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Current methods of high-throughput molecular and genomic analyses enabled to reconstruct 
thousands of human molecular pathways. Knowledge of molecular pathways structure and 
architecture taken along with the gene expression data can help interrogating the pathway 
activation levels (PALs) using different bioinformatic algorithms. In turn, the pathway activation 
profiles can characterize molecular processes, which are differentially regulated and give 
numeric characteristics of the extent of their activation or inhibition. However, different 
pathway nodes may have different functions toward overall pathway regulation, and 
calculation of PAL requires knowledge of molecular function of every node in the pathway 
in terms of its activator or inhibitory role. Thus, high-throughput annotation of functional 
roles of pathway nodes is required for the comprehensive analysis of the pathway activation 
profiles. We proposed an algorithm that identifies functional roles of the pathway components 
and applied it to annotate 3,044 human molecular pathways extracted from the Biocarta, 
Reactome, KEGG, Qiagen Pathway Central, NCI, and HumanCYC databases and including 
9,022 gene products. The resulting knowledgebase can be applied for the direct calculation 
of the PALs and establishing large scale profiles of the signaling, metabolic, and DNA repair 
pathway regulation using high throughput gene expression data. We also provide a 
bioinformatic tool for PAL data calculations using the current pathway knowledgebase.

Keywords: functional algorithmic annotation, signaling pathways, DNA repair pathways, metabolic pathways, 
transcriptomics, proteomics, human molecular pathway regulation

INTRODUCTION

Intracellular molecular pathways are specific networks of interacting molecules that are involved 
in certain molecular functions (Junaid et  al., 2020; Ma and Liao, 2020; Zheng et  al., 2020). 
Knowledge of molecular pathways regulation is important for understanding intracellular 
processes related to all major events, including cell survival, growth, differentiation, motility, 
proliferation, senescence, malignization, and death (Buzdin et  al., 2018). Molecular pathways 
are affected during organism growth and development, aging and disease progression (Parkhitko 
et  al., 2020). Current methods of large-scale molecular and genomic analyses enabled to 
catalogue thousands of human molecular pathways (Wishart et  al., 2020). In turn, high-
throughput gene expression analyses like RNA sequencing (Sorokin et  al., 2020a), expression 
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microarrays (Schulze and Downward, 2001; Shih et  al., 2005; 
Willier et  al., 2013), or modern proteomic techniques (Buzdin 
et  al., 2019) can provide adequate amounts of data to enable 
interactome-wide assessment of pathway activation.

Several popular algorithms and software like gene ontology 
(GO) analysis tools (Huang et al., 2009a,b), Metacore (Ekins et al., 
2007) and Pathway Studio (Thomas and Bonchev, 2010) can 
analyze gene expression data to identify pathways significantly 
enriched by differentially regulated genes (Dubovenko et al., 2017). 
However, those techniques cannot identify the enhanced or inhibited 
status of a pathway regulation, because pathways may have numerous 
negative feedback loops or negative regulatory nodes (Khatri et al., 
2012) and, therefore, the pathway nodes may involve both genes 
with its activating and genes with inhibitory functions (Borisov 
et  al., 2020). Thus, upregulation of an inhibitory gene means 
pathway downregulation, and vice versa (Buzdin et  al., 2018).

On the other hand, knowledge of the individual gene product 
roles within a pathway can make it readable in terms of finding 
its activation profiles. Indeed, several techniques had been 
proposed, e.g., Oncofinder (Buzdin et  al., 2014b), iPANDA 
(Ozerov et  al., 2016), and Oncobox (Borisov et  al., 2020) that 
utilize transcriptome-wide or even proteome-wide (Borisov et al., 
2017) data to calculate pathway activation levels (PALs). Those 
are the numeric characteristics that can be  used in all types of 
comparisons including biomarker investigations. Overall, PALs 
were found to be  superior cancer biomarkers compared to 
individual gene expression levels (Borisov et  al., 2014; Lezhnina 
et  al., 2014). A number of PALs were found to be  characteristic 
for cancer drug response (Zhu et  al., 2015) and sensitivity to 
X-ray irradiation (Sorokin et  al., 2018), asthma (Alexandrova 
et  al., 2016), Hutchinson-Gilford progeria (Aliper et  al., 2015), 
macular degeneration (Makarev et  al., 2014), fibrosis (Makarev 
et  al., 2016), viral infection (Buzdin et  al., 2016), and aging 
(Aliper et  al., 2016). Algorithms were developed to convert 
pathway activation data into the optimized selection of cancer 
drugs (Artemov et  al., 2015; Tkachev et  al., 2020) that had 
several recent clinical applications (Poddubskaya et  al., 2018, 
2019a,b; Sorokin et  al., 2020b). However, those studies used 
manually curated/annotated pathways and were, therefore, limited 
by the overall number (~10 or ~100) of pathways under analysis. 
Thus, it is important to annotate more pathways in a universal 
way to obtain a large-scale overview of the human interactome.

We proposed an algorithm that identifies functional roles 
of the pathway components based on the pathway topology 
and applied it here to annotate 3,044 human molecular pathways 
extracted from the Biocarta, Reactome, KEGG, NCI, and 
HumanCYC databases, collectively covering 9,022 gene products. 
The resulting knowledgebase can be  applied for the direct 
calculation of the PALs and establishing large scale profiles of 
the signaling, metabolic, and DNA repair pathway regulation 
using high throughput gene expression data.

RESULTS AND METHODS

Extraction of Molecular Pathway Data
We extracted structures of molecular pathways from the 
National Cancer Institute (NCI; Schaefer et al., 2009), Biocarta 
(Nishimura, 2001), Qiagen Pathway Central,1 HumanCyC 
(Romero et  al., 2004), Reactome (Croft et  al., 2014), and 
Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa 
et  al., 2010) databases (Table  1). For all the databases but 
Qiagen Pathway Central, the data on the pathway architecture, 
nodes and pairwise activation/inhibition interactions were 
extracted in biopax format. In the case of Qiagen Pathway 
Central database, no machine-readable format of data was 
available, and we  manually curated data from the available 
graphical pathway representations (Table  1).

In addition to the extracted full-size pathways, we  also 
generated a number of subsequent “micropathways” that were 
derivatives of the complete pathways (Figures  1A,B) 
Micropathway is a sub-graph, which contains “molecular 
function” node and nodes from all possible paths of length 
3 including terminal “molecular function” node. Many full-size 
pathways have two or more terminal branches that may have 
different functional impact(s). We, therefore, introduced 
micropathways to characterize molecular processes in more 
detail by separately analyzing different terminal branches of 
the pathways. Totally, we  processed 3,044 pathways including 
2018 full-size, or “core” pathways, and 1,026 micropathways 
that covered collectively products of 9,022 human genes (Table 1). 

1 https://www.qiagen.com/gb/resources/resourcedetail?id=5869e38a-5033-4ccb-a281- 
d869893acf4e&lang=en

TABLE 1 | Statistics of the curated pathway databases.

Database References
Number of

Data curation 
formatcore pathways all pathways unique genes

Biocarta Nishimura, 2001 198 337 1,082 Automated
Reactome Croft et al., 2014 945 945 6,105 Automated
KEGG Kanehisa et al., 2010 288 288 5,593 Automated
Qiagen Pathway Map Reference Guide–QIAGEN, 2014 57 380 2,493 Manual
NCI Schaefer et al., 2009 211 775 2,214 Automated
HumanCYC Romero et al., 2004 319 319 1,038 Automated
Total number 2,018 3,044 9,022

Number of all pathways includes core pathways and micropathways. Number of unique gene products covered by pathways from the respective database. For total number, the 
amount of unique gene products for all pathways is shown.
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Note that number of pathway nodes was smaller than the 
number of genes involved in a pathway because one node 
could correspond to several gene products.

For several pathway components alternative gene names 
were used and we  then converted all gene names according 
to the Human Genome Organization HGNC nomenclature 
(Povey et  al., 2001).

Algorithmic Annotation of Molecular 
Pathways
For most of the published PAL applications, maximum five 
types of functional roles for gene products were comprised. 
These roles, described by an Activator/Repressor Role (ARR) 
parameter can be  formulated as follows: pathway activator 
(ARR = 1), rather activator (ARR = 0.5), repressor (ARR = −1), 
rather repressor (ARR = −0.5), and gene product with uncertain 
or inconsistent role (ARR  =  0). In the previous studies, ARR 
values were obtained by manually curating pathway graphs. 
This is however not feasible for annotating thousands of 
molecular pathways. We  developed an original algorithm that 
automatically assigns ARR score values to gene products that 
participate in a molecular pathway.

The ARR annotation algorithm is based on the machine 
reading of gene product interaction graph within each pathway. 
Nodes correspond to gene products, and the ribs between 
every pair of nodes represent molecular interaction between 
the corresponding gene products. Each rib on the graph has 
a direction and is characterized by an activator or inhibitory 
nature of the molecular interaction it represents. For the correct 
calculation of ARR values, the pathway graph must be connected, 
wherein a weak connectivity is acceptable.

If the pathway molecular interaction graph meets these 
criteria, then ARR coefficients can be  algorithmically assigned 
to the participating gene products. For the biochemical pathways, 
we  put enzyme gene names on the pathway nodes, and the 
interaction ribs represented directions of the catalyzed reactions.

The algorithm used consisted of the following major steps.

i. Initialization. At this stage, a major node is algorithmically 
identified to be  the “central” node of the pathway graph 
(Figure  1C). The major node will be  used as the standard 
of pathway function with ARR  =  1. To identify the central 
node, for every pathway node (V) two parameters N and 
M are calculated where N is the number of other nodes, 
which can be  reached when moving from the node V, and 
M is the number of other nodes from which the node V 
can be  reached. N+M, therefore, is the number of other 
nodes that are directly connected with the node V. The 
central node will be  the node Vmax for which N+M reaches 
the maximum value. The central node identified is then 
assigned with ARR  =  1 value. It serves as the starting point 
for further recursive assignment of ARR values to the other 
nodes. If multiple nodes have the same maximal N+M, 
then V-node for a pathway is selected randomly among 
those “maximal” nodes. Therefore, the algorithm is suitable 
also for circular-organized pathways, where all nodes will 
have equal N+M.

ii. Recursion. For every node V, all connected nodes Pi under 
ARR annotation may have ribs either directed toward V 
(Pi  →  V) or outward V (Pi  ←  V) on the graph. During 
recursion, each rib can be  considered only once in order to 
prevent endless recursion in case of cyclic interactions on 
the graph. If the rib has an “activator” characteristic, temporary 
ARRtemp  =  1 is assigned to the node Pi. In contrast, if the 
rib has an “inhibitor” characteristic, Pi is assigned with 
ARRtemp  =  −1. Conversely, all the gene products included in 
the node Pi receive the same ARRtemp characteristics.

Let gene product GPi belongs to node Pi. If GPi was never 
previously considered in the graph traversal, ARR  =  ARRtemp(Pi) 
for the node Pi would be  assigned for GPi. In the case when 
GPi was previously considered in the graph traversal and the 
previously assigned ARR of it node is equal to the current 
ARRtemp(Pi) then ARR  =  ARRtemp would be  assigned to the node 
Pi. If GPi was previously considered in the graph traversal but 
its previously assigned ARR is not equal to ARRtemp(Pi), then 
ARR is assigned to the gene product GPi according to the 
following conflict resolution rule.

If a gene product GPi with previously specified ARR or 
ARRs is currently considered in the graph traversal but its 
previously assigned ARR(s) contradict(s) with the ARRtemp(Pi), 
then the conflict(s) should be  resolved as follows:

1. If the signs of the previous ARR coefficient(s) and ARRtemp(Pi) 
are different, then the resulting ARRfinal(Pi)  =  0;

2. If the difference between ARRtemp(Pi) and any of the previous 
ARRs(GPi) does not exceed 0.5 and at least one of the ARRs 
is positive, the resulting ARRfinal(Pi)  =  0.5;

3. If the difference between ARRtemp(Pi) and any of the previous 
ARRs(GPi) does not exceed 0.5 and at least one of the ARRs 
is negative, the resulting ARRfinal(Pi)  =  −0.5.

Then the recursion R is initiated for every node Pi all of its 
gene products starting from the nodes proximate to the central 
node V. As a result, the algorithm will assign ARR values to 
all the connected the graph nodes and the enclosed gene products.

After the recursion finalization pathway activators will 
have ARR  =  1, rather activators – ARR  =  0.5, inhibitors – 
ARR  =  −1, rather inhibitors – ARR  =  −0.5, and genes with 
inconsistent role – ARR  =  0. The recursion is stopped when 
a vertex with 0, 0.5, or −0.5 ARR is encountered during 
the traversal of the graph. This rule is needed because 
otherwise all vertices will have ARR 0, 0.5, or −0.5  in case 
of the only one ARR inconsistency found. However, this 
rule also may lead to exclusion of some genes described 
in the original source.

Therefore, the gene products included in the molecular 
pathway database will have the assigned ARR values representing 
their functional significances in the given molecular pathway. 
These values can be  used for further calculations of the PALs 
according to any algorithm of PAL calculation.

Annotated Pathways Knowledgebase
We report here an ARR-curated database of 3,044 molecular 
pathways including 2,018 core pathways and 1,026 micropathways 
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(Supplementary Dataset 1). The current pathway name reflects 
its source database and its name in the source database. For 
every pathway, there is a separate .csv file including the following 
three worksheets: (i) genes, (ii) edges, and (iii) nodes. The 
worksheet (i) genes include gene names according to HUGO 
Gene Nomenclature Committee (HGNC) nomenclature and 
the corresponding ARRs for the gene products participating 
in the pathway under consideration. The worksheet (ii) edges 
include information about molecular interactions between every 
pair of the interacting pathway nodes. Every node is defined 
by the names of gene products or physiological outcome(s) 
that form this node. The interaction type is specified as 
“activation,” “inhibition,” or “undefined,” where appropriate. The 
worksheet (iii) nodes include node names and gene names 
corresponding to every node on the pathway graph.

It should be  noted that annotation of similar pathways may 
be  different between the source databases. For example, EGFR 
signaling pathway is presented in Qiagen database as “EGF_ 
Pathway,” in Reactome as “reactome_Signaling_by_EGFR_Main_ 
Pathway” and in Biocarta as “biocarta_egf_signaling_Main_Pathway.”  

Yet conceptually similar, all three pathways have different gene 
and edge compositions. In this study, we  did not aim to identify 
inconsistences between different source databases and annotated 
all the pathways under their original names.

We made freely accessible software for PAL calculation 
using the annotated pathway database accessible following the 
link: https://pypi.org/project/oncoboxlib/. Algorithm is 
implemented as a Python library. It takes normalized (by 
DESeq2, quantile normalization or other) gene expression data 
as an input. Gene symbols should be  provided in HGNC 
format accessible through the web-site genenames.org. At least 
two groups of samples are required: cases and controls, each 
group represented by at least one sample. Sample names should 
contain “Norm_” (for controls) or “Tumour_” (for cases). 
Output will contain PAL values for each pathway in each 
sample. All annotated pathway datasets mentioned in this 
paper alternatively can be  downloaded and used for PAL 
calculation using the same link.2

2 https://pypi.org/project/oncoboxlib/

A

C

B

FIGURE 1 | (A) Growth Hormone Signaling Pathway with highlighted Glucose Uptake micropathway. (B) Glucose Uptake micropathway obtained from Growth 
Hormone Signaling Pathway. (C) N+M values for all vertices of Growth Hormone Signaling Pathway graph. The vertices with maximal N+M values are highlighted in 
blue, these vertices are equal major node candidates and get Activator/Repressor Role (ARR) = 1. Different edge colors indicate edge attribute: green is for 
“activation,” red is for “inhibition.” Structure of the Growth Hormone Signaling Pathway is derived from Qiagen Pathway Central. Yellow vertices on panel 1A indicate 
micropathway Glucose Uptake within Growth Hormone Signaling Pathway.
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We also provide here an example of PAL calculation for 
real-world data. We extracted gene expression data for gastric 
cancer samples (n  =  16; Sorokin et  al., 2020b) together 
with gene expression profiles of healthy stomach (n  =  7) 
samples of patients who died in road accidents (Suntsova 
et  al., 2019), that were sequenced using the same equipment 
and protocols. Cancerous samples were marked as “Tumour_” 
and normal samples – as “Norm_.” Then we  calculated PAL 
values (3,044 for each sample) for all molecular profiles 
using the above software, which produced an output file 
“pal.csv” (Supplementary Dataset 1).

DISCUSSION

We propose here the recursive algorithm for functional 
annotation of the molecular pathway nodes, and its application 
to annotation of 3,044 human molecular pathways, including 
signaling, metabolic, and DNA repair pathways extracted from 

six major pathway hubs (Table 1). The ARR-annotated pathways 
can be  used for further calculations of PALs using high-
throughput gene expression data, e.g., RNA sequencing or 
proteomic profiles (Buzdin et  al., 2018; Figure  2). To this 
end, several previously published bioinformatic methods can 
be employed (Buzdin et al., 2014a; Ozerov et al., 2016; Borisov 
et  al., 2020), and the PAL values returned can be  applied 
for a variety of applications including fundamental research 
(Pasteuning-Vuhman et  al., 2017), drug development (Aliper 
et  al., 2017a; Ravi et  al., 2018; Bakula et  al., 2019), and 
personalized medicine (Poddubskaya et  al., 2019a; Moisseev 
et  al., 2020). Technically, PAL values can be  used as the 
next-generation molecular biomarkers (Aliper et  al., 2017b; 
Borisov et al., 2017; Sorokin et al., 2020c) or as the substrates 
for various machine learning applications (Borisov et al., 2018; 
Tkachev et  al., 2018).

The proposed algorithm is suitable for the analysis of pathways 
with already established gene content and known topology of its 
molecular components. The algorithm can be  used for agnostic 

FIGURE 2 | Node activation of Growth Hormone Signaling Pathway for gastric cancer sample GC.11_S19_R1_001 from Sorokin et al. (2020b). Node activation is 
a sum of logarithmic case-to-norm ratio (CNR) for all genes in the node. CNR is ratio of expression levels in tumor sample and averaged normal sample. The RNA 
sequencing tumor profile (gastric cancer) was obtained from Sorokin et al. (2020b). The RNA sequencing profiles of normal gastric tissue were obtained from 
Oncobox Atlas of Normal Tissue Expression (ANTE) data (Suntsova et al., 2019). Different edge colors indicate edge attribute: green is for “activation,” red is for 
“inhibition.” Structure of the Growth Hormone Signaling Pathway is derived from Qiagen Pathway Central.

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Sorokin et al. Functional Algorithmic Molecular Pathway Annotation

Frontiers in Genetics | www.frontiersin.org 6 February 2021 | Volume 12 | Article 617059

objective characterization of interacting gene networks. The 
underlying rationale allows reducing operator’s errors and subjectivity 
in annotating the molecular roles of pathway components, which 
are inevitable in case of manual curation of the pathway graphs 
including hundreds of nodes. Another advantage is the pathway-
centric approach during annotation, when gene product role in 
one pathway can be  different from its role in another pathway.

The major limitations deal with the algorithm applicability 
only for the tasks of further calculations of pathway activation 
scores/ranks. Such an approach also does not address the issue 
of crosstalk between different molecular pathways, because all 
pathways are analyzed separately.

In this study, we annotated a collection of previously published 
human molecular pathways (Supplementary Dataset 1). We plan 
to update the current human knowledgebase annually with 
new releases of already included datasets and addition of new 
pathway collections, e.g., recently published by Wishart et  al. 
(2020). However, the method proposed here can be  used to 
characterize any new set of molecular pathways with the 
connectivity and pairwise nodes activation/inhibition information 
not only for the human interactome, but also for the other 
biological objects under investigation.
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