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Lung adenocarcinoma has entered into an era of immunotherapy with the development
of immune checkpoint inhibitors (ICIs). The identification of immune subtype is crucial
to prolonging survival in patients. The tumor microenvironment (TME) and metabolism
have a profound impact on prognosis and therapy. The majority of previous studies
focused on only one aspect, while both of them are essential to the understanding
of tumorigenesis and development. We hypothesized that lung adenocarcinoma can
be stratified into immune subgroups with alterations in the TME infiltration. We aimed
to explore the “TME-Metabolism-Risk” patterns in each subtypes and the mechanism
behind. Glycolysis and cholesterol were selected for the analysis of metabolic states
based on the first half of the study. Bioinformatic analysis was performed to investigate
the transcriptomic and clinical data integrated by three lung adenocarcinoma cohorts
(GSE30219, GSE31210, GSE37745, N = 415). The results were validated in an
independent cohort (GSE50081, N = 127). In total, 415 lung adenocarcinoma samples
were integrated and analyzed. Four major immune subtypes were indentified using
bioinformatic analysis. Subtype NC1, characterized by a high level of glycolysis,
with extremely low microenvironment cell infiltration. Subtype NC2, characterized by
the “Silence” and “Cholesterol biosynthesis Predominant” metabolic states, with a
middle degree infiltration of microenvironment cell. Subtype NC3, characterized by
the lack of “Cholesterol biosynthesis Predominant” metabolic state, with abundant
microenvironment cell infiltration. Subtype NC4, characterized by “Mixed” metabolic
state, with a relatively low microenvironment cell infiltration. Least absolute shrinkage
and selection operator (LASSO) regression and multivariate analyses were performed to
calculate the risk of each sample, and we attempted to find out the potential immune
escape mechanism in different subtypes. The result revealed that the lack of immune
cells infiltration might contribute to the immune escape in subtypes NC1 and NC4.
NC3 was characterized by the high expression of immune checkpoint molecules and
fibroblasts. NC2 had defects in activation of innate immune cells. There existed an
obviously survival advantage in subtype NC2. Gene set enrichment analysis (GSEA)
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and Gene Ontology analysis indicated that the PI3K-AKT-mTOR, TGF-β, MYC-related
pathways might be correlated with this phenomenon. In addition, some differentially
expressed genes (DEGs) were indentified in subtype NC3, which might be potential
targets for survival phenotype transformation.

Keywords: molecular subtype, tumor microenvironment, prognosis, immune escape, lung adenocarcinoma,
bioinformactics analysis, metabolism

INTRODUCTION

Lung adenocarcinoma is one of the most frequent cause
of cancer-related death with a low 5-year survival rate
(Hirsch et al., 2017; Bray et al., 2018). High rate of
invasion and metastasis are major problems in lung
adenocarcinoma. Great advancements in the treatment
of lung adenocarcinoma have been achieved in the past
few decades. Now immunotherapy, especially immune
checkpoint blockage treatment, has become an emerging
paradigm in cancer treatment, which is thought one of the
most promising modalities for cancer treatment (Herbst
et al., 2018; Saito et al., 2018). However, the efficacy of
ICIs (immune checkpoint inhibitors) varies widely between
individuals (Zaretsky et al., 2016), and the survival rate of
lung adenocarcinoma remains low. In addition, metabolic
reprogramming is an important characteristic of lung
adenocarcinoma, which can result in tumor immune evasion
and immunosuppression (Li X. et al., 2019). Therefore,
more research into immune escape mechanism and potential
therapeutic targets is required to improve the therapeutic effect of
immunotherapy and to expand the benefits to a larger population
(Mascaux et al., 2019).

The development of next generation sequencing has
deepened our understanding of cancers, and researchers have
developed various algorithms to estimate the abundance of
specific cell types (Newman et al., 2015; Becht et al., 2016;
Petitprez et al., 2018; Xiao et al., 2019). The public databases,
such as gene expression omnibus (GEO) and ImmPort,
have made it possible to explore the microenvironment and
metabolism of tumor (Bhattacharya et al., 2014; Clough
and Barrett, 2016). However, previous studies have focused
on only tumor microenvironment (TME) or tumor cell
metabolism, which might lead to an incomplete understanding
of lung adenocarcinoma (Darvin et al., 2018; Sanchez-Vega
et al., 2018; Chow et al., 2019; Havel et al., 2019; Zeng
et al., 2019), as there’s a profound relationship between
microenvironment and metabolism.

In this study, the survival, microenvironment and metabolic
state of patients with lung adenocarcinoma were analyzed
by data mining. We classified 415 lung adenocarcinoma
samples into four clusters with distinct TME-Metabolism state,
which might have differences in immune escape mechanisms
and prognosis. In addition, we found several molecules
which could be potential biomarkers for the treatment of
lung adenocarcinoma.

MATERIALS AND METHODS

Lung Adenocarcinoma Data Sets and
Preprocessing
A total of four datasets were selected. Three of them
(GSE30219, GSE31210, and GSE37745) were integrated as
a training group, including 417 patients. Meanwhile, 127
patients from GSE50081 was treated as a validation group. All
microarray data are from the Affymetrix platform (GPL570,
Affymetrix Human Genome U133 Plus 2.0 Array). The raw
data were downloaded from the Gene Expression Omnibus1,
gene set was downloaded from the ImmPort database, which
covered 1,242 genes.

The procedure used for data preprocessing was as follows.
(1) Extracting expression data of lung adenocarcinoma patients;
(2) removing samples with no clinical information; (3) robust-
multi-array average (RMA) algorithm (Gautier et al., 2004)
was performed for data background adjustment and quantile
normalization in Affy R package; (4) surrogate variable analysis
(SVA) algorithm (Leek et al., 2012) were used to eliminate the
batch effects; (5) preserving the expression profiles of immune-
related genes as immune-genes expression profile. Finally, we
arrived at a training group of 415 patients and a validation
group of 127 patients, as well as their immune-genes expression
profiles, respectively.

Detail information about sample preprocessing is
shown in the Supplementary Materials and Methods
(Supplementary Figure 1).

Consensus Clustering to Identify LUAD
Immune Subtypes
The ConsensusClusterPlus algorithm (Wilkerson and Hayes,
2010) was performed (“kmeans” function in R, reps = 1,000,
pItems = 0.8, pFeature = 1, distance = Euclidean) to
determine molecular subtypes based on immune-gene expression
profiles. The optimal “K” was determined by CDF (cumulative
distribution function) curves. The top 100 upregulated genes
in each immune subtype were identified using Limma package.
False discovery rate (FDR) was calculated using the Benjamini-
Hochberg method, and results with FDR < 0.05 were considered
statistically significant. PCA (principal component analysis) is a
statistical method in feature extraction and data analysis. The top
upregulated genes were subjected to PCA to confirm the stability
of the consensus clustering. For heatmap (heatmap, R package),

1https://www.ncbi.nlm.nih.gov/geo/
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we utilized the consensus clustering result to sort the samples to
check immune-genes expression in each subtypes.

Prognostic Analysis of LUAD Immune
Subtypes and Construction of the
Prognostic Prediction Model
The Kaplan–Meier method was utilized to plot survival curves,
and log-rank test were used to compare OS rates of all
immune subtypes. Differentially expressed genes (DEGs) were
identified using Limma package, and survival-related genes were
identified by univariate Cox regression analysis. LASSO (least
absolute shrinkage and selection operator) regression analysis
is a common method to solve the collinearity problems (Hu
et al., 2017) via the implementation of a penalty proportional to
their size, and it preserves the advantages of subset shrinkage.
The data was subsampled 1000 times and immune genes which
repeated > 900 times were chosen (glmnet in R). Among
all survival-related genes, key genes were selected by LASSO
regression analysis and subjected to multivariate Cox regression
analysis to construct immune-related prognostic prediction
model, using the regression coefficients derived from multivariate
Cox regression analysis. The Kaplan–Meier method and log-rank
test were utilized to compare the OS rates in different risk groups.
Receiver operating characteristic curve (survival ROC in R)
analysis was further utilized to assess the predictive ability of the
prognostic prediction model. The riskscore model is described as
follows:

Riskscore =
n∑

i=1

βi ∗ Xi

where Xi represents the expression value of the gene and
βi represents the coefficients of the each gene derived from
multivariate Cox regression analysis.

Comparison of Enriched Hallmark
Pathways and Gene Ontology Analysis
To identify hallmark pathways enriched among cluster 2 and
other clusters, we performed a gene set enrichment (Subramanian
et al., 2005) analysis (GSEA in R). All gene sets were downloaded
from mSigDB (Liberzon et al., 2011), and GSEA was performed in
R using hypergeometric tests. The threshold was set at corrected
P < 0.05. Subsequently, we compared each pathway enriched
among these clusters. The Database for Annotation, Visualization
and Intergrated Discovery (DAVID) was utilized to perform
functional analysis to determine the biological function of the
survival-related immune genes. Significant biological processes
were integrated and visualized using the Goplot (ggalluvial in R).
The cut-off criteria was based on the threshold of P < 0.05.

Estimation of TME Cell Abundance
Single sample gene set enrichment (Hanzelmann et al., 2013)
analysis (GSVA in R) is a method to calculated the abundance
of each cell subset in each sample. Two gene signatures,
MCPcounter and CIBERSORT (Newman et al., 2015; Becht
et al., 2016; Petitprez et al., 2018), were used to construct
our gene sets. CIBERSORT is a popular approach to calculate

the 22 immune cells (LM22) abundance of tissues based on
their gene expression profiles, especially for microarray data
from the Affymetrix platform. MCPcounter contains signatures
of endothelial and fibroblasts cells, which were of significance
to LUAD microenvironment. In all, we utilized ssGSEA to
calculate the abundance of 24 LUAD microenvironment cells.
The microenvironment score, which contains immune score
and stromal score, was calculated using ESTIMATE R package
(Yoshihara et al., 2013).

Estimation of Metabolic State of Each
Subtype
To estimate the metabolic state of each subtype, two gene
sets “Cholesterol biosynthesis” and “Glycolysis” from mSigDB
(Liberzon et al., 2011) were utilized to calculate the metabolic
state of glycolysis and cholesterol in each sample. GSVA was used
to estimate the level of the two metabolic gene sets. After z-score
transformation, we stratified the samples into four groups: silence
(glycolysis ≤ 0, cholesterol biosynthesis ≤ 0), marked as A.
Cholesterol biosynthesis predominant (glycolysis≤ 0, cholesterol
biosynthesis > 0), marked as B. Glycolysis predominant
(glycolysis > 0, cholesterol biosynthesis≤ 0), marked as C. Mixed
type (glycolysis > 0, cholesterol biosynthesis > 0), marked as D.

Immunohistochemistry
Two lung adenocarcinoma tissues and paired paracarcinoma
were used for immunohistochemical staining (IHC). In
brief, paraffin-embedded tissue sections were deparaffinized,
rehydrated, and pretreated for epitope retrieval. After blocked
with 5% goat serum for an hour, the sections were incubated
with appropriate primary antibodies overnight at 4 degrees.
The primary antibodies used were from Abcam/Santa
Cruz/Servicebio/Invitrogen: ADIPOR1 (1:500, ab126611,
Abcam), ARRB1 (1:200, ab32099, Abcam), S100A12 (1:20,
sc-101347, Santa Cruz), CD1b (1:200, Abcam, ab173576), HAMP
(1:50, sc-101347, Santa Cruz), HMOX1 (1:1000, GB11845,
Servicebio), KL (1:200, ab181373, Abcam), S100A7 (1:20, sc-
52948, Santa Cruz), S100A2 (1:2000, GB111077, Servicebio),
VEGFA (1:20, sc-7269, Santa Cruz), VIPR1 (1:50, Invitrogen,
PA3-113), and TUBB3 (1:50, sc-80016, Santa Cruz). Following
incubation with an HRP-conjugated secondary antibody
(1:300, K8002, Dako), the stained sections were reacted with
3,3’-diaminobenzidine and counterstained with hematoxylin.

Statistical Analysis
The normality of data was tested by Shapiro-Wilk normality test.
Ordered categorical variables were analyzed by Wilcoxon test
and Kruskal–Wallis test. Student’s t test was utilized to compare
continuous variables. We utilized Fisher’s exact test or chi-
square test to analyze the relationship between clinical variables
and immune subtypes. Correlation analysis was performed by
Spearman correlation. Survival analysis was performed using
Kaplan–Meier curves and log-rank test. All statistical tests were
two sided, and P< 0.05 was regarded to be statistically significant.
The FDR correction was performed to decrease false positive
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rates in multiple tests. All statistical analyses were performed with
R software (version 3.5.3)2.

RESULTS

Identification of Lung Adenocarcinoma
Immune Subtypes Based on
Immune-Related Genes
We obtained raw data of three cohorts (GSE30219, GSE31210,
and GSE37745, N = 415) from the GEO database. After
standardization and adjustments, a gene expression profiles
of 1242 immune-related genes was utilized to identify the
lung adenocarcinoma subtypes (Supplementary Table 1).
Unsupervised consensus clustering (K-means) was utilized to
investigate different clusters. In detail, the procedure was
performed with 100% gene resampling and 80% items resampling
1,000 times, and distance metric was calculated using Euclidean
distances (Figure 1A). Complete clustering results are shown
in Supplementary Figure 2. The optimal clustering result was
obtained when k = 5 based on the “Delta area” plot, as the five
cluster is the largest number induced the least change in the area
under the CDF curves (Figure 1B). Thus, we separated the 415
LUAD samples into five subtypes based on the immune-related
genes expression profiles, and the subtypes were labeled as C1
(N = 81), C2 (N = 125), C3 (N = 39), C4 (N = 131), and C5
(N = 39).

The top 100 upregulated immune genes in each immune
subtype were calculated. Importantly, there were 46 top genes
overlapping between C3 and C4, while only relatively fewer
genes overlapped in other pairs of clusters (Figure 1C), revealing
a moderate level of similarity between subtypes C3 and C4.
Principal component analysis was performed using the top
upregulated immune genes. The PCA result indicated that
these genes were divided into five types (Figure 1D), and the
unsupervised consensus clustering result was further validated by
PCA analysis. Moreover, a heatmap of top genes in each immune
subtypes was plotted to investigate the gene expression pattern of
each subtypes (Figure 1E). As shown in the figure, in terms of
immune-related genes, each subtype showed different expression
patterns. These results prompted that the subtypes may have
diverse immune microenvironment.

Correlation Between the Clinical
Characteristics and Subtypes
To find the correlation between the clinical features and different
immune subtypes, the clinical information of the training group
was collated, and several clinical factors were analyzed (including
age, gender, survival status, relapse, and stage). There was no
significant difference in age distribution (Figure 2A) among
five immune subtypes (Kruskal–Wallis test, P > 0.05). The
distribution of gender (Figure 2C) among subtypes were not
significantly different except subtype C3, which could have been
ascribed to the relatively small sample size of C3. Results of Chi-
square test were shown in Supplementary Table 5. These results

2http://www.R-project.org

adjusted the effects of confounding factors age and gender, which
were not main target of our study. Of the survival status, the
proportion of “alive” and “dead” (Figure 2D) differed among five
subtypes (Chi-square test P < 0.05). The proportion of “alive”
status was significantly higher in C2, and the proportion of “dead”
status was relatively higher in C1 and C5. Regarding tumor
stage, as shown in the figure, most patients were at stage I and
stage II in each subtypes. The proportion of stage I (Figure 2E)
in C2 and the proportion of stage II in C3 were relatively
higher (Chi-square test P < 0.05). Next, we investigated the
proportion of relapse in each subtypes (Figure 2F), and the result
indicated that the proportion of “no relapse” was significantly
higher in subtype C2 as compared to other subtypes (Chi-square
test P < 0.05). In addition, the distribution of immune scores
in each subtypes was calculated (ESTIMATE function in R),
and the result (Figure 2B) revealed that there was a significant
difference among five subtypes (Kruskal–Wallis test, P < 0.001).
The average immune score in subtypes C3 and C4 were relatively
higher while the average score was relatively low in C1 and C5.
The immune score in subtype C2 was at middle level.

Prognostic Significance of Immune
Subtypes and Construction of Riskscore
Model
Due to the invasive and metastatic potential of lung
adenocarcinoma, the 5-year survival rates for patients with
LUAD remains low. Considering the different immune-related
genes expression patterns in five subtypes, which may play an
important role in tumor prognosis, we utilized survival analysis
to investigate the relevence between clinical outcome and the
five subtypes (Figure 3A). The Kaplan–Meier curves revealed
a distinct survival difference among the immune subtypes (OS,
log-rank test P = 0.0019). The LUAD patients in subtype C2 had
significantly better overall survival than the other subtypes. As
a matter of fact, the other subtypes (C1, C3, C4, and C5) had
the similar clinical outcomes, which were worse than in subtypes
C2. It should be noted that the subtype C3 and C4 had the
highest immune score but didn’t show the advantages of overall
survival, and the mechanism behind this phenomenon was worth
exploring. In general, C2 was the subtype with a better prognosis.
The differentially expressed immune-related genes in subtype C2
were identified using limma package (FDR < 0.05, absolute log2-
fold change > 1). We utilized DAVID database (The Database
for Annotation, Visualization and Integrated Discovery) to
perform functional enrichment analysis for the DEGs. Important
biological process and functions were integrated and visualized
in a chord diagram (Supplementary Figure 4). According to
the results, the DEGs in subtype C2 were mainly enriched in
cell chemotaxis, regulation of cell proliferation and apoptotic
(“regulation of T cell proliferation,” “regulation of apoptotic
process”), immune response and inflammatory response. To
further explore the mechanism behind the survival difference
between subtype C2 and the other subtypes, GSEA analysis
based on the transcriptome profile was performed (Figure 3B).
The results indicated that the gene signatures of “TGF-beta
signaling,” “Notch signaling,” and “Bile acid metabolism” were
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FIGURE 1 | Identification of immune-related subtypes of lung adenocarcinoma in training group. (A) Heatmap of top 100 immune-related genes upregulated in each
subtypes. Red and blue indicate relatively high or low expression value. (B) The results of the unsupervised consensus clustering. The consensus matrix for the
optimal cluster number k = 5. (C) Relative change in area under the cumulative distribution function curves based on different subtype number (k = 2, 3, 4, 5, 6, 7,
and 8). (D) Principal component analysis of expression profiles of the top upregulated immune-related genes in each subtype. Each immune subtype is represented
with a unique color. (E) Venn diagram of top 100 upregulated immune-related genes in each subtype, with numbers represent the number of genes overlapping in a
specific pair of subtypes.

enriched in subtype C2, while other gene signatures, such as
“Glycolysis” and “PI3K-AKT-MTOR signaling,” were enriched
in the other subtypes. The detailed results were shown in
Supplementary Table 8. It can be concluded that these biological
process and hallmark pathways play a significant role in the
survival of patients with lung adenocarcinoma. We direct
compared the survival outcome for Glycolysis high vs. low
patients and PIK3-AKT-MTOR high vs. low patients in the
training and validation cohorts (Supplementary Figure 5). The
results revealed that patients in high glycolysis group had worse
survival outcome as compared to low Glycolysis group both in
the training and validation cohorts (Log-rank test, P < 0.001,
P < 0.001, respectively, Supplementary Figures 5A,C). Patients
in high PIK3-AKT-MTOR signaling group had worse survival
outcome in the training cohort (log-rank test, P < 0.001,

Supplementary Figure 5B), but the results didn’t reach
statistical significance in the validation cohort (log-rank test,
P = 0.27).

In order to distinguish the survival risk among different
immune subtypes, we have constructed a prognostic prediction
model. First, 205 immune-related genes significantly correlated
with overall survival were identified using univariate Cox
regression analysis. LASSO regression analysis (1,000 times)
based on the L1-penalized estimation was performed to
obtain genes with the greatest prognostic values. 21 genes
(ADIPOR1, ARRB1, CD1B, CD81, CR2, HAMP, HMOX1,
IKBKB, KL, S100A2, S100A7, SPP1, THRA, TNFRSF17,
TUBB3, VEGFA, VIPR1, IL20RB, OAS1, PTGER2, and
S100A12) that appeared > 900 times out of 1,000 repetitions
were selected to be analyzed (Table 1). Multivariate Cox
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FIGURE 2 | Distribution analyses of five immune subtypes based on some clinical characteristics or ESTIMATE immune-scores. (A) Age distribution in the five LUAD
immune subtypes. (B) Immune scores distribution in the five LUAD immune subtypes. (C) Gender proportion in the five subtypes. (D) Survival status proportion in
the five subtypes. (E) Stage proportion in the five subtypes. (F) Relapse status proportion in the five subtypes.

regression analysis was performed to determine the
coefficient of each gene. Finally, the prognostic prediction
model was constructed (riskscore = −0.311 × normalized
expression level of ADIPOR1 – 0.242 × normalized
expression level of ARRB1 – 0.168 × normalized expression
level of CD1B – 0.001 × normalized expression level
of CD81 – 0.087 × normalized expression level of
CR2 + 0.187 × normalized expression level of HAMP
+ 0.052 × normalized expression level of HMOX1 –
0.205 × normalized expression level of IKBKB +

0.011 × normalized expression level of IL20RB +

0.016× normalized expression level of KL+ 0.124× normalized
expression level of OAS1 – 0.210 × normalized expression
level of PTGER2 + 0.066 × normalized expression
level of S100A12 + 0.009 × normalized expression
level of S100A2 + 0.102 × normalized expression level
of S100A7 + 0.068 × normalized expression level of
SPP1 – 0.421 × normalized expression level of THRA –
0.162 × normalized expression level of TNFRSF17
+ 0.047 × normalized expression level of TUBB3
+ 0.219 × normalized expression level of VEGFA –
0.067 × normalized expression level of VIPR1). In addition, we
used the genotype tissue expression (GTEx) dataset, together

with The Cancer Genome Atlas (TCGA) data, to compare
the mRNA expression between tumor and normal tissues
(Supplementary Figure 12). The risk score of each sample in
training group was calculated, and we categorized the patients
into high or low risk groups based on best cut-off calculated by
X-tile software (Table 2) (Long et al., 2019). Genes involved in the
model and the corresponding HR were shown in Supplementary
Figure 6D. The distributions of the risk scores, OS, survival
status, and corresponding mRNA expression profiles of the 415
patients in the training group are shown in Figure 4A. The
protective mRNA (VIPR1, TNFRSF17, THRA, PTGER2, KL,
IKBKB, CR2, CD81, CD1B, ARRB1, and ADIPOR1) tended
to be more highly expressed in the low-risk group, while the
remaining mRNA (VEGFA, TUBB3, SPP1, S100A7, S100A2,
S100A12, OAS1, IL20RB, HMOX1, and HAMP) were more
highly expressed in the high-risk group. Moreover, the high-risk
group had more death than the low-risk group. The Kaplan–
Meier plot (Figure 4B) indicated that the patients in low-risk
group had a significant survival advantage compared to the
high-risk group (log-rank test P < 0.001). Time-dependent
ROC analysis (Sing et al., 2005) was performed to show the
predictive potential of the prognostic prediction model. The area
under the ROC curve (AUC) of the prognostic model for overall
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FIGURE 3 | Survival and function analyses of immune subtypes. (A) Gene set enrichment analysis of immune subtypes in training group. Significant pathways in
subtype C2 and the other subtypes. (B) Kaplan–Meier plot of overall survival of different subtypes. Log-rank test is used for statistical significance. (C) Kaplan–Meier
plot of overall survival of different clusters (integrate C3 and C4 as a whole).

survival was 0.765 at 3 years and 0.760 at 5 years, respectively
(Figure 4C). These results indicated that the model had a good
predictive ability.

TABLE 1 | mRNAs involved in the prognosis prediction model of LUAD.

Gene symbol Ensemble ID Coefficient HR

ADIPOR1 ENSG00000159346 −0.311 0.568

ARRB1 ENSG00000137486 −0.242 0.680

CD1B ENSG00000158485 −0.168 0.707

CD81 ENSG00000110651 −0.001 0.529

CR2 ENSG00000117322 −0.087 0.708

HAMP ENSG00000105697 0.187 1.399

HMOX1 ENSG00000100292 0.052 1.351

IKBKB ENSG00000104365 −0.205 0.700

IL20RB ENSG00000174564 0.011 1.163

KL ENSG00000133116 0.016 0.774

OAS1 ENSG00000089127 0.124 1.208

PTGER2 ENSG00000125384 −0.210 0.807

S100A12 ENSG00000163221 0.066 1.248

S100A2 ENSG00000196754 0.009 1.167

S100A7 ENSG00000143556 0.102 1.138

SPP1 ENSG00000118785 0.068 1.187

THRA ENSG00000126351 −0.421 0.452

TNFRSF17 ENSG00000048462 −0.162 0.878

TUBB3 ENSG00000258947 0.047 1.875

VEGFA ENSG00000112715 0.219 1.293

VIPR1 ENSG00000114812 −0.067 0.697

TABLE 2 | Univariate and multivariate analyses of age, gender, stage, and
riskscore with overall survival in training cohort.

Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Training group
(N = 405)

Age 1.042
(1.021–1.064)

<0.001 1.043
(1.021–1.066)

<0.001

Gender 1.205
(0.867–1.674)

0.268

Stage 1.807
(1.466–2.227)

<0.001 1.548
(1.237–1.938)

<0.001

Risk score 1.418
(1.287–1.563)

<0.001 1.369
(1.233–1.520)

<0.001

Microenvironment Landscape of Immune
Subtypes and Potential Immune Escape
Mechanism
We utilized ssGSEA to calculate the abundance of 24 TME cells
(including endothelial cells, fibroblasts, and 22 immune cells).
The comprehensive landscapes of LUAD microenvironment
cell interactions and their effects on the OS of patients were
integrated into a network diagram (Figure 5A). The specific
results were shown in the Supplementary Table 2. Three types of
TME cell (Memory B cells, Neutrophils and Activated memory
CD4 T cells) showed significant difference in overall survival
(P < 0.05). As shown in the network, there existed strong
connection among different TME cells. The heatmap was drawn
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FIGURE 4 | Evaluation of the prediction model. (A) Top row, the low and high risk score group for the immune-related mRNA signature in training group; middle row,
the survival status and overall survival time of patients in training group; bottom row, heatmap showing the expression level of the genes involved in the risk score
model. (B) Kaplan–Meier plot of overall survival of patients with lung adenocarcinoma, with blue for low risk and yellow for high risk. (C) ROC analysis shows the risk
score model AUC = 0.765 at 3-year and 0.760 at 5-year, respectively.

to depict the distribution of 24 TME cells among different
immune subtypes (Figure 5B). Notably, the distributions of 24
TME cells in subtypes C3 and C4 were very similar. As mentioned
earlier, many immune-related genes were identified overlapped
between subtypes C3 and C4, and the two subtypes showed
similarly high immune-scores. Thus, subtypes C3 and C4 were
integrated as a new group for further analysis. In addition,
we directly compared the results of consensus clustering when
k = 4 and 5 (Supplementary Table 7), and it indicated that
C3 and C4 had strong consistency. To facilitate making the
distinction among different LUAD immune subtypes, the former
C1, C2, C5 was labeled as NC1, NC2, and NC4, respectively. The
subtypes C3 and C4 were integrated and labeled as NC3. The
heatmap revealed that the microenvironment cells infiltration
had clear different patterns among the 4 subtypes (NC1, NC2,
NC3, and NC4). NC1 was characterized by extremely low
microenvironment cells infiltration, while NC3 was characterized
by high degree microenvironment cells infiltration. NC2 and
NC4 had middle degree and low degree immune infiltration,
respectively. The proportions of 22 immune cells were calculated
and shown (Supplementary Figure 7) in boxplot (one-way

ANOVA test). The majority of immune cells had different
proportion among NC immune subtypes, such as Macrophages
M2, Treg cells, which might play a significant role in the immune
escape mechanism.

To further investigate the intrinsic immune escape
mechanisms of different immune subtypes, 25 immune
checkpoint relevant molecules expression among the four
NC subtypes were analyzed. The heatmap was drawn
(Figure 6) to show the different expression patterns of
immune checkpoint molecules in four subtypes, and it
indicated that the expression of checkpoint molecules were
obviously higher in subtype NC3 than the other subtypes. The
detail information was shown in the boxplot (Supplementary
Figure 8). The average expression of 19 molecules (CTLA,
CD160, CD244, CD27, CD274, CD28, CD80, CD86, CTLA4,
HAVCR2, ICOS, IDO1, LAG3, PDCD1LG2, TIGIT, TNFRSF18,
TNFRSF4, TNFRSF9, and TNFSF4) in subtype NC3 was
relatively higher compared to other subtypes (ANOVA test),
while CD276, VTCN1 had higher expressions in subtype
NC1, and PDCD1 had a higher expression in subtype
NC4, respectively.
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FIGURE 5 | Landscape of the subtypes. (A) Interaction plot of the tumor microenvironment cell types. The color of each cell represents the cluster of each cell type,
calculation used Spearman correlation analysis. The size of each circle indicates the survival impact of each cell type. The connecting lines represent the correlation
between TME cells, with red for positive correlation and blue for negative correlation. (B) The heatmap indicates the TME cells distribution among different subtypes
(k = 5 or 4), with red for high expression and blue for low expression, and it is annotated by age, stage, gender, survival status, and relapse status.

Identification of Metabolic State of the
Immune Subtypes
We utilized the 14 tumor metabolism relevant gene sets
to estimated the metabolic state in the training group
(including adenosine metabolic process, arginine biosynthetic,

cyclooxygenase, fatty acid biosynthetic, lactate metabolic process,
one carbon metabolic process, oxidative phosphorylation,
cholesterol biosynthesis, glutamate and glutamine metabolism,
glycogen synthesis, glycolysis, fatty acid beta oxidation,
pentose phosphate pathway, and tryptophan catabolism,
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FIGURE 6 | Immune checkpoint relevant molecules in four subtypes. The heatmap reveals the expression of 25 immune checkpoint relevant molecules of four
subtypes, with red for high expression and blue for low expression. The heatmap is annotated by stage, age, gender, survival status, and relapse status.

Supplementary Figure 9). The results indicated that there
were significant differences in metabolic states among different
subtypes. K–M plots (Supplementary Figure 10) indicated that
several metabolism pathways (adenosine metabolic process,
glutamate and glutamine metabolism, glycogen synthesis,
and glycolysis) were related to overall survival. According to
study of Karasinska et al. (2019), we chose “glycolysis” and
“cholesterol biosynthesis” to classified metabolic state. GSVA
was performed to calculate the enrichment degree of both
“glycolysis” and “cholesterol biosynthesis” metabolic pathways in
each sample (N = 415). The metabolic states were stratified into
four types and were labeled as A, B, C, D as mentioned before
(A for Silence, B for Cholesterol biosynthesis Predominant, C
for Glycolysis Predominant, and D for Mixed type). Survival
analysis was performed to investigate the relevence between
metabolic states and immune subtypes (NC1-4). Kaplan–Meier
plot (Figure 7A) indicated that there existed an obviously overall
survival difference among four metabolic groups (log-rank
test P < 0.01). Survival benefits were observed in group A
and B (A vs. C, log-rank test P < 0.01, A vs. D, log-rank test
P < 0.01, B vs. C log-rank test P < 0.05, B vs. D log-rank test
P < 0.01). However, the survival differences had no statistical

significance in other pairs of groups (A vs. B, C vs. D, log-rank
test P > 0.05). The chord diagram (Figure 7B) revealed an
obviously positive correlation between riskscore and Glycolysis
(Spearman rho = 0.64, P < 0.05) and a relatively weak correlation
between Glycolysis and Cholesterol biosynthesis (Spearman
rho = 0.23, P < 0.05).

In the TME, metabolic adaptation allow cancer cells to
survive. There existed a deep connection between the TME and
tumor metabolism. The Sankey plot (Figure 7C) was drawn to
reveal the relationship between the three characteristics (tumor
metabolic states, immune subtypes, and risk groups). The main
types of metabolism in different subtypes were shown clearly
in the plot (NC1: C, D; NC2: A, B; NC3: A, C, D; NC4: D).
In most cases, NC2 led to the low survival risk while NC1
and NC4 contributed to the high survival risk. Comparing
the proportion of metabolic states (Figure 7D) in different
risk groups in subtype NC3, we found the proportions of
metabolic states C, D in the high-risk group were obviously
higher than in the Low-risk group. Interestingly, the subtype NC3
which had a high degree microenvironment cells infiltration,
obtained obviously differentiation in the survival risk. This
phenomenon led us to further explore the survival characteristics

Frontiers in Genetics | www.frontiersin.org 10 May 2021 | Volume 12 | Article 619821

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-619821 April 3, 2025 Time: 11:38 # 11

Li et al. Immune Subtype of Lung Adenocarcinoma

FIGURE 7 | The “TME-Metabolism-Risk” patterns in training group and the specificity of subtype NC3. (A) Kaplan–Meier plot of different metabolic group. The
statistical difference was compared through log-rank test. (B) The correlation among Cholesterol biosynthesis, glycolysis and riskscore. (C) Sankey plot showing the
correlation among metabolic states, immune subtypes and the survival risk. (D) The metabolic states proportion in high/low risk groups. (E) Kaplan–Meier plot of
subtypes NC2, NC3L, and NC3H. The statistical difference was compared through the log-rank test.

of NC3. Kaplan–Meier plot indicated that the NC3L (low-
risk patients in subtype NC3) had the apparently survival
advantage, and the similar advantage was also observed in
subtype NC2 (Figure 7E). DEGs between NC3L and NC3H
(High-risk patients in subtype NC3) were calculated using the
limma R package. These molecules (Supplementary Table 3)
might play an important role in the high-low risk transformation
in NC3, and the mechanism behind this might ascribed to the
different metabolic states of NC3.

External Validation
To validate our findings, we utilized a cohort of patients of
lung adenocarcinoma (GSE50081, Supplementary Tables 4, 6)
as our validation group (N = 127). We independently applied
the unsupervised clustering algorithm on the validation dataset
using the ConsensusClusterPlus (k-means function in R). The

clustering results (Supplementary Figure 3) were very similar
to the results identified in the training group. The heatmaps
revealed the TME cells infiltration and the expression level of
25 immune checkpoint relevant molecules in validation group
(Figures 8A, 9A). The subtype NC3 had a high degree of
TME cells infiltration, and the expression level of immune
checkpoint molecules were obviously higher compared to the
other clusters (Figure 9A). NC1 was characterized by extremely
low degree of immune infiltration, while NC2 and NC4 had
middle and relatively low degree of infiltration, respectively. An
apparently overall survival advantage was observed in subtype
NC2 (Figure 8B).

The riskscore of each sample in validation group was
calculated (Figure 9B), and the receiver operating curve
was plotted based on the riskscore of each sample. As
presented in the plot (Supplementary Figure 6C), AUC for
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FIGURE 8 | TME Validation in cohort GSE50081. (A) The expression heatmap of TME cell types in the four subtypes of validation group. Red represents high
expression and blue represents low expression. (B) Kaplan–Meier plot of overall survival of four immune subtypes. The statistical difference was compared through
the log-rank test.

FIGURE 9 | IC Validation in cohort GSE50081. (A) The expression heatmap of the same 25 immune checkpoint relevant molecules in the four subtypes.
(B) Riskscore distribution in the four subtypes. The statistical difference was compared through the Kruskal–Wallis test.

overall survival was 0.755 at 3 years and 0.757 at 5 years,
respectively. There was a significant survival difference in
prognosis between the high-risk group and low-risk group
(Supplementary Figure 6B, log-rank test P < 0.001). The similar
“metabolic states-immune subtypes-risk groups” patterns were
also found in the validation group as the Sankey plot indicated
(Figure 8B and Supplementary Figure 11). The subtype NC3
with high degree microenvironment cells infiltration had an

apparent differentiation of risk (Supplementary Figure 11C).
On the whole, the reliability and stability of the results
we obtained from the training group were verified in the
validation group.

In addition, Wang et al. (2021) study constructed a platform,
OncoVar, which identified several important drive genes in each
cancer type. Immune-related genes were selected and survival
analysis was conducted (Supplementary Table 9). The result

Frontiers in Genetics | www.frontiersin.org 12 May 2021 | Volume 12 | Article 619821

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-619821 April 3, 2025 Time: 11:38 # 13

Li et al. Immune Subtype of Lung Adenocarcinoma

FIGURE 10 | Immunohistochemistry of 12 selected genes expression in two lung adenocarcinoma cases. (A–L) Representative pictures of an IHC staining with
paraffin-embedded tissue sections demonstrate the selected genes’ protein expression patterns (brown signal) in adjacent tissue (left panel) and matched malignant
tumor tissue (right panel). The 12 selected genes were in order as follows: ADIPOR1, ARRB1, S100A12, CD1b, HAMP, HMOX1, KL, S100A7, S100A2, VEGFA,
VIPR1, and TUBB3.
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revealed that ACVR1B was associated with poor prognosis in
lung adenocarcinoma (HR = 1.713, P < 0.1), and it indicated that
ACVR1B might have potential value in further research.

Immunohistochemistry
In order to verify the bioinformatics analysis results, we
chose 12 genes from the 21 crucial immune genes(including
ADIPOR1, ARRB1, CD1B, CD81, CR2, HAMP, HMOX1,
IKBKB, KL, S100A2, S100A7, SPP1, THRA, TNFRSF17, TUBB3,
VEGFA, VIPR1, IL20RB, OAS1, PTGER2, and S100A12) for
further Immunohistochemical staining. Figures 10A–L show the
staining patterns of the 12 chosen genes in adjacent tissue and
matched malignant tumor tissue. The shade of brown indicates
the level of specific proteins expression in the tissue. By and large,
the protein expression level were consistent with the previous
bioinformatics analysis: the protective genes (ADIPOR1, ARRB1,
CD1B, KL, and VIPR1) were highly expressed in paracancer
tissues compared with tumor tissues, while the remaining genes
(HAMP, HMOX1, S100A12, S100A7, S100A2, TUBB3, and
VEGFA) were more obvious in adenocarcinoma tissues.

DISCUSSION

Lung adenocarcinoma is characterized by the high rate of
invasion and metastasis (Bray et al., 2018). The mortality and
recurrence rate of lung adenocarcinoma could be reduced greatly
with the early and optimal treatment. Great changes have taken
place in the therapy of lung adenocarcinoma during the past
few decades, and now, we are at the dawn of a new era of
immunotherapy (Zaretsky et al., 2016; Sanchez-Vega et al., 2018;
Chow et al., 2019; Zeng et al., 2019). A lot of efforts have been
made to explore effective new targets for immunotherapy in
cancers (Colombo et al., 2014). ICIs have begun to transform
clinical treatment, and they are considered to be one of the
most promising method in cancer therapy (Havel et al., 2019;
Wei et al., 2018). However, the agents, such as pembrolizumab
and nivolumab, only benefit a relatively limited population.
Hence, it makes good sense to explore the mechanism behind
the phenomenon, especially combined with the metabolic states.
With the emergence of public databases, such as TCGA and
GEO, data mining and analysis is becoming an important
way to identify potential therapeutic target. The current study
systematically analyzed the LUAD immune subtypes using the
data extracted from the GEO cohorts.

The stage I and stage II patients contribute mostly to the
proportion of the samples in our training group, thus the analysis
results can represent the early stage patients quite well.

On the other hand, consensus clustering algorithm has been
broadly utilized to discover significant clusters. According to the
previous studies, the TME is segregated into three types based on
the immune infiltration: immune desert, immune excluded and
immune inflamed (Darvin et al., 2018). Our study revealed four
important LUAD immune microenvironment subtypes and their
clinical characteristics. Subtype NC1 was the so-called “extremely
low immune infiltration” type, and it was characterized by the
lack of “silence” metabolic state. Subtype NC2 had a middle

degree of microenvironment cells infiltration, and the “silence”
and “Cholesterol biosynthesis Predominant” metabolic modes
contribute mostly to the proportion of metabolic states. Subtype
NC3 was found to have a high degree of immune infiltration,
and was characterized by the lack of “Cholesterol biosynthesis
Predominant” metabolic state. The majority metabolic state in
subtype NC4 was the “Mixed” type, and NC4 had a relatively low
degree of microenvironment cells infiltration.

The extrinsic immune escape mechanism consists of
four aspect: lack of immune cells, fibrosis, presence of
immunoinhibitory cytokines and the immunoinhibitory
cells, and the intrinsic immune escape consists of two major
aspects: immune checkpoint molecules expression and tumor
immunogenicity (Mascaux et al., 2019). The potential immune
escape mechanisms were investigated, and we found the
characteristics of the subtypes that might contribute to the
immune escape. The lack of immune cells infiltration is the
principal factor of immune escape mechanism in subtypes NC1
and NC4. Fibrosis and high expression of immune checkpoint
molecules contribute to the immune escape mechanism in
subtype NC3, while the subtype NC2 had defects in activation of
innate immune cells.

In addition, we found an obviously survival advantage in
subtype NC2. To figure out the mechanism behind this, GSEA
and differential genes analysis were performed. The GSEA
results revealed that the glycolysis and lipid metabolism might
play an significant role in the survival of different subtypes
(DeBerardinis et al., 2008; Levine and Puzio-Kuter, 2010). On
the other hand, according to the study of Karasinska et al.,
glycolysis-cholesterol synthesis axis plays an important role in
tumor development, and that was why we chose “glycolysis” and
“cholesterol synthesis” metabolism pathways for further analysis.
The results also revealed several hallmark pathways enriched
in subtypes NC2 or the other subtypes. The PI3K-AKT-mTOR
signaling pathway, which was enriched in the other subtypes, is
a highly conserved. The activation of it enhances many tumor
activities, including driving glycolysis, and the interruption of
PI3K-AKT-mTOR pathway has been proved to change T cell
metabolism (Li X. et al., 2019). The transforming growth factor-
β is a key enforcer of tumor immune evasion and response, and
it is generally considered related to immune suppression within
TME (Batlle and Massague, 2019). The TGF-β can also be tumor
suppressive through different approaches, such as a lethal EMT
(David et al., 2016). This might account for the enrichment of
TGF-β signaling in subtype NC2. The E2F-targets and MYC-
targets pathways, which have been demonstrated to be associated
with the relapse and cell proliferation in lung cancer, enriched in
the groups with survival disadvantage.

In order to further elaborate the risk of patients with
lung adenocarcinoma, we have constructed a prognostic
prediction model based on immune-related genes. The
prediction model consisted of 21 crucial immune genes,
including ADIPOR1, ARRB1, CD1B, CD81, CR2, HAMP,
HMOX1, IKBKB, KL, S100A2, S100A7, SPP1, THRA,
TNFRSF17, TUBB3, VEGFA, VIPR1, IL20RB, OAS1,
PTGER2, and S100A12. Previous study has demonstrated
that the S100A family had a deep relationship with
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tumor development (Hatoum et al., 2017).Previous study has
demonstrated that S100A2 had a deep relationship with the risk
for colorectal cancer (Masuda et al., 2016). S100A7 plays an
important roles in the development of estrogen receptor-positive
breast carcinoma and non-small cell lung cancer (Lu et al., 2018;
Mayama et al., 2018). S100A12 is closely related to vascular
invasion by tumor cells, and causes excessive inflammation
and vascular invasion, which lead to tumor recurrence and
metastasis. It was found to play an important role in many
human cancers, including breast cancer and papillary thyroid
cancer (Gunaldi et al., 2015; Wang et al., 2020). SPP1 is an
enzyme that dephosphorylates S1P (sphingosine 1-phosphate),
which was found to mediate macrophage polarization (Le Stunff
et al., 2002). Previous study revealed that it has the potential to
serve as a prognostic biomark for lung adenocarcinoma (Zhang
et al., 2018). IL20RB is the member of IL10 family, and it
was considered crucial in autoimmune diseases and renal cell
carcinoma (Yang et al., 2018; Cui et al., 2019). It has not been
associated with LUAD prognosis before, which might serve as a
potential target for LUAD.

The metabolic states of tumor and TME are inextricably
linked. Various metabolic mechanisms could alter the behavior
of TME cells (Li X. et al., 2019). In our study, we distinguished
different metabolic states in four immune subtypes. Thus, we
obtained the different “TME-Metabolism-Risk” patterns in our
lung adenocarcinoma immune subtypes. It is worth noting
that there existed a survival advantage in the “Cholesterol
biosynthesis Predominant” group. Cholesterol are considered
major risk factors in many diseases, including cancers (Baek et al.,
2017). Previous studies have demonstrated that the cholesterol
could induce CD8 positive T cell exhaustion in TME and
facilitate breast cancer metastasis (Li J. et al., 2019). Our study
revealed that, the cholesterol synthesis might be a crucial factor
contributing to the suppressive of lung adenocarcinoma under
the high level of glycolysis.

It should be noted that the subtype NC3 was characterized
by high TME cells infiltration while the overall survival rate
remained relatively low. Stratification analysis was utilized to
investigate the survival differences among NC2, NC3L, and
NC3H. The results revealed that the NC3H group had potential
to transform into the better survival phenotype, and the DEGs
might be the potential targets (Supplementary Table 3).

In general, we constructed a prognostic prediction model
which provided good discrimination between high and low risk
patients with lung adenocarcinoma. Then, our study indicated

that the LUAD could be classified into four immune subtype with
different characteristics, and this might facilitate the selection
of treatment plans and the selection of appropriate patients for
immunotherapy. For example, the subtype NC3 had a relatively
high expression of immune checkpoint molecules, which might
lead to the intrinsic immune escape, and patients categorized into
this subtype may be particularly suitable to ICIs treatment while
NC1 and NC4 with relatively low immune infiltration might not
be appropriate for this treatment. Next, we identified the “TME –
Metabolic state – Risk” patterns in each immune subtypes, and we
found that the cholesterol synthesis was of particularity in lung
adenocarcinoma. In conclusion, our study depicted the landscape
of microenvironment and metabolism characterization of LUAD.
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