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Networks are powerful tools to represent and investigate biological systems. The
development of algorithms inferring regulatory interactions from functional genomics
data has been an active area of research. With the advent of single-cell RNA-seq data
(scRNA-seq), numerous methods specifically designed to take advantage of single-
cell datasets have been proposed. However, published benchmarks on single-cell
network inference are mostly based on simulated data. Once applied to real data,
these benchmarks take into account only a small set of genes and only compare
the inferred networks with an imposed ground-truth. Here, we benchmark six single-
cell network inference methods based on their reproducibility, i.e., their ability to infer
similar networks when applied to two independent datasets for the same biological
condition. We tested each of these methods on real data from three biological
conditions: human retina, T-cells in colorectal cancer, and human hematopoiesis. Once
taking into account networks with up to 100,000 links, GENIE3 results to be the
most reproducible algorithm and, together with GRNBoost2, show higher intersection
with ground-truth biological interactions. These results are independent from the
single-cell sequencing platform, the cell type annotation system and the number of
cells constituting the dataset. Finally, GRNBoost2 and CLR show more reproducible
performance once a more stringent thresholding is applied to the networks (1,000–
100 links). In order to ensure the reproducibility and ease extensions of this benchmark
study, we implemented all the analyses in scNET, a Jupyter notebook available at
https://github.com/ComputationalSystemsBiology/scNET.

Keywords: biological networks, scRNA-seq, single-cell, transcriptome, network inference, network theory,
reproducibility

INTRODUCTION

Biological systems are inherently complex, in particular because of the emergent phenotypic
properties arising from the interaction of their numerous molecular components. Characterizing
genotype to phenotype connections and pathological deregulations thus requires to identify the
biological macromolecules involved (e.g., genes, mRNAs, proteins), but also how these interact in a
huge diversity of cellular pathways and networks (Barabási and Oltvai, 2004).

In the post-genomic era, biological networks have been extensively exploited to investigate
such complex interactions among biological macromolecules (Barabási et al., 2011;
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Sonawane et al., 2019; Silverman et al., 2020). Network-based
studies brought crucial insights into cell functioning and diseases
(Basso et al., 2005; Margolin et al., 2006; Ideker and Sharan,
2008). A network is a graph-based representation of a biological
system, where the nodes represent objects of interest (e.g., genes,
mRNAs, proteins), while the edges represent relations between
these objects (e.g., gene co-expression, or binding between
two proteins). Different approaches can be used to reconstruct
biological networks. Here, we focus on data-driven methods,
which infer networks from gene expression data with the help of
reverse engineering techniques (Sonawane et al., 2019).

Network inference algorithms were first proposed to
extract information from bulk gene expression data, and their
development has been an active area of research for more than
20 years (Barabási et al., 2011; The DREAM5 Consortium
et al., 2012; Verny et al., 2017; Sonawane et al., 2019; Silverman
et al., 2020). With the advent of single-cell RNA sequencing
(scRNA-seq), we started to gather transcriptomic data from
individual cells, enabling proper studies of their heterogeneity.
However, the analysis of scRNA-seq data comes with a variety
of computational challenges (e.g., small number of sequencing
reads, systematic noise due to the stochasticity of gene expression
at single-cell level, dropouts) that distinguish this data type from
its bulk counterpart. For this reason, network inference methods
originally developed for bulk gene expression data may not be
suitable for data generated from single cells. The development
of network inference algorithms has thus recently undergone a
strong shift towards the design of methods targeting single-cell
data (Fiers et al., 2018).

Two benchmarks of single-cell network inference methods
have been published (Chen and Mar, 2018; Pratapa et al., 2020).
Both works evaluate network inference algorithms by comparing
the inferred network with a ground-truth. These works are
also mostly focused on simulated data and they apply a strong
filtering on genes (leaving only 100–1,000 genes for network
inference). Chen and Mar (2018) considered five methods
targeting bulk data and three methods specifically designed for
single-cell data. More recently, Pratapa et al. (2020) focused
on 12 methods designed for single-cell data. Both benchmarks
concluded that the overall performances of all methods were
quite disappointing, and that network inference remains a
challenging problem.

Here, we evaluate network inference algorithms based on
their reproducibility, i.e., their ability to infer similar networks
once applied to two independent datasets for the same biological
condition (e.g., two independent scRNA-seq datasets obtained
from colorectal tumors). The rationale behind this comparison
is that, if the two independent datasets are profiled from
the same biological condition (e.g., colorectal cancer, CRC)
involving the same cell types, we can expect that the regulatory
programs underlying them should strongly overlap. As a
consequence, a good network inference algorithm should infer
highly overlapping networks when applied to single-cell datasets
profiled from the same biological condition. We selected six
algorithms spanning the main network inference formulations
that do not require an ordering of the cells according to pseudo-
time, and we tested the reproducibility of the inferred networks

in three biological systems: human retina, T-cells in CRC and
human hematopoiesis. Differently from previous benchmarks, we
only applied a soft filtering on genes, thus testing the algorithms
based on their performances to infer networks involving from
6,000 to 12,000 nodes/genes.

From our benchmark, once an high number of links
is taken into account (100,000), GEne Network Inference
with Ensemble of Trees (GENIE3) results to be the most
reproducible algorithm and, together with GRNBoost2, show the
highest intersection with ground-truth biological interactions.
GRNBoost2 and Context Likelihood of Relatedness (CLR) have
instead better performances for low link numbers (1,000–100).
In order to ensure the reproducibility and ease extensions of
this benchmark study, we implemented all the analyses in a
Jupyter notebook, called scNET and available at https://github.
com/ComputationalSystemsBiology/scNET.

MATERIALS AND METHODS

Benchmarked Single-Cell Network
Inference Algorithms
Starting from the exhaustive collection of single-cell network
inference algorithms presented in Chen and Mar (2018) and
Pratapa et al. (2020), two main categories of methods can
be distinguished. Some methods interpret scRNA-seq as time-
course expression data, where the pseudo-time corresponds to
the time information. These methods are frequently based on
Ordinary Differential Equations (ODEs) and are relevant for
biological systems undergoing dynamic transcriptional changes
(e.g., scRNA-Seq performed on differentiating cells) (Matsumoto
et al., 2017). In contrast, other methods do not use pseudo-
time information to infer networks. These methods generally
use statistical measures (e.g., correlation, mutual information)
to infer regulatory connections and are thus better suited for
transcriptomic data not affected by strong dynamical processes
(e.g., retina cells in normal state).

Testing reproducibility strictly requires the availability of two
independent scRNA-seq datasets reflecting the same biological
condition and presenting as few as possible technical variations.
Indeed, the presence of technical variations due to the sequencing
or experimental procedures could drastically impact the outcome
of our comparison. In this respect, finding independent
scRNA-seq datasets reflecting dynamic transcriptional changes,
generated with the same experimental procedure, is really
challenging. We thus decided to focus our benchmark study
on network inference methods that do not use the pseudo-
time information. In addition, only algorithms provided in
R or Python code are here taken into account. Six single-
cell network inference methods are thus considered in this
evaluation: GENIE3 (Huynh-Thu et al., 2010), GRNBoost2
(Moerman et al., 2019), PPCOR (Kim, 2015), Partial Information
Decomposition and Context (PIDC; Chan et al., 2017), CLR
(Faith et al., 2007), and GeneNet (Opgen-Rhein and Strimmer,
2007). All the methods selected for this benchmark were
originally designed for bulk data and they span the main
mathematical formulations of network inference, as described
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in The DREAM5 Consortium et al. (2012). Of note, GENIE3,
GRNBoost2 and PIDC are also the best performing in the single-
cell benchmark of Pratapa et al. (2020).

GEne Network Inference with Ensemble of Trees (Huynh-
Thu et al., 2010) is a tree-based network inference method.
For each gene gi in the expression dataset, GENIE3 solves
a regression problem, determining the subset of genes whose
expression is the most predictive of the expression of gi. This
method was the best performing algorithm in the DREAM4 In
Silico Multifactorial challenge (Greenfield et al., 2010). GENIE3
requires in input the scRNA-seq expression matrix and a list
of Transcription Factors (TFs). In our tests the list of human
TFs provided in input corresponds to the intersection between
the expressed genes and those annotated as encoding TFs by
Chawla et al. (2013). The output of GENIE3 is a weighted
network linking TFs with predicted target genes. The weight
associated with each link corresponds to its Importance Measure
(IM), which represents the weight that the TF has in the
prediction of the level of expression of the target gene. We run
GENIE3 from the Arboreto library (Moerman et al., 2019) using
default parameters.

GRNBoost2 (Moerman et al., 2019) has been developed
as a faster alternative to GENIE3. It is thus based on a
regression model, using a stochastic gradient boosting machine
regression. The inputs and outputs of GRNBoost2 have the same
structure of those of GENIE3. Both GRNBoost2 and GENIE3
are part of the SCENIC workflow (Aibar et al., 2017). We run
GRNBoost2 from the Arboreto library (Moerman et al., 2019)
using default parameters.

PPCOR (Kim, 2015) infers the presence of a regulatory
interaction between two genes by computing the correlation of
their expression patterns. To control for possible indirect effects,
partial correlation is used instead of a simple correlation, where
partial correlation is a measure of the relationship between two
variables while controlling for the effect of other variables. The
only input of PPCOR is the expression matrix. The output of
PPCOR is a weighted network, where all links are weighted based
on the partial correlation between the expression values of the
linked nodes/genes.

Partial Information Decomposition and Context (Chan et al.,
2017) is based on concepts from information theory and uses
partial information decomposition (PID) to identify potential
regulatory relationships between genes. The only input of PIDC
is the expression matrix and its output is a weighted gene-
gene network.

Context Likelihood of Relatedness (Faith et al., 2007) is
another commonly used approach based on concepts from
information theory. The measure used by CLR to infer links
in between genes is Mutual Information (MI). In contrast
with other algorithms also based on MI, such as ARACNE
(Margolin et al., 2006), CLR adjusts the link weights for the
background distribution of the MI values to control for false
positives interactions.

GeneNet (Opgen-Rhein and Strimmer, 2007) is a method
for statistical learning of a high-dimensional causal network.
The method first converts a correlation network into a partial
correlation graph. Subsequently, a partial ordering of the nodes

is established by multiple testing of the log-ratio of standardized
partial variances.

To make the different network inference algorithms
comparable, we applied the same thresholding to all of them,
by keeping only the top K links (K = 100,000). For GeneNet,
inferring less than 100,000 links, no filtering has been applied.

Data Acquisition and Preprocessing
Fourteen public scRNA-seq datasets have been used for this
benchmark (Table 1): Lukowski et al. (2019) and Menon et al.
(2019) obtained by profiling human retina cells; Li et al. (2017)
and Zhang et al. (2019) profiling T-cells in CRC; Hay et al.
(2018) and Setty et al. (2019) profiling human hematopoiesis cells.
See Table 1 for a complete description of these datasets. The
hematopoiesis datasets were split according to their cell type of
origin. Only those cell types reported in both studies by Hay et al.
(2018) and Setty et al. (2019) were considered. We thus obtained
a total of 10 scRNA-seq datasets in hematopoiesis spanning five
cell types: HSC, CLP, Monocyte, Erythroblast, and Dendritic Cell.

After downloading the data, we filtered the genes based on
their total count number (<3 × 0.01 × number of cells), as
well as on the number of cells in which they are detected
(>0.01 × number of cells), as described in Aibar et al. (2017).
The gene filtering is performed on each dataset independently.
Then, for each biological condition (CRC T-cells, retina, and
hematopoiesis), only the genes retained for both datasets were
selected for network inference. The number of genes retained
after filtering are reported in the last column of Table 1. Finally,
the data were log2-normalized before applying the different
network inference algorithms.

Indexes Employed to Measure the
Reproducibility of the Network Inference
Algorithms
Percentage of intersection (perINT) and Weighted Jaccard
Similarity (WJS) have been employed here to assess the
reproducibility of the network inference algorithms. The
percentage of intersection is used to detect the presence of links
shared between two compared networks, while WJS takes into
account the similarity of the weights associated with the links
shared between the compared networks.

Given two networks N1 and N2 inferred respectively from
scRNAseq datasets D1 and D2, and indicating as |N| the number
of links in the network N, the perINT is computed as:

perINT (N1, N2) =
|N1 ∩ N2|

min (|N1| , |N2|)
,

while the WJS (Tantardini et al., 2019), is defined as

WJS (N1, N2) =

∑|N|
i =1 min

(
w1

i , w2
j

)
∑|N|

i =1 max
(

w1
i , w2

j

) ,

where w1, w2 are the vectors of weights associated with the links
in common between N1 and N2.

In addition, to compare the inferred links to a ground-
truth, we considered two additional scores: RcisTarget and
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TABLE 1 | Datasets employed in this benchmark.

Data Biological Sequencing Number of Cell type Associated Number of genes

Name context technology cells annotation strategy publication after preprocessing

Menon Human retina 10X Genomics 20,091 Manually curated
marker genes

Menon et al., 2019 6,212

Lukowski Human retina 10X Genomics 20,009 No annotation Lukowski et al., 2019 6,212

Zhang CRC T-cells Smart-Seq2, 10,805 FACS sorted Zhang et al., 2019 11,242

Li CRC T-cells HiSeq 2000
Illumina

375 cells (of which
35 T-cells)

Manually curated
marker genes

Li et al., 2017 11,242

Hay human hematopoiesis 10X Genomics 101,935 MarkerFinder ICGS Hay et al., 2018 7,038

Setty human hematopoiesis 10X Genomics 12,046 Sorted bulk
hematopoietic
populations

Setty et al., 2019 7,038

Regulatory Circuit scores. We derived the RcisTarget score from
the application of the RcisTarget tool (Aerts et al., 2010; Aibar
et al., 2017). Given a network of TF-gene interaction, RcisTarget
predicts candidate target genes of a TF by looking at the DNA
motifs that are significantly over-represented in the surroundings
of the Transcription Start Site (TSS) of all the genes that are linked
to the TF. We here consider the links validated by RcisTarget as
ground-truth and we compare them with the inferred networks,
by computing:

RcisTargetScore (N1) =
NumberLinks ∈ N1 ∩ ValidatedByRcisTarget

|N1|

In the case of the methods inferring links between all genes,
a selection of links connecting TFs with possible target genes is
performed before computing the RcisTaget score.

The Regulatory Circuits score instead is obtained
by computing the intersection between an inferred
network and tissue-specific regulatory circuits from
http://www.regulatorycircuits.org (Marbach et al., 2016).
The regulatory circuits considered are the following: adult retina
for retina, lymphocytes for CRC T-cells and CD34 stem cell
derived for hematopoiesis. We here computed the Regulatory
Circuits score for a network N1 as:

RegulatoryCircuitScore (N1) =

∣∣N1 ∩ AssociatedRegulatoryCircuits
∣∣

|N1|

RESULTS

Based on previous works (Chen and Mar, 2018; Pratapa et al.,
2020), we selected the six single-cell network inference algorithms
that do not require an ordering of the cells according to pseudo-
time (GENIE3, GRNBoost2, PPCOR, PIDC, CLR and GeneNet
see section “Materials and Methods”) and we evaluated them
based on their reproducibility, i.e., their ability to infer similar
networks once applied to two independent datasets from the
same biological condition (e.g., two independent scRNA-seq
datasets of CRC). The reproducibility is measured based on the
perINT and WJS indexes (see section “Materials and Methods”).
In addition, we computed the intersection with two instances of

ground-truth, based on the RcisTarget and on Regulatory Circuits
scores (see section “Materials and Methods”). The evaluation
is repeated across three biological conditions: human retina,
T-cells in CRC and human hematopoiesis, for a total of 14
independent scRNAseq datasets. See Figure 1 for an overview of
the benchmark workflow.

While in previous benchmarks (Chen and Mar, 2018; Pratapa
et al., 2020), a low number of highly variable genes had been
taken into account (100–1,000 genes), we here tested the ability
of the algorithms to infer networks involving all expressed genes
(see section “Materials and Methods” for details on the procedure
used to filter genes). Indeed, filtering only the top 100–1,000
varying genes is a strong limitation. Restricting the nodes of the
inferred network to a low number of genes is reasonable when a
manually curated list of relevant genes is available (for example
marker genes identified by wet-lab experiments). However, when
such a list is not available, working only with the top 100–1,000
varying genes may overlook genes and interactions playing a key
role in the regulatory programs of the biological system. We thus
tested the various network inference algorithms once applied to
scRNAseq datasets containing 6,000–11,000 genes.

In our test cases, PIDC failed to reconstruct networks for
two main reasons: (i) the algorithms was slow, especially in the
discretization step required to infer a network and (ii) the use
of multivariate information measures impose to have a number
of genes much lower than the number of cells, thus requiring to
drastically filter out the starting set of genes. Overall, PIDC thus
resulted to be more adequate to infer small networks (100–1,000
nodes/genes), which are not the focus of this work.

Reproducibility in Human Retina
We applied GENIE3, GRNBoost2, PPCOR, CLR, and GeneNet to
two independent scRNA-seq datasets of human retina, reported
in Menon et al. (2019) and Lukowski et al. (2019) (see section
“Materials and Methods”). After filtering, the two datasets span
6,212 common genes across a comparable number of cells: 20,091
in Menon versus 20,009 in Lukowski.

We thus inferred a total of ten networks. Details on the
number of links before and after thresholding are provided in the
Supplementary Table 1. We then evaluated the reproducibility of
each algorithm by computing the perINT and the WJS between
the networks inferred independently from the two datasets.
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FIGURE 1 | Summary of the workflow followed in this benchmark.

While perINT is intended to test the amount of common links
between the two networks, the WJS takes also into account the
similarity of the weights associated with the common links.

As shown in Figure 2A, GENIE3 (45.9% perINT and 0.28
WJS) and GRNBoost2 (41.1% perINT and 0.25 WJS) are the
algorithms showing the highest reproducibility, with GENIE3
performing slightly better. At the same time, in agreement with
the results of the previous benchmarks, the intersection with
the ground truth considered remains rather low, but higher for
GRNBoost2 (1% RcisTarget score and 4.2% Regulatory Circuits
score). Similar performances apply also for the other network
inference methods.

Reproducibility in Colorectal Cancer
T-Cells
We further tested the performances of GENIE3, GRNBoost2,
PPCOR, CLR, and GeneNet in CRC T-cells. The two datasets
used in this case are taken from Zhang et al. (2019) and Li
et al. (2017) (see section “Materials and Methods”), restricting
the last dataset to only T-cells (see section “Materials and
Methods”). After filtering, we obtained datasets composed of
11,242 common genes and a widely varying number of cells:
10,805 for Zhang, and 35 for Li.

We applied GENIE3, GRNBoost2, PPCOR, CLR and GeneNet
independently to the two datasets (for details on the number
of links before and after thresholding, refer to Supplementary
Table 1). Of note, PPCOR has been excluded from this
comparison, as it produced partial correlation values outside the
range [-1;1] for the Li et al. dataset.

After computation of the perINT and WJS (Figure 2B),
GENIE3 (3% perINT and 0.008 WJS) and GRNBoost2 (3.4%
perINT and 0.007 WJS) emerged as the best performing methods.
The reproducibility indexes are quite low in this test case,
probably due to the low number of cells present in the Li
dataset (35 cells). The RcisTarget and Regulatory Circuits scores
reflecting the intersection with a ground-truth are also quite low
for all algorithms, with GRNBoost2 showing better performances
(4% RcisTarget score and 14.6% Regulatory Circuits score).

Reproducibility in Human Hematopoiesis
Human hematopoiesis has been used as the third biological
context for the comparison of GENIE3, GRNBoost2, PPCOR,
CLR, and GeneNet. The hematopoiesis datasets were split
according to the different cell types profiled: HSC, CLP,
Monocyte, Erythroblast, and Dendritic Cell, obtaining a total of
10 scRNA-seq datasets. Networks were thus inferred on each cell
type independently with GENIE3, GRNBoost2, PPCOR, CLR,
and GeneNet, resulting in a total of 50 networks. Details on the
number of links before and after thresholding are available in
Supplementary Table 1. As for CRC T-cells, PPCOR produced
networks composed of links with partial correlation higher than
1 and/or lower than -1 for some CLPs, and Monocytes. For
this reason, we did not consider PPCOR in the reproducibility
evaluation for these cell types.

The reproducibility was then tested for each cell type using
the perINT and WJS indexes (Figures 2C,D). GENIE3 displayed
the best performances with percentages of intersection of 26–56%
and WJS at 0.13–0.37. Consistently with previous observations,
the RcisTarget and Regulatory Circuits scores remain low for
all cell types and all methods, with GRNBoost2 having slightly
better performances than GENIE3 (approx. 2–4.2% and 4–7.6%,
respectively) (Figures 2E,F).

Stability With Respect to Link
Thresholding in the Inferred Networks
In the previous experiments, the 100,000 top-ranked links have
been taken into account for all methods, except GeneNet having
less than 100,000 links (see section “Materials and Methods,”
Supplementary Table 1). Here we test to which extent our
conclusions, regarding the reproducibility of the benchmarked
methods, are stable with respect to the number (K) of links
retained in each network. We thus apply a more stringent
filtering, considering an identical number (K) of top-ranked links
of 10,000, 1,000, and 100 for all compared methods. GeneNet has
been excluded from this analysis, as the number of its inferred
links is lower than 1,000 in most of the cases. After thresholding,
the intersection between the networks inferred from independent
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FIGURE 2 | Reproducibility performances of the various network inference algorithms across the three biological contexts: human retina, colorectal cancer T-cells
and human hematopoiesis. Panels (A,B) report the Percentage of intersection (perINT), Weighted Jaccard Similarity (WJS), RcisTarget score and Regulatory Circuits
score obtained by each the benchmarked algorithm (GRNBoost2, GENIE3, PPCOR, CLR, and GeneNet) in human retina and colorectal cancer T-cells, respectively.
Panels (C–F) summarize the performances of the same algorithms on the hematopoiesis datasets, with perINT (C), WJS (D), RcisTarget score (E), and Regulatory
Circuits score (F).

datasets from the same biological condition were evaluated, using
the percINT and WJS as above.

As shown in Figure 3, the performances of the various
algorithms are quite heterogeneous once different thresholds (K)
are considered. As observed in the previous sections, GENIE3
tends to have better performances for high K. However, for low
numbers of links (K = 1,000 and 100), GRNBoost2 and CLR tend
to predominate in most of the cases.

Stability With Respect to Technical
Variations in the Input Data: Number of
Profiled Cells, Sequencing Platform, and
Cell Type Annotation
In the experiments performed above, we tested the
reproducibility of the network inference algorithms by using two

independent datasets for each biological condition (e.g., human
retina). A limitation of this approach comes from the technical
differences between the protocols followed to generate these
datasets: different sequencing platforms, different procedures
used for the annotation of the cell types, and different number of
cells. All these technical differences could impact our results.

To evaluate the stability of the results against technical
variations, we used the largest dataset, from Menon et al.
(2019), encompassing 20,091 cells. We splitted this dataset
into two subsets, keeping the proportions of the various cell
types constant. We then applied the five network inference
algorithms independently to the two subsets, and we evaluated
the reproducibility of the algorithms using perINT and WJS, as
in the previous tests. To further assess the effect of the number
of cells on network inference, we split the same scRNAseq
dataset generated by Menon et al. (2019) three times to obtain
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FIGURE 3 | perINT and WJS according to different network thresholding. The perINT and WJS are reported for varying values of the threshold K on the network
links: 100,000, 10,000, 1,000, and 100. The results are reported for all the tested datasets (A) retina, (B) CRC T-cells, (C) CLPs, (D) Dendritic cells, (E) Erythrocytes,
(F) HSCs, and (G) Monocytes.

couples of datasets encompassing decreasing numbers of cells:
10,000, 1,000, and 100. Note that for all these comparisons,
the sequencing platform and/or the method/technique used to
annotate the cells are identical for all subsets. PPCOR inferred
networks for 10,000 and 1,000 cells, but failed at 100 cells
(see Supplementary Table 2). Details on the number of links

before and after thresholding (K = 100,000) are provided in the
Supplementary Table 2.

Overall, as shown in Figure 4, GENIE 3 emerged again as the
best performing method in all cases. Of note, for low number
of cells, a general decrease in reproducibility is observed for
all network inference methods, which can be justified by a
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FIGURE 4 | Stability of the network inference performances with respect to technical variations in the input data. Reproducibility scores of GRENBoost2 (red),
GENIE3 (black) PPCOR (yellow), CLR (gray) and GeneNet (green) across different splittings of the Menon retina dataset. Panels (A,B) report the percentage of
intersection (perINT) and Weighted Jaccard Similarity (WJS), respectively.

lower accuracy in the link estimation due to the low number of
observations (cells).

The scNET Jupyter Notebook
To foster the reproducibility of all the results and figures
presented in this study, we implemented the corresponding
code in a Jupyter notebook, available on GitHub, at the url
https://github.com/ComputationalSystemsBiology/scNET,
together with a Conda package containing all the required
libraries. Importantly, scNET can be used to benchmark new
network inference algorithms based on their reproducibility, or
further test GENIE3, PPCOR, GRNBoost2, CLR, and GeneNet
on user-provided datasets.

DISCUSSION

Starting from the benchmark of Pratapa et al. (2020),
we evaluated the network inference algorithms from a
complementary perspective by assessing their reproducibility.
We were interested in assessing weither the algorithms
would infer similar networks when applied to pairs of
independent datasets from the same biological condition
(e.g., T-cells in CRC). Our benchmark focused on real
patient-derived data spanning three biological contexts:
human retina, T-cells in CRC, and human hematopoiesis
cells. We thus considered highly different biological contexts,
going from cancer tissue, to isolated healthy immune cells,
and to a mixture of normal retina cells combined in a
single dataset. Importantly, we aimed at inferring networks
involving a much higher number of genes compared
to previous works.

In agreement with previous benchmarks, all network inference
algorithms generated networks having low intersections with
ground-truth. Of note, the ground-truth considered here,
based on RcisTarget and regulatory circuits, is different
and complementary to those used in previous benchmarks.
This disappointing result might arise for different reasons,

potentially adding up. Limitations can be present in the input
data, as scRNAseq may not provide sufficient resolution for
reliable network inference, and technical and experimental
factors present in the input data might affect information
content. Turning to the inference algorithm, limitations
may arise from underlying statistical assumptions and
the documented lack of uniqueness in the solution of the
network inference problem. Finally, the ground-truth network
considered here and in previous benchmarks may not be
sufficiently comprehensive.

PPCOR provided weights outside the normal range of
correlation values ([-1,1]) for datasets having less than
1,000 cells. Such inconsistencies are likely due to numerical
problems arising when the input dataset encompasses
many more genes than cells. PIDC was the algorithm that
suffered the most when applied to high numbers of genes.
Overall, for high link numbers (K = 100,000), GENIE3
consistently generated the most reproducible results across
all the three biological contexts considered. Furthermore,
its performances proved to be stable with respect to the
single-cell sequencing platform, the cell type annotation
system and the number of cells considered. Once a more
stringent filtering is considered (K = 1,000 or 100), CLR
and GRNBoost2 show better performances. However,
even the best performing methods show reproducibility
scores that are less than ideal (26–54% perINT and
0.1–0.3 WJS), indicating that further improvements are
still needed in the design of network inference methods
for scRNA-seq data.

We considered network inference methods that are highly
heterogeneous. Some algorithms, as PPCOR and GeneNet, infer
links between all possible couples of genes, while others, as
GENIE3 and GRNBoost2, only infer links between TFs and
possible target genes. We tried to make the inferred networks
comparable by fixing the number of links in all networks to
a certain value K, thus obtaining networks with the same
density. However, in principle, methods inferring only TF-
target links should have higher chances to be reproducible
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in our comparison. At the same time, once the links of
PPCOR and GeneNet are restricted to only TF-target links,
the dimension of the networks drastically decreases (sometimes
empty networks are obtained).

The main limitation of this benchmark is the number of
considered network inference algorithms. Future extensions of
this study could include pseudotime-based network inference
methods, once adequate datasets will become available. To
date, available independent datasets relevant for pseudotime-
based network inference algorithms (e.g., cells profiled during
development stimulation) present too many experimental
variations to be employed for a reliable evaluation of
reproducibility. Of note, such extensions will be greatly facilitated
by taking advantage of the Jupyter notebook (scNET) provided
as Supplementary Material.
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