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Extended phenotypes are manifestations of genes that occur outside of the organism 
that possess those genes. In spite of their widespread occurrence, the role of extended 
phenotypes in evolutionary biology is still a matter of debate. Here, we explore the indirect 
effects of extended phenotypes, especially their shared use, in the fitness of simulated 
individuals and populations. A computer simulation platform was developed in which 
different populations were compared regarding their ability to produce, use, and share 
extended phenotypes. Our results show that populations that produce and share extended 
phenotypes outrun populations that only produce them. A specific parameter in the 
simulations, a bonus for sharing extended phenotypes among conspecifics, has a more 
significant impact in defining which population will prevail. All these findings strongly 
support the view, postulated by the extended fitness hypothesis (EFH) that extended 
phenotypes play a significant role at the population level and their shared use increases 
population fitness. Our simulation platform is available at https://github.com/guilherme-
araujo/gsop-dist.
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INTRODUCTION

The main idea behind the extended phenotype (Dawkins, 1982) lies in how far a gene effect can 
reach. According to Dawkins (1982), a gene can have its effect outside of the physical body of 
the bearer with several types of consequences, including environmental ones. In that way, a gene 
extends its effect in, for example, a beaver’s dam, a spider’s web, or a bird’s nest. Although the 
examples above represent physical structures, extended phenotypes are also seen as signals (Schaedelin 
and Taborsky, 2009), social interactions (Wang et al., 2008), or manipulations of behaviors (Hoover 
et  al., 2011). Extended phenotypes are described in all taxonomic kingdoms, from viruses (Hoover 
et al., 2011) to humans (Dixson, 2019). Although the widespread existence of extended phenotypes 
is clearly established in contemporaneous evolutionary biology (reviewed in Bailey, 2012), the 
degree and intensity of its effects are still controversial (Hunter, 2009; Bailey, 2012).
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Besides the obvious effect of the extended phenotypes in 
the fitness of the organism who generated it, many authors 
have discussed their indirect genetic effects (Laland, 2004; 
Wang et  al., 2008; de Souza, 2013; Fisher et  al., 2019). One 
type of indirect genetic effect is through social interactions 
mediated by extended phenotypes (Wang et al., 2008). Extended 
phenotypes could also affect other parties’ fitness through 
niche construction, as discussed by Laland (2004). A few 
years ago, the extended fitness hypothesis (EFH) had been 
proposed, which states that extended phenotypes serve as a 
link between individual and group selection (de Souza, 2013). 
Suppose the following scenario: a spider web is abandoned 
by the individual who built it. A different spider from the 
same species can then use that web, which in turn contributes 
to the fitness of the new owner. Remarkably, the spider web 
silk can vary within the same species depending on 
environmental factors, and protein-deprived spiders produce 
silk that is more efficient at capturing preys than that produced 
by protein-fed members of the same species (conspecifics; 
Blamires et  al., 2017, 2018), resulting in “silk performance 
landscapes across nutrient space” (Blamires et  al., 2016). In 
another example, a bird’s nest shape impact on its thermal 
profile, which in turn, has been shown to influence offspring 
fitness (Olson et  al., 2006; Martin et  al., 2017). Thus, using 
an extended phenotype built by others may have greater 
advantage than simply reducing the costs associated to building 
the phenotype. However, the fitness effects of such biological 
plasticity mechanisms and their impact on individual and 
group selection are not fully understood.

The basis of the EFH is the fact that individuals can use 
extended phenotypes built by conspecifics. Thus, extended 
phenotypes possess indirect genetic effects in individuals who 
can use them. Group selection emerges naturally as a 
consequence of such shared use of extended phenotypes by 
members of the same species/group. As discussed by de Souza 
(2013), there are several examples of the use of available 
extended phenotypes by conspecifics, including cases with 
spiders (Schuck-Paim and Alonso, 2001), cichlids (Schaedelin 
and Taborsky, 2009), and wasps (Brockmann et  al., 1979). 
For instance, a beaver’s dam may cause a significant 
environmental change that goes beyond the immediate ecosystem 
(Gurnell, 1998; Rosell et al., 2005). More recently, Fisher et al. 
(2019) showed that food hoards, identified as extended 
phenotypes, built by red squirrels outlived the individuals 
who built them and were subsequently used by conspecifics. 
More interestingly, different features of the food hoards, like 
size, affected the fitness of the subsequent owner. While the 
data from Fisher et  al. (2019) fit predictions made by EFH, 
such empirical models are hard to find and study. One 
alternative is the use of computer simulations to either compare 
distinct evolutionary scenarios or to study the role of a given 
parameter, in this case extended phenotypes, in the 
evolutionary process.

This led us to develop a computer simulation framework 
to test some premises of the EFH. Here, we show that extended 
phenotypes can, per se, increase the fitness of individuals who 
produce them. More importantly, however, populations that 

produce and share extended phenotypes outrun populations 
that only produce them. A mathematical treatment allowed 
us to derive variables that can be  evaluated regarding their 
role in the fitness of the tested populations. A bonus linked 
to the shared use of extended phenotypes is strongly associated 
with winning populations in our simulations. All these findings 
support the view that the shared use of extended phenotypes 
is an important contributor to selection at population level. 
We  made our simulation platform available at https://github.
com/guilherme-araujo/gsop-dist.

MATERIALS AND METHODS

Simulation Steps
The simulation protocol consists of three steps: graph generation, 
main simulation, and plot/analysis. At the graph generation 
step, the type of graph, the number of nodes, and the density 
of the graph are defined (Steger and Wormwald, 1999). The 
generated graph is then read by the main simulation program, 
which accepts parameters related to the bonuses, maximum 
number of cycles, and number of samples and states in which 
each node type can transition into. Finally, the output is 
processed and the plots generated using the scripts available 
at the corresponding folder of the public repository of this 
simulation platform. All simulations were run in the High-
Performance Computing Unit of the Federal University of Rio 
Grande do Norte, consisting of 64 blade computational nodes, 
each with two 16-core Intel Xeon E5-2698v3 processors and 
128GB DDR4 RAM.

Graph Generation
Graphs were generated using the newtworkx (Hagberg et  al., 
2008) package for the Python programming language. All graphs 
in the simulation described in this paper were generated with 
the barabasi_albert_graph function of this package, with 
parameters n  =  500 and m  =  4.

Main Simulation
The algorithm for the first simulation is described as a pseudocode 
in Figure  1B. The first simulation implements the framework 
described in Figure 1A, and generates data for plotting Figure 2. 
The algorithm for the second simulation is described as a 
pseudocode in Figure  3B. The second simulation implements 
the framework described in Figure  3A, and generates data 
for plotting Figure  4.

For the first algorithm, two sets of data were generated, 
the first for the simulation where B individuals do not generate 
any extended phenotype, and the second where both types 
generate extended phenotypes, but only type A individuals 
can reuse them. These two sets of data resulted in the plots 
seen in Figure  2. The second algorithm was used to generate 
another two sets of data, which resulted in the data seen 
in Figure  4.

In the first pseudocode (Figure  3B), the nodes are first 
(line 1) load from the graph generated in the first simulation 
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step, described in “Graph generation.” In lines 2–6, nodes 
are initialized with type A or B. In lines 7–9, the extended 
phenotypes are initialized, and 50% of all individuals start 
with an extended phenotype. The verification at line 8 is 

related to the difference between the simulations that generated 
Figures 2A,B, since in the first set of data type B individuals 
do not generate extended phenotypes. Next, for each cycle 
(line 10) at each death/birth event (line 11), a random 

A

B

FIGURE 1 | Schematic view of the simulation framework and respective pseudocode. (A) All steps (1–8) of a cycle of the framework are depicted. After the initial 
setup of the network (1), random individuals are selected to die (like the gray node in 2). Its associated extended phenotype becomes available (3) and one of the 
neighbors of the same type (in this case, type A) and without an associated extended phenotype is selected to gain the available extended phenotype (4). Selection 
of a node to duplicate and occupy the position of the dead node is based on a weight matrix (5, 6), as described in the text. A new node has a chance to generate 
an extended phenotype attached to itself (7). Each extended phenotype has an expiration time (t) represented by the number in the respective squares (7, 8). Step 8 
represents the step 1 of the new cycle. For clarity, only the central node is represented with all its connections. (B) Pseudocode for the simulation framework 
described above (A).
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neighbor of the dying individual is chosen weighted according 
to its relative fitness (lines 12–13). The new individual is 
created having the same type of the chosen neighbor (lines 
14–15), and if it belongs to a type which generates extended 
phenotypes – only A in the first, and both types in the 
second simulation – it occupies the extended phenotype 
(lines 16–17). If the dying individual had an extended 
phenotype, an attempt is made to assign it to one of  
the other neighbors or a random individual in the  
population (lines 18 and 20–24). The dying individual is 
then replaced by the new one (line 19) and finally the 
extended phenotype timers are decreased and those who 
expired are removed (lines 25–26).

The second algorithm starts like the previous one (lines 
1–6), then initializes the states according to parameters defined 
by the user (lines 7–8). Then, for each death/birth event at 
each cycle (lines 9–11), a random neighbor of the dying 
individual is chosen weighted according to its relative fitness 
(lines 12–13) and a new node is created, always at the searching 

state, with no extended phenotype attached (lines 14–18).  
If the dying individual had an extended phenotype, an attempt 
is made to assign it to one of the other neighbors or a random 
individual in the population (lines 19 and 21–27). This individual 
will be  transitioned to the “using other” state (lines 23 and 
27). The dying individual is then replaced by the new one 
(line 19). Finally, all states and extended phenotype time counters 
are updated, its states transitioned and expired extended 
phenotypes removed (lines 28–37).

All simulations are provided only with the random graphs 
generated in the previous step and the parameters described 
in section “Simulation parameters.” For each of the four sets 
of data described previously, 1,000 graphs were generated, and 
5,000 samples were generated with each of the 1,000 graphs, 
resulting in 5,000,000 total samples for each x-axis data point 
of each set of data.

The sets of data for the first and second simulation, which 
generated data for Figure  2, had 15 subsets of data each, 
varying the α value for A from 0.0 to 0.15  in both simulations, 

A B

C D

FIGURE 2 | Dynamics of populations A and B according to 5 million simulations for different values of α. The blue and orange lines in (A,B) show how many 
simulations ended with the fixation of types A and B, respectively. The green line in (A,B) shows how many simulations ended without the fixation of either type, that 
is, undefined simulations. Proportions of type A and B individuals in the undefined simulations are shown in (C,D). (A) Only population A is able to produce and 
share extended phenotypes. (B) Both populations can produce extended phenotypes but only population A is able to share extended phenotypes. (C) Proportions 
of type A and B individuals for the simulations represented by the green curve shown in (A). (D) Proportion of type A and B individuals for the simulations 
represented by the green curve shown in (B).
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and for B in the second simulation. In the first simulation, 
the α value of B is fixed at 0.0. Every subset consists of 
5,000,000 samples, generated in the previously described way, 

with the intention of removing any influence a particular 
characteristic of a randomly generated graph could have had 
on the final result.

A

B

FIGURE 3 | Schematic view of the modified simulation framework and respective pseudocode. (A) Nodes of types A and B can search, produce, and use its own 
or use other extended phenotypes. After the initial setup of the network (1), random individuals are selected to die (2). The associated extended phenotype becomes 
available, and one of the neighboring nodes in the Searching state is selected to gain the available extended phenotype (3, 4). Selection of a node to duplicate and 
occupy the position of the dead node is based on a weight matrix (5, 6), according to the state of each node. Node state transition and expiration time counters (t) 
are updated, and states and extended phenotypes are adjusted accordingly (7, 8). Step 8 represents step 1 of the new cycle. (B) Pseudocode for the simulation 
framework described above (A).
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The third set of data, which resulted in Figure  4A, varied 
the values of α and γ for A, in order to change the values 
of ω for the population of type A individuals, such that ωA 
divided by ωB varies from 0.25 to 4, resulting in the plotted 
log values seen on the x-axis of Figure  4A. The 13 subsets 
of data generated each point in the x-axis scale of this figure.

The fourth set of data resulted in Figure  4B. The α and γ 
values for A and B were set between 0.01 and 0.09, as seen 
on the label of the x-axis of Figure 4B in all five subsets of data.

Plot and Analysis
The plots were generated using the data sets previously described. 
Figures  2A–D, were generated from the data produced by the 
first and second simulations, respectively, both based on the 
first simulation framework. Figures 4A,B depict the data generated 
from the latter data sets, produced by the simulation configured 
according to the second simulation framework. All plots were 

generated using the matplotlib (Hunter, 2007) package for the 
Python programming language.

Simulation Parameters
Parameters for each simulation and the scripts used to generate 
them – those who resulted in Figures  2, 4 – are available at 
the public repository of this simulation platform. Below there 
is a brief description of each parameter from the main 
simulation program.

 1. Samples – number of full simulations to be  run with the 
currently loaded graph. The used value was 5,000 for 
all simulations.

 2. Cycles – Simulation cycle limit. The simulation is considered 
undefined if it ends without fixation of either type A or B.

 3. α values for types A and B.

A

B

FIGURE 4 | Association between ω and winning populations. Y axis in both graphs represents the average fixation % in the corresponding simulations. 

(A) Association between ω and winning populations (those with higher fixation rate). For this simulation, 0.03b =  and 0.02g =  for both populations. (B) In this 

simulation, both α and γ are changed under the restriction that A Bw w=  Populations with g a>  are winners in situations where .A Bw w=  Values in the first line in 

the X axis correspond to Aa  and Bg . Values in the second line of the X axis correspond to Ba  and Ag .
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 4. β values for types A and B. If set to −1, this node type 
will not transition into “producing” state. The values are 
set to −1  in the simulations based on the first framework.

 5. γ values for types A and B. If set to −1, this node type 
will not reuse abandoned extended phenotypes. This is the 
case for type B individuals on the sets of simulations based 
on the first framework.

 6. Percentage of nodes at each state at the beginning of the 
simulation. For the simulations based on the framework 
described by Figure  1, only “with” or “without” extended 
phenotype states are available. This is achieved by setting 
percentages for “producing” and “using other” to zero.

 7. Extended phenotype time. After generation, an extended 
phenotype will last a number of cycles before it expires. 
This time counter continues even after the extended phenotype 
is reused. If it has, for example, 10  cycles remaining when 
its original occupier dies, it will still have 10  cycles left 
whether it is reused or not. All simulations in this work 
had this parameter set to 30  cycles.

 8. State time. For the simulations based on the framework 
described by Figure  3, states “searching” and “producing” 
last for a certain number of cycles before transitioning. The 
other two states, “using” and “using shared,” depend on 
the extended phenotype time. All simulations based on the 
second framework had it set to 30  cycles.

 9. Extended phenotype birth generation chance. This parameter 
is relevant for simulations based on the framework described 
by Figure  1. It defines the chance of a new node having 
an extended phenotype attached to it, and was set to 50% 
on those simulations. On simulations based on the framework 
described by Figure  3, it is set to zero, since in these 
simulations, the extended phenotypes are generated by nodes 
transitioning from the “producing” state, instead of at birth.

See Supplementary Material for a more detailed description 
of the values passed to each parameter at each simulation set.

RESULTS

Simulation Framework
An established approach for modeling the evolution of 
populations is the Moran Process (Moran, 1958). It is a simple 
stochastic model used to describe finite populations and can 
be  used to simulate events, such as mutation and genetic drift 
by describing the probabilistic dynamics in a population 
containing two alleles, one of which can ultimately dominate 
the population. More recently, random scale-free graphs have 
been used to adapt the Moran Process to a more friendly 
simulation framework (Lieberman et  al., 2005). These graphs 
share many characteristics of naturally occurring populations, 
such as in natural and artificial networks of relationships 
(Barabási and Albert, 1999). Therefore, it is suitable for modeling 
a generic population providing the conditions to test the EFH.

Thus, a population of individuals was modeled under the 
Barabási-Albert network model. This model generates a random 
graph that follows a power-law distribution of node degree, 

favoring the formation of clusters of highly connected nodes. 
The network grows according to preferential attachment, where 
new edges are more likely to be  linked to nodes with higher 
degrees. In the original Moran Process adapted by Lieberman 
et al. (2005), all nodes begin with the same status. An individual 
of a different status is introduced into this population and by 
neutral drift or selection all other individuals can become 
bearers of the second status. This is achieved by a death-birth 
process, where an individual is randomly chosen to die, and 
in its place, a new individual is born. This individual is chosen 
based on a probability matrix calculated according to the 
neighbors of the dead node, weighted by their relative fitness, 
which translates into a numerical value representing its ability 
to reproduce. Regular nodes have relative fitness r  =  1, and 
the “mutant” individuals have a relative fitness r  =  1  +  α, 
where α is the bonus/penalty provided by the mutation.

Here, a similar model was used to evaluate the effect of 
the shared use of extended phenotypes in the fitness of a 
population (see Figure 1A for a schematic view of our simulation 
framework). We  started by generating a network with 500 
nodes (individuals) with a parameter m  =  4, which is the 
minimum number of edges for any given node. One modification 
of the Moran process implemented in the present model is 
that nodes are classified either as a type A (250 nodes) or B 
(250 nodes) since the start of the simulation. Our framework 
was designed to compare two populations composed of either 
type A or type B individuals. Here, the death-birth process 
was adapted for the extended fitness context by taking into 
consideration the production and use of extended phenotypes. 
For each set of parameters, we run 5 million simulations (first, 
1,000 random Barabási-Albert networks were designed and 
then for each one of them 5,000 simulations were run). A 
pseudocode for this first algorithm is presented as Figure  1B 
and detailed in Methods (section Main simulation).

Extended Phenotypes Increase the Fitness 
of Populations
In our first experiment, type A individuals were modeled as 
individuals who can produce and use their own extended 
phenotypes, and reuse extended phenotypes left behind by 
dead conspecifics. Type B individuals do not produce or use 
extended phenotypes. The initial setup for all executed simulations 
comprised a start ratio of 1:1 for type A and B individuals 
and a renewal rate of 4%, where at each generation 4% of 
all nodes are selected to die, and new nodes are placed in 
their locations in the graph according to the probability matrix 
explained in the previous section. The α value represents the 
bonus, the adaptive advantage of the extended phenotype, and 
was set between 0.0 and 0.15 (0.01 step) for each batch 
of simulations.

As illustrated in Figure  1, individuals of type A start with 
a 50% probability of having an extended phenotype already 
attached. Only individuals with attached extended phenotypes 
are given the bonus value in their relative fitness. Newborn 
individuals of type A have also a 50% chance of generating 
new extended phenotypes attached to themselves. When type 
A individuals leave behind an extended phenotype after death, 
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this can be  occupied by one of their type A neighbors chosen 
at random with equal chance, as long as it is not already 
occupying an extended phenotype. If there is no neighbor of 
type A or all of them already have their own extended phenotype, 
a random individual of type A with an unattached extended 
phenotype is chosen anywhere in the graph, in case such an 
individual exists. Otherwise, the extended phenotype vanishes.

Figure  2A shows the results for all 5  million simulations 
for each bonus value (see Supplementary Material for details). 
With α  =  0, both populations reach fixation at the same rate, 
as expected, with a higher number of simulations undefined. 
A simulation is classified as undefined when no fixation of 
either node type is achieved. As α increases, a higher number 
of fixations of type A occurs until almost the totality of 
experiments ends with the fixation of type A individuals. A 
plateau, close to the upper limit of 5  million simulations, is 
reached around α = 0.08. The number of undefined simulations 
also decreases, and it is also possible to observe that even in 
those simulations, there is a larger number of type A individuals 
as the bonus increases (Figure  2C). For example, at α  =  0.04, 
75% of all undefined simulations had a higher proportion of 
type A individuals.

The Reuse of Extended Phenotypes 
Increases the Fitness of Populations
While the data in Figure  2A show that production and use 
of extended phenotypes increase the fitness of populations (See 
also Supplementary Figure 2), predictions of the EFH remained 
untested, namely that selection would favor groups where 
extended phenotypes are shared between conspecifics. Some 
of the simulation parameters were thus modified to perform 
such tests. Now, both types produce extended phenotypes but 
only type A individuals are able to reuse a given extended 
phenotype when it becomes available.

As before, individuals of types A and B start with a 50% 
probability of having an extended phenotype already attached, 
and newborn individuals of both types also have a chance of 
50% of generating new extended phenotypes attached to 
themselves. The major difference between individuals of type 
A and B happens at death: type A individuals can leave behind 
an existing extended phenotype, which can be  preferentially 
occupied by one of their type A neighbors as described in 
the previous simulation. On the other hand, the death of type 
B individuals causes the vanishing of the corresponding associated 
extended phenotypes and no reuse ever happens in this case. 
To eliminate the saturation effect, the extended phenotype 
half-life is the same for both individual types.

Figure  2B shows the results with this second proposed 
simulation. The number of simulations ending with the 
fixation of A still grows with rising α values, but at a slower 
pace, given that now type B individuals also produce and 
benefit from extended phenotypes. However, the observed 
advantage of type A individuals is still dramatic, even when 
both types generate extended phenotypes with the same 
bonus values. The major difference between the two simulation 
sets seems to be the number of undefined simulations, which 
is slightly higher in the second set of simulations (Figure 2B), 

where both populations produce extended phenotypes but 
only type A individuals are able to share them. For example, 
with α  =  0.05 only 10% of all simulations in Figure  2A are 
classified as undefined while the same number is 25% in 
Figure  2B. Like in Figure  2C, the proportion of type A 
individuals in the undefined simulations shows a positive 
association with α (Figure  2D). The occupancy rate of type 
A individuals with extended phenotypes also increases, since 
now the ones abandoned by dead individuals can be occupied 
by them. This effect can be  seen in more detail in 
Supplementary Figure  2.

The Bonus Gained for Sharing Extended 
Phenotypes Has a Higher Impact in the 
Fitness of the Population
The previous simulations only considered a fitness bonus (α) 
for individuals that occupy an extended phenotype. This first, 
simple simulation can be  enhanced to include parameters 
that reflect broader effects of extended phenotypes in both 
individual and group selection: (i) the benefit of using an 
extended phenotype built by yourself (α); (ii) the cost of 
building an extended phenotype (β), and (iii) the benefit of 
using an extended phenotype built by another individual (γ). 
One could think of a cost for searching for an extended 
phenotype previously built by someone else and now available, 
but there is no evidence that such behavior exists, and these 
encounters seem fortuitous. Based on the above, it is reasonable 
to think that the shared use of extended phenotypes will 
be  favored when:
 

γ
α β−

>1
                    

[1]

However, when comparing two populations (A and B in 
our simulations), a more appropriate equation is:
                

ω α β γi i i i= −( )+
                         

[2]

where wi  is the absolute fitness of population A or B. Although 
selection parameters in equation [2] are described from the 
perspective of the individual, they are considered here at the 
population level. They represent average effects across the whole 
population. In that sense, after defining wi ,  one could estimate 
the abundance of a given phenotype using an equation like 3:
                

n g n gi+( )= ( )1 w
                          

[3]

where n(g) is the abundance of the phenotype in generation g. 
For the sake of simplicity, we  will focus on equation 2 for the 
remaining simulations.

A new simulation (schematically viewed in Figure  3A) was 
modeled to test equation [2]. The four behaviors previously 
described were translated into four states: “searching” (searching 
for an extended phenotype), “producing” (producing an extended 
phenotype), “using own” (using your own extended phenotype), 
and “using other” (using an existing extended phenotype built 
by someone else). Each of these states has a different associated 
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relative fitness value at each simulation step. The “searching” 
state describes the default behavior. The individual is neither 
using nor producing an extended phenotype and if by chance, 
it encounters an unused one, it will occupy it. This state is 
the baseline behavior, with relative fitness r = 1. If the individual 
stays in the “searching” state for a specific amount of time (a 
specific number of cycles in the simulation – see Methods), 
it will transition into a “producing” state, meaning it searched 
for some time for an unoccupied extended phenotype and 
now started producing its own. Its relative fitness will 
be  negatively affected by a β modifier since that individual 
will be  spending time and resources building its own extended 
phenotype. After a certain amount of time, a producing node 
will transition into a “using own” state. It receives an α bonus 
for occupying an extended phenotype, as in previous simulations. 
After its extended phenotype time expires, the individual returns 
to a “searching” state. The “using other” state is set to individuals 
who, similarly to the previous simulations, are using extended 
phenotypes abandoned by dead individuals. The individuals 
in the “using other” state will receive a γ bonus. A pseudocode 
for this second algorithm is presented as Figure 3B and detailed 
in Methods (section Main simulation).

We first had to evaluate whether simulation data fit equation 
(2). By varying both ωA and ωB in different simulations (by 
changing the corresponding α bonus for each population 
while keeping β and γ fixed), we  observed that there is 
indeed a strong positive association between ω and the 
winning population (the population with higher fixation rate), 
as can be  seen in Figure  4A. Although there is a strong 
association between the value of ω and the winning population, 
there are also winning populations when ω for both populations 
have the same value ( w wA B/ )=1 . This suggests that other 
parameters may have an impact on the simulation output. 
Thus, we  decided to test the effect of each variable in the 
outcome of the simulations by exploring different values for 
each variable but always keeping w wA B= . This allowed us 
to evaluate the impact of each individual parameter, especially 
α and γ. Table  1 shows all parameter values for each set 
of simulations. Our data show that β does not seem to 
affect the outcome of the simulations in terms of proportions 
of A and B (Supplementary Figure  1). This is probably 
due to the fact that the value of β is the same for both 
populations. On the other hand, the values of α and γ are 
critical in defining which population dominates the simulation. 
In all simulated scenarios, the population with a higher γ 

wins, as shown in Figure  4B, suggesting that the fitness 
gained for using an existing extended phenotype has a more 
significant impact than the fitness for using your own 
extended phenotype.

DISCUSSION

Extended phenotypes have received significant interest since 
the original concept emerged in the early 80’s (Dawkins, 1982), 
especially their indirect effects in other individuals or 
environments (Dawkins, 2004; Bailey, 2012; de Souza, 2013; 
Blamires et  al., 2018; Fisher et  al., 2019). Research in the field 
has been limited by the paucity of empirical models in which 
extended phenotypes can be  manipulated and different 
evolutionary models be compared. We have, therefore, generated 
a computer simulation platform to evaluate the effects of the 
production and shared use of extended phenotypes on the 
fitness of simulated populations. We were particularly interested 
in testing the EFH as proposed by de Souza (2013).

The platform is flexible and can be  easily adapted to study 
different real biosystems. For example, population interaction 
is structured with graphs, whose topology can be reconfigured 
to accommodate different ecological networks. Also, evolutionary 
dynamics can be  manipulated by changing the probabilities 
of encounter, interaction, production and reuse of extended 
phenotypes, and the bonus/penalty associated with each behavior. 
This flexible architecture can thus be  used to study, formulate, 
and test hypotheses in diverse areas, from plant-soil-microbial 
communities (Terhorst and Zee, 2016) to cancer evolution 
(Ewald and Swain Ewald, 2013). In fact, the extended phenotype 
hypothesis has been linked to a myriad of phenomena and 
has recently sparked interest (Hunter, 2018), partly due to 
novel computer simulations and data processing techniques. 
In this way, we  believe that our work, more than testing 
aspects of the EFH, expands the toolbox to unveil 
evolutionary dynamics.

Nevertheless, there are several issues regarding extended 
phenotypes that could be explored using our simulation platform. 
Extended phenotype plasticity and its effect on the fitness of 
individuals and populations (Blamires, 2010; Bailey, 2012; Katz 
et  al., 2017; Blamires et  al., 2018) is an example that could 
be  explored in our computational framework. Furthermore, 
the interplay between extended phenotype plasticity and other 
features, like for example dietary conditions, as observed by 
Blamires et  al. (2018) and Katz et  al. (2017) could likewise 
be  studied in the computational setup presented here.

We show that the shared use of extended phenotypes has 
a significant contribution to the absolute fitness of a given 
population. This gives support to the EFH. One interesting 
aspect of the EFH is the fact that it does not advocate mutually 
exclusive fundamental evolutionary processes. As discussed by 
de Souza (2013), the effect of EFH at the group level is a 
natural consequence of the shared use of extended phenotypes 
by conspecifics. Furthermore, this shared use of extended 
phenotypes does not involve cooperation since the two  
parties likely never met, as discussed by Fisher et  al. (2019). 

TABLE 1 | Values of ω for different values of α, β, and γ.

αA, γB; αB, γA β = 0.01 β = 0.03 β = 0.05 β = 0.07 β = 0.09

0.01; 0.08 0.08 0.06 0.04 0.02 0.00
0.02; 0.07 0.08 0.06 0.04 0.02 0.00
0.03; 0.06 0.08 0.06 0.04 0.02 0.00
0.04; 0.05 0.08 0.06 0.04 0.02 0.00
0.05; 0.04 0.08 0.06 0.04 0.02 0.00
0.06; 0.03 0.08 0.06 0.04 0.02 0.00
0.07; 0.02 0.08 0.06 0.04 0.02 0.00
0.08; 0.01 0.08 0.06 0.04 0.02 0.00
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The mathematical treatment provided here, although simple, 
allowed us to evaluate quantitatively the influence of different 
parameters in the fitness of the respective populations. In all 
scenarios tested, the shared use of extended phenotypes 
(quantified by the parameter γ) had a stronger influence on 
the fitness of the respective populations.

It is important to emphasize the assumptions and limitations 
of the strategy used in this report. There are, of course, intrinsic 
limitations derived from the simulated nature of the data. 
The different types of extended phenotypes (ranging from 
different physical structures to behaviors) bring also some 
challenges for an approach based on computational simulations. 
For example, the type of network used here (the Barabasi-
Albert graph) may be  more appropriate for some types of 
extended phenotype (like a web or a nest), while a regular 
network (where all nodes have the same degree) may be more 
appropriate for the study of the effect of a biofilm on the 
fitness of a bacterial population. Furthermore, few assumptions 
made in our simulations have the potential to affect our 
conclusions. First, no cost for searching for an existing extended 
phenotype was set in our simulations. This is a reasonable 
assumption since, to our knowledge, no such behavior has 
been described so far, and it is likely that the encounters are 
fortuitous. Furthermore, we  have not taken into consideration 
the emergence of cheaters in our system (i.e., genetic variants 
that stop producing their own extended phenotypes and only 
use extended phenotypes of other individuals), which could 
also affect the evolutionary dynamics of the corresponding 
population. de Souza (2013) has discussed this issue but a 
formal evaluation through computer simulations needs to 
be  done. Another interesting possibility, not explored here, 
is the modification of an existing extended phenotype by the 
individual who occupied it. These issues should be  explored 
in the future.
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