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Hepatocellular carcinoma (HCC) is the most common form of liver cancer with limited

therapeutic options and low survival rate. The hypoxic microenvironment plays a vital role

in progression, metabolism, and prognosis of malignancies. Therefore, this study aims

to develop and validate a hypoxia gene signature for risk stratification and prognosis

prediction of HCC patients. The Cancer Genome Atlas (TCGA) and International Cancer

Genome Consortium (ICGC) databases were used as a training cohort, and one Gene

Expression Omnibus database (GSE14520) was served as an external validation cohort.

Our results showed that eight hypoxia-related genes (HRGs) were identified by the least

absolute shrinkage and selection operator analysis to develop the hypoxia gene signature

and demarcated HCC patients into the high- and low-risk groups. In TCGA, ICGC, and

GSE14520 datasets, patients in the high-risk group had worse overall survival outcomes

than those in the low-risk group (all log-rank P < 0.001). Besides, the risk score derived

from the hypoxia gene signature could serve as an independent prognostic factor for

HCC patients in the three independent datasets. Finally, a nomogram including the gene

signature and tumor-node-metastasis stage was constructed to serve clinical practice.

In the present study, a novel hypoxia signature risk model could reflect individual risk

classification and provide therapeutic targets for patients with HCC. The prognostic

nomogram may help predict individualized survival.

Keywords: prognosis, hypoxia, hepatocellular carcinoma, international cancer genome consortium, the cancer

genome atlas, gene expression omnibus

INTRODUCTION

Primary liver cancer is the third most common cause of cancer-related deaths with limited
therapeutic options and low survival rate (Sung et al., 2021), among which hepatocellular
carcinoma (HCC) is the most common form. Following the developments of diagnostic and
therapeutical strategies of HCC, the need for molecular and genetic signature that can predictively
reflect the prognosis of patients in advance is constantly growing in clinical practice.
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Due to the formation of tumor neovascularization and
vigorous tumor metabolism (Brown and Wilson, 2004; Mucaj
et al., 2012), a parallel to increase oxygen demand with reduced
oxygen supply leads to an oxygen imbalance. Therefore, the
presence of hypoxia is a common feature in approximately
half of solid tumors (Majmundar et al., 2010; Lee et al., 2017),
including HCC (Jain, 2005; Wu et al., 2007). As a vital organ
with unique anatomical base, the liver seems insulated to oxygen
tensions in the normal condition, while hypoxia often presents
during cainogenesis (Wilson et al., 2014). A central regulator of
oxygen detection and adaptation at the cellular level, hypoxia-
inducible factor (HIF) has been demonstrated to activate genes
that control cellular oxygen homeostasis (Choudhry and Harris,
2018), metabolic reprogramming, cell proliferation, invasion and
metastasis, apoptosis, and resistance to therapies in various
types of cancer (Rankin and Giaccia, 2016). Mechanistically,
HIF could bind to specific DNA sequences in target genes in
numerous signaling pathways (Wang et al., 1995). However,
therapies on hypoxia-related genes (HRGs) are still limited
due to lack of evidence and abundant difficulties in evaluating
tumor hypoxia.

Recently, the genome-wide expression profiling datasets have
been generally applied to discover potential cancer biomarkers
via single-gene research. So far, few studies have constructed
prognostic models based on a combination of multiple HRGs
in HCC (Chang et al., 2019; Zhang et al., 2020); however,
the performance of the nomogram incorporating hypoxia
gene signature and clinical features in predicting survival
outcome of HCC patients was not satisfactory in a recent
research. Therefore, we aimed to explore a novel HRG-based
signature for risk stratification and suggest therapeutic targets in
HCC. Furthermore, a nomogram combined with hypoxia gene
signature and prognostic clinical risk factors was established to
achieve better prognosis prediction of HCC patients in this study.

MATERIALS AND METHODS

Datasets
The mRNA-seq transcriptome profiling and corresponding
clinical data of HCC patients were extracted from The Cancer
Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/)
and International Cancer Genome Consortium (ICGC) data
portal (https://dcc.icgc.org/projects/LIRI-JP), respectively. The
gene expression files of the two datasets were merged into
one cohort as a training cohort (Huo et al., 2020). Similarly,
GSE14520 (GPL3921, Affymetrix HT Human Genome U133A
Array) with RNA sequencing and clinical information were
downloaded from the Gene Expression Omnibus (GEO) dataset
as an external validation cohort (https://www.ncbi.nlm.nih.gov/
geo/). Patients with a follow-up period< 1 month were excluded.
Besides, characteristics of included HCC patients in three
independent cohorts are shown in Table 1. The batch effects of
RNA sequencing datasets were eliminated using “SVA” R package.
Moreover, the hypoxia-related genes (HRG) were obtained from
the HALLMARK-HYPOXIA gene set in Gene-Set Enrichment
Analysis (GSEA) (https://www.gsea-msigdb.org/gsea/index.jsp).

Development and Validation of Prognostic
Gene Signature
The relationship between HRGs and the overall survival (OS)
of HCC in the training cohort was first detected via the
univariate Cox regression analysis. The HRGs with a P < 0.2 on
univariate analysis were selected for further analysis. To reduce
overfitting, the least absolute shrinkage and selection operator
(LASSO) Cox regression analysis was performed with “glmnet”
package in R to develop a gene signature. The independent
variable in the regression was the expression matrix of selected
HRGs by univariate analysis, and the response variables were
OS and survival status of patients in the training cohort. The
optimal penalty parameter (lambda) was determined through
10-fold cross-validation (Tibshirani, 1997). A prognostic gene
signature was finally established based on expression levels of
the HRGs and the corresponding regression coefficients. Risk
score was calculated for each patient as follows: signature risk
score = coefficient1 × expression level of gene1 + coefficient2
× expression level of gene2 +. . .+ coefficientn × expression
level of genen. According to the optimal cutoff determined by
the Youden index method, patients in the training group were
divided into high-risk group and low-risk group. Moreover, the
training cohort was divided into TCGA and ICGC datasets for
internal validation, and external validation was conducted using
the GSE14520 dataset.

TABLE 1 | Clinical characteristics of the hepatocellular carcinoma patients in three

independent cohorts.

Characteristics TCGA cohort ICGC cohort GSE14520 cohort

(n = 343) (n = 229) (n = 221)

Age

<60y 157 (45.8) 44 (19.2) 178 (80.5)

≥60y 186 (54.2) 185 (80.8) 43 (19.5)

Gender

Male 233 (67.9) 168 (73.4) 191 (86.4)

Female 110 (32.1) 61 (26.6) 30 (13.6)

TNM stage

I 166 (48.4) 36 (15.7) 93 (42.1)

II 80 (23.3) 105 (45.9) 77 (34.8)

III 94 (27.4) 69 (30.1) 49 (22.2)

IV 3 (0.9) 19 (8.3) 0

Histologic grade

1 53 (15.5) NA NA

2 165 (48.1) NA NA

3 113 (32.9) NA NA

4 12 (3.5) NA NA

AFP

≤300 ng/ml 198 (57.7) NA 119 (53.8)

>300 ng/ml 62 (18.1) NA 100 (45.2)

Survival status

OS years (median) 4.83 2.14 4.35

Alive 220 (64.1) 189 (82.5) 136 (61.5)

Dead 123 (35.9) 40 (17.5) 85 (38.5)

OS, overall survival.
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The receiver operating characteristic (ROC) curve, Kaplan–
Meier method, concordance index (C-index), and multivariate
Cox regression were utilized to assess the prognostic efficiency
of the risk model. Specifically, survival differences between
the two risk groups were compared using Kaplan–Meier with
log-rank statistical methods using R package “survminer,”
and time-dependent ROC curves of 1, 3, and 4 years were
performed via “survival ROC” package to assess the predictive
accuracy of the model in the training and validation cohorts.
Additionally, multivariate Cox regression analysis was conducted
to determine whether the risk score is an independent risk
factor for OS in HCC in the TCGA, ICGC, and GSE14520
datasets, respectively.

Furthermore, we studied the expression profiling of the
prognostic gene signature. The mRNA expression of the genes
in tumor and non-tumor tissues was analyzed using the
Wilcoxon rank-sum test. In addition, the protein expression
of the identified genes was explored in the Human Protein
Atlas online database (http://www.proteinatlas.org) (Thul and
Lindskog, 2018).

Construction and Assessment of the
Nomogram
The independent prognostic factors identified by multivariate
Cox regression analysis were applied to construct the nomogram
for estimating the OS of 1–3 years in HCC using “rms” package
of R. Following that, the calibration curve was used to assess
the concordance between actual and predicted survival. The
predictive performance of the nomogram was subsequently
evaluated using the time-dependent ROC analysis.

Gene-Set Enrichment Analysis (GSEA)
GSEA (http://software.broadinstitute.org/gsea/index.jsp) was
performed based on the training set to identify gene sets that
were significantly different between the high- and low-risk
groups (Subramanian et al., 2005). After performing 1,000
permutations, gene sets with a nominal P < 0.05 were considered
statistically enriched.

Statistical Analysis
The R software (version 3.6.3) was used to present data
management, statistical analysis, and data visualization. The
Wilcoxon rank-sum test or Kruskal–Wallis test was used to
compare differences in clinicopathological features between two
groups and among multiple groups. The value of P < 0.05 was
applied as a threshold of statistical significance.

RESULTS

Establishment of Prognostic Gene
Signature
The workflow chart of the study was displayed in Figure 1. A
total of 343 HCC patients from the TCGA cohort, 229 HCC
patients from the ICGC cohort, and 221 HCC patients from
the GSE14520 cohort were finally enrolled. The representative
clinical characteristics of these patients are shown in Table 1.

Univariate Cox regression analysis identified 77 HRGs with
a P < 0.2. The expression levels of eight HRGs and the
corresponding coefficients based on LASSO Cox regression
analysis were used to construct a prognostic gene signature
(Figure 2). The risk score for predicting OS was calculated as
follows: risk score= [Enolase 1 (ENO1)× (0.1676)]+ [Glypican
3 (GPC3)× (0.0688)]+ [Jumonji domain containing 6 (JMJD6)
× (0.0875)] + [Phosphoglucomutase 1 (PGM1) × (−0.0549)]
+ [Muscle glycogen phosphorylase (PYGM) × (−0.0437)] +

[Serpin peptidase inhibitor type 1 (SERPINE1) × (0.0228)]
+ [Solute carrier family 2 member 1 (SLC2A1) × (0.0633)] +
[Stanniocalcin 2 (STC2)× (0.0638)]. Furthermore, the risk score
was generated for each patient in the training cohort. According
to the optimal risk score cutoff value, patients were divided into
high-risk group (n = 269) and low-risk group (n = 303). And
the distributions of the risk scores, OS time, and heat map in the
training cohort are shown in Figures 3A–C. In addition, Kaplan–
Meier curves showed that patients in the low-risk group had a
significantly better OS than those in the high-risk group in the
training dataset (log-rank P< 0.001; Figure 3D). The areas under
curves (AUC) of the ROC curves for predicting 1-, 3-, and 4-year
OS of HCC in the training cohort were 0.791, 0.755, and 0.775,
respectively (Figure 3E). Moreover, the C-index of the HRG-
based prognostic risk model for OS prediction was 0.751 for the
training cohort.

Internal Validation of the Prognostic Gene
Signature
Next, the 8-HRG-based signature was internally validated in
the TCGA and ICGC cohorts. In the TCGA cohort, patients

FIGURE 1 | The workflow chart of constructing the prognostic model based

on the hypoxia signature.
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FIGURE 2 | Establishment of prognostic gene signature. (A) The optimal log (Lambda) value in the least absolute shrinkage and selection operator (LASSO) model.

Red dots and gray lines represent the partial likelihood deviance and error bars, respectively. A vertical line is drawn at the λ value of 0.0418 chosen by 10-fold

cross-validation. (B) LASSO coefficient profiles of the 77 HRGs.

FIGURE 3 | Construction of a prognostic gene signature in the training cohort for overall survival (OS) of HCC patients. The distribution of the risk score (A), survival

time and life status (B), and the eight-HRG expression profiles (C) for the 572 HCC patients. (D) Kaplan–Meier curves comparing OS of HCC patients in the high- and

low-risk groups. (E) The time-dependent receiver operating characteristic (ROC) curves of the eight-HRG signature for predicting OS at 1, 3, and 4 years.
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in the high-risk group had a significantly worse OS than those
in the low-risk group (Figure 4A). The AUCs of the risk score
for predicting 1-, 3-, and 4-year OS were 0.791, 0.745, and
0.761, respectively (Figure 4B). In accordance with the results
above, high-risk patients showed a lower OS rate in the ICGC
cohort (Figure 4E). The AUCs for 1-, 3-, and 4-year OS were
0.807, 0.781, and 0.800, respectively (Figure 4F). Univariate
and multivariate Cox regression analyses demonstrated that
tumor-node-metastasis (TNM) stage and the risk score were
independent prognostic factors for OS in both TCGA and ICGC
cohorts (Figures 4C,D,G,H).

External Validation of the Prognostic Gene
Signature
To confirm the predictive ability of the eight-HRG-based
signature, an external validation analysis was conducted in the
GSE14520 cohort. The risk score regarding each patient was
calculated according to the same formula as that from the
training dataset, and patients were also stratified into two risk
groups, including 105 patients in the high-risk group and 116
patients in the low-risk group. Consistent with the results in
the training cohort, patients in the high-risk group showed a
significantly lower OS (log-rank P < 0.001; Figure 5A) and
recurrence-free survival (log-rank P = 0.001, Figure 5B) in
comparison with those in the low-risk group.While in GSE14520
cohort, the AUC values for the risk scores predicting 1-, 3-, and 4-
year OS were 0.720, 0.746, and 0.750, respectively (Figure 5C). As
indicated by univariate and multivariate Cox regression analysis,
the risk score could independently predict OS (Figures 5D,E).
The ROC comparisons between hypoxia-related signature and
other prognostic models reported in previous studies are shown
in Supplementary Figure 1.

Expression Profiling of Identified Eight
HRGs
The mRNA expression patterns of the selected eight HRGs
between HCC and normal tissues in the three independent
cohorts are shown in Figures 6A–C, revealing that PGM1,
PYGM, and SERPINE1 were significantly downregulated in
HCC tissues while the other five genes were significantly
upregulated relative to non-tumor tissues. We further explored
the protein expression encoded by these genes. As shown in
Figure 6D, ENO1 and JMJD6 were moderately positive while
SLC2 was weakly positive in HCC tissues when compared
with corresponding expression levels in non-tumor tissues. In
contrast, PGM1 and PYGM showed strong and low positive in
normal liver tissues, respectively.

Association Between the Risk Signature
and Clinicopathological Characteristics
The association between the HRG-based risk signature and
clinicopathological characteristics was subsequently explored.
No significant differences were observed between males
and females or various age groups in either the TCGA,
ICGC, or GSE14520 dataset. In comparison with grades 1–2,
patients with grades 3–4 had significantly higher risk scores

in the TCGA cohort (P < 0.001; Supplementary Figure 2A).
Moreover, HCC patients with higher TNM stages had obviously
higher risk scores in the TCGA (Supplementary Figure 2B),
ICGC (Supplementary Figure 2D), and GSE14520
(Supplementary Figure 2E) cohorts (all P < 0.01). In
addition, as tumor stage increased, risk scores showed a
significantly increasing trend in the TCGA cohort (P <

0.01; Supplementary Figure 2C). Similarly, risk scores were
significantly higher in patients with tumor size≤5 cm than those
with tumor size >5 cm in the GSE14520 cohort (P = 0.001,
Supplementary Figure 2F).

Construction and Assessment of the
Predictive Nomogram
The risk scores and TNM stage of patients in the training cohort
were used for constructing a nomogram for OS predication.
One, two, and three-year calibration curves are presented in
Figure 7A. In the TCGA and ICGC cohorts, the calibration plots
demonstrated an excellent agreement between the predicted and
actual OS (TCGA, Figure 7B; ICGC, Figure 7C). In addition,
the calibration plots showed a favorable prediction ability
for the survival rates in the GSE14520 cohort (Figure 7D).
The C-index for the nomogram and TNM stage was 0.774
and 0.639, respectively. As shown in Supplementary Figure 3,
the AUCs of the nomogram for predicting 1-, 2-, and 3-
year OS were 0.821, 0.772, and 0.785, respectively. Compared
with risk score and TNM stage alone, the combination of
risk score and TNM stage showed larger AUCs for 1-, 2-,
and 3-year OS.

Gene-Set Enrichment Analysis
GSEA analysis revealed that the high-risk group was significantly
associated with mammalian target of rapamycin (mTOR)
complex 1 signaling pathway, DNA repair, phosphatidylinositol
3-kinase (PI3K)/protein kinase B (Akt)/mTOR signaling
pathway, and glycolysis (Figures 8A–D). Furthermore,
oncological signatures, including myelocytomatosis oncogene
(MYC) and E2F transcription factor (E2F), were also significantly
enriched in the high-risk group (Figures 8E,F).

DISCUSSION

Recently, with the vigorous development of medical technology,

the needs of patients with tumors are not limited to disease

diagnosis or conventional treatment. The concept of precision

medicine is requesting molecular diagnosis and personalized

therapeutic method according to the differential expression of
genetic level. Hence, a novel predictive signature based on
eight HRGs for HCC has been established in this study and
validated in an independent cohort to meet the urgent need
of effective prognostic biomarkers reflecting risk stratification
and survival outcomes of HCC patients. The results suggest that
the gene signature can successfully predict the OS of patients
with HCC.

In general, the HIF is a key regulator of the cellular hypoxia
response that plays crucial roles in tumor resistance to different
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FIGURE 4 | Internal validation of the prognostic gene signature in the TCGA and ICGC cohorts. Kaplan–Meier curves and time-dependent ROC curves at 1, 3, and 4

years of predicting the OS of HCC patients in the TCGA (A,B) and ICGC cohorts (E,F). Univariate (Green) and multivariate (Red) Cox regression analyses of the

association between clinicopathological parameters and hypoxia risk signature regarding the OS of HCC patients in the TCGA (C,D) and ICGC cohort (G,H).

Frontiers in Genetics | www.frontiersin.org 6 June 2021 | Volume 12 | Article 613890

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Li et al. Hypoxia-Related Gene and Hepatocellular Carcinoma

FIGURE 5 | External validation of the prognostic gene signature in the GSE14520 dataset. Kaplan–Meier curves comparing OS (A) and recurrence-free survival (B)

curves of HCC patients with high or low hypoxia risk. (C) The ROC curves of the eight-HRG signature for predicting OS at 1, 3, and 4 years in the GSE14520 cohort.

Univariate (D) and multivariate (E) Cox regression analyses of clinicopathological parameters and hypoxia risk signature of HCC patients in the GSE14520 cohort.

treatment modalities and poor prognosis in HCC (Burroughs
et al., 2013; Fallah and Rini, 2019). There are more than a
hundred genes regulated by HIF in an induced or repressed
method (Manalo et al., 2005), which primarily leads to a
reprogramming of glucose metabolism and regulates epithelial–
mesenchymal transition (Denko, 2008; Taniguchi et al., 2013).
Significantly, the glycolytic phenotype was often associated
with a higher level of HIF-1 in tumor cells, while the hybrid
metabolic phenotype combined with glycolysis and oxidative
phosphorylation was characterized by the intermediate level of
HIF-1 (Dupuy et al., 2015; Jia et al., 2019). The modulation
of metabolic pathways in tumor cells could be understood by
the gene-regulated metabolic plasticity. In the present study,
LASSO Cox regression analysis helped select the eight HRGs

(ENO1, GPC3, JMJD6, PGM1, PYGM, SERPINE1, SLC2A1, and
STC2) from a total of 77 genes to develop the hypoxia gene
signature, which was an independent prognostic factor for HCC
patients (Table 2). These genes could be roughly classified into
four categories: glucose metabolism (SLC2A1, ENO1), glycogen
metabolism (PGM1, PYGM), malignant biological behavior
(JMJD6, GPC3, STC2), and coagulation function (SERPINE1).
In HCC cells, glucose addiction drove an increasing glucose flex
into the cytoplasm transported by SLC2A1 (known as GLUT1)
in response to hypoxia, whose higher expression level provided
the primary motivation for the metabolism reprogramming
(Nagarajan et al., 2017), such as aerobic glycolysis. Afterward,
the catalytic activation of ENO1 was also enhanced via HIF,
promoting survival of cancer cells in the hypoxia area by the
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FIGURE 6 | The expression of the eight HRGs in HCC. The RNA-seq expression of the eight genes in the TCGA (A), ICGC (B), and GSE14520 (C) cohorts. (D) The

expression of proteins encoded by the representative genes in normal and HCC tissues using specimens from the Human Protein Profiles. *P < 0.05, **P < 0.01, ***P

< 0.001.

modulating glycolytic metabolism (Yu et al., 2018). Previous
studies have shown that not all the HIF-1 signature genes are
expressed higher in the tumor tissues than these in the normal

tissues (Jia et al., 2019). In the process of glycogen metabolism,
the low expression of PGM1 hindered the glycogen synthesis
pathway of tumor cells, making glucose more used in the
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FIGURE 7 | Nomogram to predict overall survival for patients with HCC. (A) The prognostic nomogram for predicting the survival probability of HCC patients based

on the TCGA cohort. The calibration curves of the nomogram for predicting OS at 1–3 years in the TCGA (B), ICGC (C), and GSE14520 (D) cohorts.

glycolysis process, thereby promoting tumor cell proliferation
and the malignant progression of HCC (Jin et al., 2018).
Additionally, as an important enzyme in the first step of
glycogenolysis (Favaro et al., 2012), PYGM was found to be
less expressed in tumor tissues than that in normal tissues,
which made an impact on the survival of breast cancer

patients. These data above implied the potential relationship
between the decreasing expression of PGM1 and PYGM and
the poor prognosis of HCC patients. Apart from the influence
on glucose metabolism, the gene signature also included vital
indicators associated with liver function, cell proliferation, gene
transcription, and diagnosis. Of note, for a histone arginine
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FIGURE 8 | Gene-set enrichment analyses between high- and low-risk groups based on the training cohort. Genes in the high-risk group were enriched for hallmarks

of the mTORC1 signaling pathway (A), DNA repair (B), PI3K/Akt/mTOR signaling pathway (C), glycolysis (D), MYC targets V1 (E), and E2F targets (F).

TABLE 2 | The function and mechanism of 8 hypoxia-related genes (HRGs) in hepatocellular carcinoma (HCC).

HRGs Full name Description Mechanism References

ENO1 Enolase 1 A key glycolytic enzyme Promote survival of cancer cells in the hypoxia area by

the modulating glycolytic metabolism

Yu et al., 2018

GPC3 Glypican 3 A cell surface heparan sulfate

proteoglycan

Enhance HCC cell migration via upregulating expression

and interacting with epithelial-mesenchymal transition

-associated targets

Meng et al., 2021

JMJD6 Jumonji domain

containing 6

A histone arginine demethylase or

lysyloxidase to target histones

Influence the overall survival in HCC by modulating RNA

splicing

Wan et al., 2019

PGM1 Phosphoglucomutase

1

An evolutionary conserved enzyme

of the ubiquitous and

ancient α-D-phosphohexomutases

Hinder the glycogen synthesis pathway of tumor cells

and promote proliferation and the malignant progression

of HCC

Jin et al., 2018

PYGM Muscle glycogen

phosphorylase

An important enzyme in the first

step of glycogenolysis

Have impact on the survival of cancer with low

expression in tumor cells

Favaro et al., 2012

SERPINE1 Serpin peptidase

inhibitor type 1

A fibrinolysis-related indicator Lead to the thrombosis and consequent inhibition of

fibrinolysis through a HIF-induced method

Sanagawa et al., 2016

SLC2A1 Solute carrier family 2

member 1

Facilitative glucose transporter Provide the primary motivation for the metabolism

reprograming

Nagarajan et al., 2017

STC2 Stanniocalcin 2 A human glycoprotein hormone Responsible for the balance of calcium and phosphorus Wang et al., 2019

demethylase or lysyl oxidase to target histones, overexpression
of JDJM6 was related to the poor OS in HCC by modulating
RNA splicing (Wan et al., 2019). Significantly, under the hypoxic

state, increase in SERPINE1 could lead to the thrombosis and
consequent inhibition of fibrinolysis through an HIF-induced
method (Sanagawa et al., 2016), which supplemented another
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aspect reflecting the liver function and coagulation function.
Moreover, a gene for modern detection and diagnosis of HCC,
GPC3, was taken into consideration as a marker in liver
biopsies. GPC3 was a cell surface heparan sulfate proteoglycan
that could enhance HCC cell migration via upregulating the
expression under hypoxia states and interact with epithelial–
mesenchymal transition-associated targets (Meng et al., 2021).
Surprisingly, a glycosylated peptide hormone responsible for
the balance of calcium and phosphorus, STC2, was found to
have an impact on proliferation, migration, and association
with poor outcomes in HCC (Wang et al., 2019). STC2 and
SLC2A1 were both involved in biological behaviors of many
cancers, especially in HCC, through the modulation of mTOR
signaling pathways (Wei et al., 2017; Wu et al., 2017). Also,
one of the reasons for understanding this reprogramming of
metabolismwas the realization of the PI3K/AKT/mTOR complex
1 signaling pathway that was frequently activated in cancer
cells (Hay, 2016). Consistently, our findings of GSEA also
indicated the participation of the mTOR signaling pathway and
further detected the involvement of DNA repair and glycolysis
in HCC.

To date, several studies have revealed the role of gene
signature in predicting survival outcomes of HCC. Specifically,
Wang et al. (2020) identified a five immune-related gene
signature, Liu et al. (2020) developed a four-gene metabolic
signature, and Xu et al. (2021) generated an eight autophagy-
related gene signature. However, our eight-HRG signature
had a higher AUC in survival prediction than the above
three gene signatures. On the other hand, we generated a
nomogram incorporating the TNM stage and hypoxia gene
signature to predict individuals’ prognosis. In accordance with
previous results (Ouyang et al., 2020; Zhang et al., 2020),
the combination of the gene signature and TNM staging
system achieved the better prognostic prediction performance
than using clinical or genetic features alone in HCC, which
might facilitate selection of individualized management in the
clinical setting. Recently, Zhang et al. (2020) also developed
a prognostic model based on three hypoxia gene signatures
and further constructed a nomogram predicting OS for HCC
patients, and the AUCs of 1- and 3 year-OS were 0.672 and
0.684, respectively. In addition, the AUC values of nomogram
integrating autophagy-related signature, cirrhosis, and tumor
size in predicting 3-year OS of HCC were 0.638 (Fang and Chen,
2020). At the expense of the acquisition of the expression of
more genes in tumor tissues, our nomogram had an excellent
performance in predicting survival of HCC patients. There
was no doubt that requirement of more gene expression levels
complicated the clinical application of the predictive models.
However, as the advancement of molecular detection, the
nomogram based on gene signature may be routinely applied in
the future.

Altogether, we identified eight HRGs and integrated them
into a gene signature. This signature could stratify patients
into different risk groups in clinical assessment through the
gene expression levels, which provided a potential option
for personalized treatments. Moreover, a nomogram based
on the combination of the gene signature derived from the

mRNA expression of eight genes and conventional TNM
stage showed a good performance in predicting survival
outcomes of HCC patients. According to the nomogram, the
total point could be calculated for each patient. Then, the
specific 1-, 2-, and 3-year OS could be concluded based
on the corresponding point, which may assist physicians to
predict prognosis of HCC patients and determine individual
treatment options for different patients. Nevertheless, there are
some limitations to this study. First, the functions of these
genes and the underlying mechanisms need to be further
analyzed and verified by experiments. Second, our findings are
based on public datasets, which needs further validation in a
prospective study.

CONCLUSIONS

The present study established a prognostic gene signature of
eight HRGs, which was proven to be valuable in reflecting
risk classification and might provide therapeutic targets
for patients with HCC. A nomogram combining the
eight-HRG signature and TNM stage was developed for
1–3-year OS prediction of individual HCC patients. These
findings suggest that the eight-hypoxia gene signature may
facilitate individualized management for HCC patients in the
clinical practice.
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