sequencing, it is
possible to investigate the mechanisms underlying RFI and
accelerate the breeding process of broiler chicken feed efficiency
using molecular bioinformatics (Mardis, 2008; Shendure and
Ji, 2008). High-throughput sequencing techniques have become
powerful and effective tools for gaining a deeper understanding of
the basic molecular mechanisms of complicated systems (Wang
et al., 2009; Ozsolak and Milos, 2011). RNA sequencing, a high-
throughput technique, has been generally used in livestock to find
the expression patterns of functional genes (Cui et al., 2017; Ni
et al., 2019; Peng et al., 2019).

In chickens, the duodenum is considered the main feed
absorption organ. A previous duodenal transcriptome study
indicated that RFI differences may be associated with digestion,
metabolism, biosynthetic processes, and energy homeostasis (Yi
et al., 2015). In addition, many studies have demonstrated that
feed efficiency has a particular influence on mitochondrial
function, intestinal cellularity and absorption, appetite
regulation, and fat metabolism (Montanholi et al., 2013;
Lancaster et al., 2014; Perkins et al., 2014; Reyer et al., 2017).

To date, abundant sequencing analyses have been carried
out on commercial broiler breeds, but only a few studies
have focused on indigenous chickens (Sun et al., 2013; Wolc
et al., 2020). The physiological characteristics and genetic
backgrounds of indigenous and commercial chicken breeds are
quite distinctive. Thus, gaining insight into genetic resources is
necessary for genetic studies of indigenous breeds. The Xiayan
chicken is an indigenous chicken of the Guangxi province,
in southern China. Due to its excellent meat quality, the
Xiayan chicken is likely to become one of the preferred poultry
breeds for consumers in the Guangxi and Guangdong provinces.
Hence, this study was designed to identify the candidate
genes and signaling pathways related to feed efficiency through
the transcriptional sequencing of the duodenum in male and
female Xiayan chickens. This will contribute to uncovering
the molecular mechanisms of feed efficiency of indigenous
chickens in Guangxi.

MATERIALS AND METHODS

Ethics Statement
All animal experiments and methods in this study have been
evaluated and approved by the Animal Ethics Committee of
Guangxi University (GXU2018-058).

Chicken Breed and RFI Calculation
According to the standard breed program, 340 indigenous Xiayan
chicken (male = 173, female = 167) were bred in the Guangxi
University experiment farm. The normal experiment started 70
to 90 days after the 10-day pre-experiment. The chickens were
raised in 3-layer metal cages; the average stocking density was
15 birds per square meter. The basal diet was a corn-soybean
broiler diet (13 MJ metabolizable energy/kg of diet, 220 g/kg
crude protein) formulated without antibiotics or coccidiostats.
Ad libitum access to fresh water was provided. Chickens were
ranked by RFI, where the 10 most extreme duodenum samples
from high (male = 3, female = 3) and low (male = 2, female = 2)
RFI chickens were selected for RNA extraction. The feed intake
(FI) and body weight (BW) were measured at 70–90 days of
age. Feed conversion ratio (FCR) was calculated by FI and Body
weight gain (BWG). The metabolic body weight (MBW0.75),
BWG, and average daily body weight gain (ADG) were calculated
according to the bodyweight of 70 and 90 days. ADFI was the
average daily feed intake. The RFI value was used to measure
the feed efficiency of Xiayan chickens, and we estimated it
using the model as follows (Izadnia et al., 2019): RFI = ADFI-
(b0 + b1MBW0.75

+ b2ADG) where b0, b1, and b2 were
regression intercept, the partial regression coefficient of ADFI on
MBW0.75, and the partial regression coefficient of ADFI on ADG,
respectively. SAS procedures t-test (SAS Version 9.4) was used
to analyze the feed efficiency difference between HRFI and LRFI
groups. The probability value was P < 0.05, indicating statistical
significance. Detailed methods were described in our previous
studies (Du et al., 2020).

RNA Extraction and RNA Sequencing
Total RNA was extracted using the TRIzolTM reagent (Invitrogen,
Carlsbad, CA, United States) according to the manufacturer’s
instructions. RNA purity and concentration were measured
using the NanoPhotometer R© spectrophotometer (IMPLEN,
Westlake Village, CA, United States) and Qubit R© RNA Assay
Kit in Qubit R© 2.0 Fluorometer (Life Technologies, Carlsbad,
CA, United States). RNA integrity was assessed using the RNA
Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent
Technologies, Santa Clara, CA, United States). Subsequently,
sequencing libraries were generated using the rRNA-depleted
RNA by NEBNext R© UltraTM Directional RNA Library Prep Kit
for Illumina R© (NEB, United States) following manufacturer’s
recommendations. Fragmentation was carried out using
divalent cations under elevated temperature in NEBNext First
Strand Synthesis Reaction Buffer (5X). First-strand cDNA was
synthesized using random hexamer primer and M-MuLV Reverse
Transcriptase (RNaseH-). Second-strand cDNA synthesis was
subsequently performed using DNA Polymerase I and RNase
H. In the reaction buffer, dNTPs with dTTP were replaced by
dUTP. Remaining overhangs were converted into blunt ends via
exonuclease/polymerase activities. After adenylation of 3′ ends of
DNA fragments, NEBNext Adaptor with hairpin loop structure
was ligated to prepare for hybridization. In order to select cDNA
fragments of preferentially 150∼200 bp in length, the library
fragments were purified with the AMPure XP system (Beckman
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Coulter, Beverly, United States). Then 3 µl USER Enzyme (NEB,
United States) was used with size-selected, adaptor-ligated cDNA
at 37◦C for 15 min followed by 5 min at 95◦C before PCR.
Then PCR was performed with Phusion High-Fidelity DNA
polymerase, Universal PCR primers, and Index (X) Primer.
Then, products were purified (AMPure XP system) and library
quality was assessed on the Agilent Bioanalyzer 2100 system.
At last the libraries were sequenced on an Illumina Hiseq 4000
platform, and 150 bp paired-end reads were generated.

RNA-Seq Data Analysis
Before read alignment, raw data (raw reads) in fastq format were
first processed through Trimmomatic (Bolger et al., 2014). In
this step, read bases with a phred base quality score less than
20, sequencing adapters, and reads containing poly-N are filtered
to generate reliable clean data. Furthermore, Fastqc was used
further to control the overall quality level of clean data to ensure
the reliability of subsequent bioinformatics analysis (Schmieder
and Edwards, 2011). The reference genome sequence files and
annotation files used in this study were downloaded from the
Ensembl genome browser1. Hisat2v2.1.0 was used to align clean
data to a reference genome (Kim et al., 2015; Pertea et al.,
2016). Afterward, stringtie (version 2.1.1) was used to assemble
the transcriptome of each sample to generate a comprehensive
transcript set (Pertea et al., 2015). With the fragments per kilobase
of exon per million reads (FPKM) value, the gene expression
levels can be quantified to a certain extent (Mortazavi et al.,
2008). Furthermore, the assembly transcripts for all samples were
integral to the enhancement of the overall quality of assembly
by combining novel and mapped transcripts with a single one
and removing the manual structures. The read count assignment
was performed with the HTSeq-count tool of the HTSeq software
(v0.6.1p1) (Anders et al., 2015). Prior to DEseq2 (version
2.2.1) (Love et al., 2014) read count standard normalization
and expression analysis, genes with counts <1 were removed.
Differently expressed genes (DEGs) were identified with | fold
change| > 1 and p-value < 0.05. DEGs were picked out and
analyzed in Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Gene Ontology (GO) by KOBAS software and Goseq in
the R package. Benjamini-Hochberg (B-H) p-value < 0.05 was
regarded as statistically significant.

Protein–Protein Interaction (PPI) Network
Construction and Modules Selection
Differently expressed genes were submitted to the online search
tool STRING database2 to search for interacting genes to
obtain gene interaction relationships, with a confidence score
>0.9 defined as significant (Szklarczyk et al., 2019). The open-
source software Cytoscape (Shannon et al., 2003) was used to
visualize the PPI network of DEGs, and to visualize complex
networks that provide a wide range of applications to analyze
the interactive network further. The application of Molecular
Complex Detection (MCODE) (Bader and Hogue, 2003) in
Cytoscape was utilized to screen the modules of the PPI network.

1http://ftp.ensembl.org/pub/release-95/
2http://string-db.org/cgi/input.pl

The standard settings of MCODE rest with: degree cutoff = 2,
node score cutoff = 0.2, k-core = 2, maximum depth = 100.
Additionally, the GO and KEGG enrichment analysis for the
function and pathway of genes were carried out in the modules.

Gene Set Enrichment Analysis (GSEA)
All expressed genes in both males and females could be applied
in GSEA analysis by GSEA software, which ranked all expressed
genes based on the fold-change (HRFI/LRFI) between the HRFI
and LRFI groups (Bertocchi et al., 2019). The enrichment score
of each gene set was then calculated with the full ranking, thus
shedding light on the distribution of each gene set in the list.
Furthermore, a normalized enriched score (NES) was determined
for each gene set. The significant enrichment of the gene set
followed the absolute values of NES > 1 and false discovery rate
(FDR) ≤ 0.05 (Liu et al., 2018).

Validation of RNA-Seq
Six DEGs were randomly selected. The primers used for qPCR
were designed using Oligo 6.0 software. Five micrograms of
RNA were reverse-transcribed into cDNA using RT Reagent Kit
(TaKaRa, Dalian, China). The volume of the reaction mixture
was 20 µl, with 2 µl of cDNA, 0.5 µl for each primer, 10 µl
of SYBR (TaKaRa, Dalian, China), and 7 µl of RNA-free water.
The following RT-PCR reaction was performed as follows:
95◦C for 3 min; 95◦C for 10 s, annealing temperature for the
30 s for 35 cycles; finally, melting curve collection at 65 to
95◦C. The expression levels were calculated according to the
2−11Ct method normalized with β-actin. Primers used were
synthesized by Sangon Biotech (Shanghai, China) and analyzed
using Oligo 7.0 software. Primers for the samples KMT2E, PPA2,
IQGAP2, NPLOC4, SSH1, and TRAFD1 genes are listed in
Supplementary Table 1.

RESULTS

Performance and Feed Efficiency
The disparity in ADFI, MBW0.75, ADG, RFI, and FCR is
illustrated in Table 1. As expected, the FCR and RFI of the LRFI
group were considerably lower than those of the HRFI group
(P < 0.05), and the ADFI of the LRFI group accounted for
approximately 80% of the HRFI group. In females, the ADFI
and ADG of HRFI birds were significantly higher than those of
LRFI birds (P < 0.05). Whereas in males, the RFI value of LRFI
birds was −13.03 ± 0.92 compared with 13.56 ± 1.47 for the
HRFI birds for 20 experimental days (day 70–90). In females, the
LRFI birds had an RFI value of −11.79 ± 2.55 compared with
11.89± 1.62 for the HRFI birds (day 70–90). Moreover, there was
no significant difference in metabolic body weight (MBW0.75)
between the two groups (p > 0.05).

RNA-Seq Data
All duodenal samples of males and females (total n = 10) were
gathered for RNA-seq. The amount of raw reads, clean reads,
total mapped reads (%), uniquely mapped reads (%), Q20(%),
Q30(%), and GC content (%) for each sample is shown in

Frontiers in Genetics | www.frontiersin.org 3 March 2021 | Volume 12 | Article 607719

http://ftp.ensembl.org/pub/release-95/
http://string-db.org/cgi/input.pl
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-607719 March 11, 2021 Time: 17:13 # 4

Xiao et al. Candidate Genes, Signaling Pathways, and Feed Efficiency

TABLE 1 | Characterization of performance and feed efficiency traits of male and
female (Least square means and SEM).

HRFI LRFI p-value

Female RFI, g/d 11.89 ± 1.62 −11.79 ± 2.55 < 0.001

FCR, g:g 4.57 ± 0.09 3.0 ± 0.15 < 0.001

ADFI, g/d 82.95 ± 1.69 65.63 ± 4.82 0.016

MBW0.75, g 169.97 ± 5.90 178.38 ± 13.36 0.398

ADG, g/d 18.17 ± 0.29 21.83 ± 0.95 0.015

Male RFI, g/d 13.56 ± 1.47 −13.03 ± 0.92 < 0.001

FCR, g:g 4.37 ± 0.20 2.75 ± 0.21 < 0.001

ADFI, g/d 95.85 ± 6.73 75.30 ± 10.58 0.063

MBW0.75, g 205.04 ± 14.54 203.15 ± 23.98 0.914

ADG, g/d 22.0 ± 2.05 27.5 ± 4.58 0.162

RFI, residual feed intake; FCR, feed conversion ratio; ADFI, average daily feed
intake over the assessed feeding period; MBW0.75, mean of metabolic body weight;
ADG, average daily gain over the assessed feeding period; HRFI, high residual feed
intake; LRFI, low residual feed intake.

Supplementary Table 2. After the filter, the number of clean
reads per sample ranged from 50,275,148 to 102,421,430. The
general Q30 percentage of clean data was above 91%. Comparing
the sequencing reads with the chicken reference genome, we
found that the total map rate is between 81.92 and 91.79%,
and the unique map rate is between 74.43 and 81.42%. The GC
content of 10 samples ranged from 48.45% to 50.34%.

Identification of DEGs
In this study, differential expression analysis was performed to
detect gene expression differences between the HRFI and LRFI

groups. A total of 1015 and 742 genes were identified as being
DEGs in males and females, respectively. Of the 1015 DEGs,
381 DEGs were upregulated in the HRFI groups, while 634 were
downregulated than the LRFI groups (Figure 1A). In the females,
481 DEGs were upregulated in the HRFI groups, while 261 were
downregulated compared with the LRFI groups (Figure 1B). 57
DEGs are shared between females and males (Figure 1C).

GO and KEGG Analysis
To further explore the functions of DEGs, we conducted
a functional enrichment analysis. GO enrichment analysis
showed that 8 and 11 GO items related to biological processes
were significantly enriched in males and females, respectively.
Notable among these were the metabolic process, cellular
metabolic process, cellular metabolic process, and protein
metabolic process. Other significant GO entries related to cellular
components and molecular functions were oxidoreductase
activity, mitochondrial part, enzyme binding cytoplasmic part,
and membrane-bounded organelle (Figure 2).

Kyoto Encyclopedia of Genes and Genomes pathways
enrichment analysis was performed to reveal the biological
functions of DEGs further. In the male, 11 signaling pathways
were significantly enriched, which mainly involved nutrient
metabolism, energy metabolism, and insulin signaling pathways.
Genes related to nutrient metabolism and energy metabolism
were upregulated in the LRFI group, including UQCRFS1,
PCK1, ALDOB, EHHADH, and GCH1. Simultaneously, genes
involved in the insulin signaling pathway and calcium signaling
pathway were upregulated in the HRFI group, including VDAC1,
PHKA2, PHKG1, PTGFR, and CACNA1C. In the female, 5

FIGURE 1 | Differently expressed genes (DEGs) of transcriptome analysis. (A,B) Represent the volcano map of DEGs in the male and female, respectively. (C) Venn
diagram showing the intersection of the DEGs between males and females.
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FIGURE 2 | Function enrichment analysis of differently expressed genes. (a) GO enrichment analysis of DEGs in the Male. (b) KEGG enrichment analysis of DEGs in
the male. (A) GO enrichment analysis of DEGs in the female. (B) KEGG enrichment analysis of DEGs in the female.

pathways were significantly enriched, which were involved in
endoplasmic reticulum protein processing and actin cells. The
genes related to skeleton regulation and MAPK signaling pathway
were upregulated in LRFI groups, while the genes involved
in small molecule metabolism and synthesis were upregulated
in the HRFI group.

Identification of Hub Genes and
Pathways Through PPI Network Analysis
Protein–protein interaction network analysis was performed on
DEGs; we could get more insight into the interaction relationship
among them. The interaction relationship of DEGs was shown in
Figure 3. We built the top three critical modules in DEGs’ PPI
network through the MCODE application (Figure 4). And then,
GO and KEGG enrichment analysis were performed on these
genes in the modules. In the male, the top three modules’ genes
were significantly enriched in the peptide biosynthetic process,
peptide metabolic process, fatty acid degradation, peroxisome,
fatty acid metabolism, and PPAR signaling pathway. In the
female, these genes’ functions may be explained by the cellular
response to heat, aminoacyl-tRNA biosynthesis, and ribosome.
A complete result of the enrichment analysis of genes in each
module was shown in Supplementary Table 3.

GSEA
We further investigated the difference in gene expression levels
between HRFI and LRFI groups by GSEA. The results of the
GSEA analysis were presented in Tables 2–5. As for the GO-
based list, in the male, higher expression gene sets in the
LRFI group were mainly associated with intestinal digestion and
absorption, such as brush border, brush border membrane, and

intestinal absorption. KEGG-base gene set enrichment analysis
enriched primarily for xenobiotics’ metabolism by cytochrome
p450, fatty acid metabolism, drug metabolism cytochrome p450,
peroxisome, and PPAR signaling pathway. From the GO-based
list, in the female, higher expression gene sets in the LRFI group
were mainly connected to neurodevelopment, such as neuron
fate commitment, central nervous system neuron differentiation,
and neuron fate specification. The KEGG-base Gene set enriched
primarily for basal cell carcinoma, hedgehog signaling pathway,
neuroactive ligand-receptor interaction, and melanogenesis. The
most enriched GO and KEGG items in the male and female were
shown in Figure 5.

Validation of RNA-Seq
Six genes were selected randomly from DEGs for qPCR
validation. The results showed that KMT2E, PPA2, and IQGAP2
were upregulated in the LRFI group, while TRAFD1, NPLOC4,
and SSH1 were upregulated in the HRFI group. The expression
patterns of six genes in qPCR were consistent with those in
RNA-seq (Figure 6).

DISCUSSION

Feed efficiency plays an important role in improving profits and
the environmental footprint in broiler production. In this study,
the duodenum transcriptome data came from four groups of
Xiayan chickens with extreme opposing RFI and different sex
using RNA-seq. The gene expression profile was further explored
by differential expression analysis, GO and KEGG enrichment
analysis, PPI network analysis, and GSEA. All bioinformatics
analyses were conducted to study gene expression differences,
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FIGURE 3 | Protein–protein interaction (PPI) network analysis. (A) PPI network for DEGs in males. (B) PPI network for DEGs in the female. Red circles represent
upregulated genes, and green circles represent downregulated genes. The size of the circle indicates the fold change of each gene (HRFI/LRFI).

FIGURE 4 | The top three protein–protein interaction (PPI) hub network modules in the male (A–C) and female (a–c). Red circles represent upregulated genes, and
green circles represent downregulated genes. The size of the circle indicates the fold change of each gene (HRFI/LRFI).

associations, and enrichment to further gain more widespread
biological insight into indigenous chickens’ feed efficiency.

Among males and females, the values of RFI, FI, and FCR
of high-RFI chickens were significantly higher than those of

low-RFI chickens. However, there was no significant difference
between ADG, BW, and MBW, which was consistent with the
findings of previous studies (Zhang X. et al., 2017; Zhang et al.,
2019). RFI uses feed intake to measure feed efficiency; using RFI
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TABLE 2 | Gene set enrichment analysis (GO-base) in the male.

GO-base list NES FDR Higher
expression

group

Brush border −2.26707 0.003079 LRFI

Peptide hormone processing −2.25016 0.001539 LRFI

Brush border membrane −2.24257 0.001026 LRFI

Intestinal absorption −2.22644 0.001027 LRFI

Cluster of actin based cell projections −2.168 0.00308 LRFI

Fatty acid metabolic process −2.12511 0.004784 LRFI

Microbody lumen −2.12404 0.004243 LRFI

Unsaturated fatty acid metabolic
process

−2.10509 0.006005 LRFI

Cellular lipid catabolic process −2.07536 0.009414 LRFI

Fatty acid biosynthetic process −2.06612 0.009701 LRFI

Extracellular matrix structural
constituent conferring tensile strength

2.297024 0.001245 HRFI

Extracellular matrix structural
constituent

2.187153 0.004879 HRFI

Basement membrane 2.186745 0.003253 HRFI

Collagen fibril organization 2.172451 0.004158 HRFI

Collagen trimer 2.080334 0.019748 HRFI

Neuron projection extension involved in
neuron projection guidance

1.992951 0.060019 HRFI

rRNA methylation 1.986123 0.05773 HRFI

Complex of collagen trimers 1.98479 0.051003 HRFI

Cartilage morphogenesis 1.965841 0.057518 HRFI

Catalytic activity acting on a rRNA 1.965179 0.052458 HRFI

NES, enrichment score; FDR, false discovery rate of the p-value.

TABLE 3 | Gene set enrichment analysis (KEGG-base) in the male.

KEGG set NES FDR Higher
expression in
HRFI or LRFI

Metabolism of xenobiotics by
cytochrome p450

−2.40002 5.02E-06 LRFI

Fatty acid metabolism −2.15454 6.10E-04 LRFI

Drug metabolism cytochrome p450 −2.13537 4.07E-04 LRFI

Peroxisome −2.00773 0.002549 LRFI

PPAR signaling pathway −1.93454 0.0089 LRFI

Glutathione metabolism −1.86585 0.016234 LRFI

Oxidative phosphorylation −1.86476 0.014085 LRFI

Pyruvate metabolism −1.85897 0.012981 LRFI

Retinol metabolism −1.84681 0.01302 LRFI

Drug metabolism other enzymes −1.79034 0.021592 LRFI

Focal adhesion 1.906565 0.033723 HRFI

ECM receptor interaction 1.828651 0.036793 HRFI

NES, enrichment score; FDR, false discovery rate of the p-value.

to select feed efficiency in breeding work can avoid affecting other
growth traits. RFI could be used as an ideal breeding index for
chicken feed efficiency trait.

Traditional differential expression analysis of RNA sequencing
data would produce many DEGs, and further analysis was
needed to understand the function of the DEGs between

TABLE 4 | Gene set enrichment analysis (GO-base) in the female.

GO-base list (CC, BP, MF) NES FDR Higher
expression in
HRFI or LRFI

Cell fate commitment −2.43399 4.52E-06 LRFI

Neuron fate commitment −2.42067 6.07E-05 LRFI

Mesonephros development −2.34885 0.000405 LRFI

Golgi lumen −2.31769 0.000612 LRFI

Central nervous system neuron
differentiation

−2.30507 0.000741 LRFI

Cell differentiation in spinal cord −2.27065 0.001833 LRFI

Diencephalon development −2.26932 0.001571 LRFI

Cell fate specification −2.26658 0.001525 LRFI

Cardiocyte differentiation −2.2519 0.001756 LRFI

Neuron fate specification −2.24478 0.00158 LRFI

Centromere complex assembly 2.479677 1.56E-05 HRFI

Chromatin remodeling at centromere 2.461585 3.87E-05 HRFI

DNA packaging 2.36867 0.000282 HRFI

DNA replication independent
Nucleosome organization

2.361665 0.000212 HRFI

Histone exchange 2.32466 0.000169 HRFI

DNA conformation change 2.32324 0.000141 HRFI

Chromatin assembly 2.248558 0.000244 HRFI

ATP dependent chromatin remodeling 2.241777 0.000214 HRFI

Kinetochore organization 2.207554 0.000381 HRFI

Interferon gamma mediated signaling
pathway

2.196199 0.000343 HRFI

NES, enrichment score; FDR, false discovery rate of the p-value.

TABLE 5 | Gene set enrichment analysis (KEGG-base) in the female.

KEGG set NES FDR Higher
expression in
HRFI or LRFI

Basal cell carcinoma −2.11055 0.003972 LRFI

Hedgehog signaling pathway −2.0326 0.003453 LRFI

Neuroactive ligand receptor
interaction

−1.84756 0.026776 LRFI

Melanogenesis −1.8143 0.026804 LRFI

Gap junction −1.79889 0.023586 LRFI

DNA replication 2.19206 0.001313 HRFI

Primary immunodeficiency 2.084619 0.002965 HRFI

Mismatch repair 2.020003 0.003884 HRFI

Intestinal immune network for IgA
production

1.974355 0.004076 HRFI

Cell cycle 1.955905 0.004391 HRFI

B cell receptor signaling pathway 1.7872 0.029919 HRFI

Autoimmune thyroid disease 1.783557 0.027321 HRFI

Pyrimidine metabolism 1.727826 0.045972 HRFI

Porphyrin and chlorophyll
metabolism

1.718103 0.04515 HRFI

One carbon pool by folate 1.698381 0.049032 HRFI

NES, enrichment score; FDR, false discovery rate of the p-value.

different comparison groups (Hekman et al., 2015). Therefore,
we further performed functional enrichment analysis on these
DEGs. The analysis results of GO and KEGG showed that
these genes were mainly involved in metabolism progress,
including material metabolism processes, protein metabolism,
carbohydrate metabolism, amino acid metabolism, energy
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FIGURE 5 | Gene set enrichment analysis (GO-base and KEGG-base). GSEA algorithm scored the enrichment of genes in the pathway in the ranked gene list.
Enrichment score (ES) > 0 indicates that the distribution of the gene set is biased upstream of the ranking list, and ES < 0 shows the gene set distribution is biased
downstream of the ranking list. (A,B), (a,b) represent the GO entries and KEGG signaling pathways with the lowest FDR values. (A) Brush border and
(B) Metabolism of xenobiotics by cytochrome p450 are enriched in the male LRFI groups. (a) Cell fate commitment and (b) Basal cell carcinoma are enriched in LRFI
groups in the female.

metabolism, and lipid metabolism processes. Many studies have
shown that metabolism is an essential factor affecting residual
feed intake (Jing et al., 2015; Yi et al., 2015; Kong et al., 2016).

In males, some genes related to the metabolism process
were upregulated in the LRFI group, such as ALDOB (Aldolase,
Fructose-Bisphosphate B), UQCRFS1 (ubiquinone-cytochrome
C reductase iron-sulfur protein subunit Base 1), EHHADH
(3-hydroxyacyl-CoA dehydrogenase), and GCH1 (guanosine
triphosphate cyclase I). A notable gene is ALDOB. The aldolase
family is a biological enzyme necessary for bioenergy metabolism.
It catalyzes the formation of dihydroxyacetone phosphate and
glyceraldehyde 3-phosphate by fructose 1, 6-bisphosphate, which
plays a vital role in glycolysis (Almon et al., 2007). ALDOB
(aldolase B), as a member of the aldolase family, is mainly
distributed in liver tissues, participates in liver metabolism, and
also participates in glycolysis and gluconeogenesis processes
(Kallio et al., 1998). More recent studies already point to ALDOB
as a candidate gene for feed efficiency in chickens. A previous
study in chicken found the ALDOB gene that participates in
glycolysis and gluconeogenesis was highly expressed in LRFI
chickens (Shah et al., 2019). Gene expression in breast muscle
associated with feed efficiency in a single male broiler line using
a chicken 44K oligo microarray also identified that ALDOB was
more highly expressed in high feed efficiency chickens (Kong
et al., 2011). We speculate that ALDOB could have an essential
role in enhancing energy metabolism in the high-FE broiler
phenotype. Some genes enriched in the insulin signaling pathway

were upregulated in the HRFI group. In the chicken, the insulin-
signaling pathway has anabolic effects in glucose transport and
utilization, glycogen synthesis, control of liver lipogenic enzymes,
amino acid transport, and protein synthesis (Fujita et al., 2019).
Previous genome-wide association analysis identified an SNP
site significantly related to feed efficiency that may regulate feed
efficiency through the insulin signaling pathway (Yuan et al.,
2017). A study conducted on Duroc pigs with differences in RFI
has found that the insulin signaling pathway may be a biological
process that is significantly associated with RFI (Banerjee et al.,
2020). Our findings were consistent with the results above,
indicating the body’s digestion and metabolism are essential
to RFI, and high feed efficiency chickens may have a stronger
ability to metabolize nutrients. In the female, genes related to
the MAPK signaling pathway and actin cytoskeleton regulation
were upregulated in the LRFI group. Many studies have proven
that MAPK plays a key role in the regulation of energy balance
(Kikuchi et al., 2020; Okubo et al., 2020). Previous studies have
shown that the MAPK signaling pathway is widely involved in
the regulation of growth and development (Xu et al., 2019; Zhao
et al., 2019); the genes contained in the MAPK signaling pathway
may regulate feed efficiency through energy distribution and
homeostasis in the digestion, absorption, and metabolism of feed.

Protein–protein interaction network analysis can capture the
interaction information of DEGs, which helps to understand the
molecular mechanism of fat deposition from the perspective of
biological systems (Athanasios et al., 2017). In this research, the
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FIGURE 6 | Validation of the accuracy of RNA-seq. (A) Correlations of the expression level of 6 random DEGs between high and low abdominal fat using RNA-Seq
and qPCR. The x- and y-axis correspond to the genes and log2 (ratio of H/L) measured by RNA-Seq and qPCR. (B) Gene expression abundance of HRFI and LRFI
in Male and female; results are expressed as means ± standard deviation (n = 6); a, b means p < 0.05.

PPI network analysis was constructed with DEGs. To identify
the essential part of the PPI network, we used the “module”
program to extract the top three modules and performed GO
and KEGG enrichment analysis. Some GO items and KEGG
signaling pathways were worth noting, including fatty acid
degradation, fatty acid metabolism, PPAR signaling pathway, and
cellular response to heat. Some biological pathways, like lipid
metabolism and cholesterol biosynthesis, were identified to be
associated with RFI (Nafikov and Beitz, 2007; Karisa et al., 2014).
Our research found that some key hub-genes are significantly
enriched in fat metabolism-related pathways. These genes include
ECH1, EHHADH, CAT, ACSL1, ECI2, ABCD2, ACOX1, and
PCK1. Interestingly, these genes are both highly expressed in
the high feed efficiency group in male/females. ACSL1 (acyl-CoA
synthetase long-chain family member 1) plays an important role
in the transportation and activation of fatty acids. A previous
study in chickens showed that high expression of the ACSL1
gene could promote fat synthesis, while chickens with high feed
efficiency tend to have more fat deposits (Neijat et al., 2017). The
PCK1 gene is associated with obesity, insulin resistance, type II
diabetes in mammals, and abdominal fat content (Beale et al.,
2007; Rees et al., 2009; Millward et al., 2010). Previous research
showed that fat deposition was positively correlated with PCK1
expression in birds.

Similarly, a prior study in chicken performance transcriptome
sequencing also found PCK1 higher express in the LRFI group
than HRFI; it was also speculated that LRFI chickens have more

fatty deposits (Duan et al., 2013), which is consistent with the
results in this study. A previous genome-wide association analysis
related to pig feed efficiency found a significant correlation
between the ECI2 (enoyl-CoA delta isomerase 2) gene and feed
efficiency. Earlier studies in pigs showed that the expression
level of the ABCD2 (ATP binding cassette subfamily D member
2) gene was downregulated in the high feed efficiency group,
and this result was also verified in our study. In a meat
duck liver transcriptome study, ACOX1 (acyl-CoA oxidase 1)
expression was significantly negatively correlated with RFI,
which was also consistent with our results. As for ECH1,
EHHADH, and CAT genes, no relevant studies have shown that
they have a relationship with RFI. It is challenging to predict
chickens’ capability with low or high RFI to cause specific
fat deposition changes. But our research confirmed that the
regulatory relationship between feed efficiency and fat deposition
needs to be further explored.

Interestingly, two key hub genes encode for Heat Shock
Proteins (HSPs): HSPA2/HSP90AA1. Chickens are susceptible
to heat stress due to their overall feather coverage and lack of
sweat glands (Zhang C. et al., 2017). Numerous research has
reported on the negative influence of heat stress on poultry
production, such as decreased body antioxidant capacity and
intestinal immunity and impaired intestinal morphology (Sahin
et al., 2017; Song et al., 2018). Under HS conditions, chickens
may spend more energy on maintenance and acclimation, which
reduces the energy for growth and leads to a decrease in BWG
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(Mujahid et al., 2007). The activation of heat stress is energetically
costly, and long-term stimulation can negatively impact feed
efficiency. These genes involved in heat stress can be used as
candidate markers related to feed efficiency. HSPs protein is
highly conserved in all organisms and plays a crucial role in
cellular stress response (Stetler et al., 2010). Many studies have
demonstrated the link between heat stress and feed affection.
Heat stress can lead to a decrease in animal feed intake and
damage the intestine’s integrity and barrier function (Pearce et al.,
2015). Studies have reported that when pigs undergo heat stress,
the expression of HSP mRNA will increase. The abundance of
various metabolic enzymes in the ileum will decrease, suggesting
that the body’s metabolic process has changed (Pearce et al.,
2015). Similar to our findings, a study explored the host
transcriptome and microbiome interaction modulates of full-sibs
broilers with divergent feed conversion ratio and identified that
HSP90AA1 is a significantly differently expressed gene. In poultry
production, strictly controlling the environment and avoiding
heat stress will effectively improve feed efficiency.

We used the GSEA approach (Wang and Cairns, 2013) to
compare biological differences in all gene expression patterns
between the high-RFI and low-RFI groups. Based on the GO-
based list, all higher expressed gene sets in the LRFI group
were mainly divided into three categories. lipid metabolism,
structure and function of small intestinal villi, and development
of the nervous system. Some genes are enriched to the gene
set involved in border brush, which is considered to be related
to the intestine’s digestion and absorption function, including
MYO1D, MYO1E, MYO1A, USH1C, and EZR. These genes in this
pathway are highly expressed in the high feed efficiency group,
which shows that some genes related to the intestinal structure
may play an important role in regulating high feed efficiency
chicken intestines with better absorption capacity. Biologists have
long appreciated the intimate connection between morphology
and function. Here, morphological adaptations at both the tissue
and cellular level, allow the intestinal epithelium to make close
and prolonged contact with luminal contents, promoting efficient
uptake of available nutrients that may lead to the change of feed
efficiency. The intestinal brush border is home to several class
I myosins, with myosin-1a (myo1a) being the most abundant
(McConnell et al., 2011). The expression of the myo1A gene
has strong tissue specificity. Expression of myo1A is limited to
the intestinal tract, where it localizes almost exclusively to the
brush border (Skowron et al., 1998; Skowron and Mooseker,
1999). MYO1A, MYO1D, and MYO1E are considered to be
key genes in the rapid differentiation of neonatal epithelial
cells into mature intestinal epithelial cells (Tyska et al., 2005;
Beale et al., 2007; Benesh et al., 2010). Previous studies have
shown that a large deletion mutation in the human USH1C gene
can cause severe gastrointestinal dysfunction (Bitner-Glindzicz
et al., 2000; Hussain et al., 2004). Consistent with this, USH1C
knockout mice, which were developed to model Type 1 Usher
syndrome, display significant perturbations in intestinal brush
border morphology (Crawley et al., 2014). Our results show
the potential connection between chicken intestinal structure
and function and feed efficiency. It is worth noting that in our
GSEA enrichment analysis, some genes were enriched and related

to nervous system development. A previous study integrated
genome-wide co-association and gene expression found that
some candidate genes directly or indirectly affect FE-related
traits were mainly associated with immunity, nervous system,
behavior, and energy metabolism (Ramayo-Caldas et al., 2019).
The influence mechanism of nervous system development on
feed efficiency needs further study.

To summarize, this work is the first to use RNA-seq in males
and females to identify and annotate DEGs in the duodenum
tissues of high- and low-FE native chickens. In male and
females, we identified 1015 and 742 DEGs associated with RFI,
respectively. Those genes were mainly enriched in the pathways
of metabolism, oxidation reaction, and energy homeostasis.
Moreover, we found that genes involved in fat metabolism
and heat stress may affect feed efficiency through PPI network
analysis. Through GSEA analysis, we found that many genes
related to small intestinal villi structure and absorption function
can be used as candidate genes to RFI, including MYO1D,
MYO1E, MYO1A, USH1C, and EZR. Finally, the research shows
that differences in gene expression patterns related to nervous
system development may cause different feed efficiencies.
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