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A question of fundamental biological significance is to what extent the expression

of a subset of genes can be used to recover the full transcriptome, with important

implications for biological discovery and clinical application. To address this challenge,

we propose two novel deep learning methods, PMI and GAIN-GTEx, for gene expression

imputation. In order to increase the applicability of our approach, we leverage data

from GTEx v8, a reference resource that has generated a comprehensive collection of

transcriptomes from a diverse set of human tissues. We show that our approaches

compare favorably to several standard and state-of-the-art imputation methods in

terms of predictive performance and runtime in two case studies and two imputation

scenarios. In comparison conducted on the protein-coding genes, PMI attains the

highest performance in inductive imputation whereas GAIN-GTEx outperforms the other

methods in in-place imputation. Furthermore, our results indicate strong generalization

on RNA-Seq data from 3 cancer types across varying levels of missingness. Our work

can facilitate a cost-effective integration of large-scale RNA biorepositories into genomic

studies of disease, with high applicability across diverse tissue types.

Keywords: gene expression, transcriptomics, imputation, generative adversarial networks, machine learning,

RNA-seq, GTEx, deep learning

1. INTRODUCTION

High-throughput profiling of the transcriptome has revolutionized discovery methods in the
biological sciences. The resulting gene expression measurements can be used to uncover disease
mechanisms (Emilsson et al., 2008; Cookson et al., 2009; Gamazon et al., 2018), propose novel
drug targets (Evans and Relling, 2004; Sirota et al., 2011), provide a basis for comparative genomics
(King andWilson, 1975; Colbran et al., 2019), and motivate a wide range of fundamental biological
problems. In parallel, methods that learn to represent the expression manifold can improve our
mechanistic understanding of complex traits, with potential methodological and technological
applications, including organs-on-chips (Low et al., 2020) and synthetic biology (Gupta and Zou,
2019), and the integration of heterogeneous transcriptomics datasets.

A question of fundamental biological significance is to what extent the expression of a subset of
genes can be used to recover the full transcriptome with minimal reconstruction error. Genes that
participate in similar biological processes or that have shared molecular function are likely to have
similar expression profiles (Zhang and Horvath, 2005), prompting the question of gene expression
prediction from a minimal subset of genes. Moreover, gene expression measurements may suffer
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from unreliable values because some regions of the genome
are extremely challenging to interrogate due to high genomic
complexity or sequence homology (Conesa et al., 2016), further
highlighting the need for accurate imputation. Moreover, most
gene expression studies continue to be performed with specimens
derived from peripheral blood or a convenient surrogate (e.g.,
lymphoblastoid cell lines; LCLs) due to the difficulty of collecting
some tissues. However, gene expression may be tissue or cell-type
specific, potentially limiting the utility of a proxy tissue.

The missing data problem can adversely affect downstream
gene expression analysis. The simple approach of excluding
samples with missing data from the analysis can lead to a
substantial loss in statistical power. Dimensionality reduction
approaches such as principal component analysis (PCA) and
singular value decomposition (SVD) (Wall et al., 2003) cannot be
applied to gene expression data with missing values. Clustering
methods, a mainstay of genomics, such as k-means and
hierarchical clustering may become unstable even with a few
missing values (Troyanskaya et al., 2001).

To address these challenges, we develop two deep learning
approaches to gene expression imputation. In both cases, we
present an architecture that recovers missing expression data
for multiple tissue types under different levels of missingness.
In contrast to existing linear methods for deconfounding gene
expression (Øystein Sørensen et al., 2018), our methods integrate
covariates (global determinants of gene expression; Stegle et al.,
2012) to account for their non-linear effects. In particular, a
characteristic feature of our architectures is the use of word
embeddings (Mikolov et al., 2013) to learn rich and distributed
representations for the tissue types and other covariates. To
enlarge the possibility and scale of a study’s expression data
(e.g., by including samples from highly inaccessible tissues), we
train our model on RNA-Seq data from the Genotype-Tissue
Expression (GTEx) project (The GTEx Consortium, 2015; GTEx
Consortium, 2017), a reference resource (v8) that has generated
a comprehensive collection of human transcriptome data in a
diverse set of tissues.

We show that the proposed approaches compare favorably
to several standard and state-of-the-art imputation methods in
terms of predictive performance and runtime. In performance
comparison on the protein-coding genes, GAIN-GTEx
outperforms all the other methods in in-place imputation
while PMI displays the highest performance in inductive
imputation. Furthermore, we demonstrate that our methods
are highly applicable across diverse tissues and varying levels of
missingness. Finally, to analyse the cross-study relevance of our
approach, we perform imputation on gene expression data from
The Cancer Genome Atlas (TCGA; Weinstein et al., 2013) and
show that our approach is robust when applied to independent
RNA-Seq data.

2. METHODS

In this section, we introduce two deep learning approaches for
gene expression imputation with broad applicability, allowing us
to investigate their strengths and weaknesses in several realistic

scenarios. Throughout the remainder of the paper, we use script
letters to denote sets (e.g.,D), upper-case bold symbols to denote
matrices or random variables (e.g., X), and lower-case bold
symbols to denote column vectors (e.g., x or q̄j). The rest of the
symbols (e.g., q̄jk, G, or f ) denote scalar values or functions.

2.1. Problem Formulation
Consider a dataset D = {(x̃,m, r, q)}, where x̃ ∈ R

n represents a
vector of gene expression values with missing components; m ∈
{0, 1}n is a mask indicating which components of the original
vector of expression values x are missing or observed; n is the
number of genes; and q ∈ N

c and r ∈ R
k are vectors of c

categorical (e.g., tissue type or sex) and k quantitative covariates
(e.g., age), respectively. Our goal is to recover the original gene
expression vector x ∈ R

n bymodeling the conditional probability
distribution P(X = x|X̃ = x̃,M = m,R = r,Q = q), where the
upper-case symbols denote the corresponding random variables.

2.2. Pseudo-Mask Imputation
We first introduce a novel imputation method named Pseudo-
Mask Imputer (PMI).

Formulation. Let x̃ = m ⊙ x ∈ R
n be a vector of gene

expression values whose missing components are indicated by
a mask vector m ∈ {0, 1}n. Our model is a function f :Rn ×
{0, 1}n × R

k × N
c → R

n that imputes the missing expression
values (1−m)⊙ x as follows:

x̄ = f (x̃,m, r, q). (1)

Here ⊙ denotes element-wise multiplication. The
recovered vector of gene expression values is then given
bym⊙ x̃+ (1−m)⊙ x̄.

Optimization. We optimize the model to maximize the
imputation performance on a dynamic subset of observed,
pseudo-missing components. In particular, we first generate a
pseudo-mask m̃ as follows:

m̃ = m⊙ b b ∼ B(1, p) p ∼ U(α,β), (2)

where b ∈ {0, 1}n is a vector sampled from a Bernoulli
distribution B and α ∈ [0, 1] and β ∈ [α, 1] are
hyperparameters that parameterize a uniform distribution U.
Using the pseudo-mask m̃, we split the observed expression
values into a set of pseudo-observed components x̃ and a set of
pseudo-missing components ỹ:

x̃ = x⊙ m̃ ỹ = x⊙m⊙ (1− m̃), (3)

The imputed components are then given by x̄ = f (x̃, m̃, r, q). We
optimize our model to minimize the mean squared error between
the ground truth and the imputed pseudo-missing components:

L(x̄, ỹ,m, m̃) = 1

Z

(

m⊙ (1− m̃)
)⊤

(x̄− ỹ)2, (4)

where Z =
(

m ⊙ (1 − m̃)
)⊤(

m ⊙ (1 − m̃)
)

is a normalization
term. We summarize our training algorithm in Algorithm 1.
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Importantly, the pseudo-mask mechanism generates
different sets of pseudo-observed components for each input
example, effectively enlarging the number of training samples.
Specifically, the hyperparameters α and β control the fraction
of pseudo-observed and pseudo-missing components through the
probability p ∼ U(α,β). On one hand, a low probability p yields
sparse pseudo-observed vectors x̂, resulting in fast convergence
but high bias. On the other hand, a high probability p yields
denser pseudo-observed vectors x̂, resulting in low bias but slower
convergence. At inference time, p is set to 1 and the pseudo-mask
m̃ is equal to the input maskm.

Algorithm 1: Training algorithm

Input: Input dataset D = {(x,m, r, q)}, batch size B,
hyperparameters α and β

• Initialise parameters of the model f

while not convergence criteria reached do

• Sample mini-batch:
{(x(i),m(i), r(i), q(i))}Bi=1 ∼ D

• Sample pseudo-mask for each example of the mini-batch:
p(i) ∼ U(α,β)
b(i) ∼ B(1, p(i))
m̃(i) = m(i) ⊙ b(i)

• Split components into pseudo-observed and pseudo-missing:
x̃(i) = x(i) ⊙ m̃(i)

ỹ(i) = x(i) ⊙m(i) ⊙ (1− m̃(i))
• Impute pseudo-missing components:

x̄(i) = f (x̃(i), m̃(i), r(i), q(i))
• Optimise the model by descending its stochastic gradient:

∇ 1
B

∑B
i=1 L(x̄

(i), ỹ(i),m(i), m̃(i))

end

Architecture. We model the imputer f as a neural network.
We first describe how we use word embeddings, a distinctive
feature that allows learning rich, dense representations for
the different tissue types and, more generally, for all the
covariates q ∈ N

c.
Formally, let qj be a categorical covariate (e.g., tissue type) with

vocabulary size vj, that is, qj ∈ {1, 2, . . . , vj}, where each value in
the vocabulary {1, 2, . . . , vj} represents a different category (e.g.,
whole blood or kidney). Let q̄j ∈ {0, 1}vj be a one-hot vector
such that q̄jk = 1 if qj = k and q̄jk = 0 otherwise. Let dj be
the dimensionality of the embeddings for covariate j. We obtain
a vector of embeddings ej ∈ R

dj as follows:

ej = q̄⊤j Wj, (5)

where each Wj ∈ R
vj×dj is a matrix of learnable weights.

Essentially, this operation describes a lookup search in a
dictionary with vj entries, where each entry contains a learnable
dj-dimensional vector of embeddings that characterize each of
the possible values that qj can take. To obtain a global collection

of embeddings e, we concatenate all the vectors ej for each
categorical covariate j:

e =
∥

∥

∥

c

j=1
ej, (6)

where c is the number of categorical covariates and ‖
represents the concatenation operator. We then use the learnable
embeddings e in downstream tasks.

In terms of the architecture, we model f as follows:

f (x̃,m, r, q) = MLP(x̃‖m‖r‖e), (7)

where MLP denotes a multilayer perceptron and x̃ = x⊙m ∈ R
n

is the masked gene expression. Figure 1 shows the architecture of
the model.

2.3. Generative Adversarial Imputation
Networks
The second method, which we call GAIN-GTEx, is based on
Generative Adversarial Imputation Nets (GAIN; Yoon et al.,
2018). Generative Adversarial Networks have previously been
used to synthesize transcriptomics in-silico (Marouf et al., 2020;
Viñas et al., 2021), but to our knowledge their applicability
to gene expression imputation is yet to be studied. Similar to
generative adversarial networks (GANs; Goodfellow et al., 2014),
GAIN estimates a generative model via an adversarial process
driven by the competition between two players, the generator and
the discriminator.

Generator. The generator aims at recovering missing data
from partial gene expression observations, producing samples
from the conditional P(X|X̃,M,R,Q). Formally, we define the
generator as a function G :R

n × R
n × {0, 1}n × R

k × N
c → R

n

that imputes expression values as follows:

x̄ = G(x⊙m, z⊙ (1−m),m, r, q), (8)

where z ∈ R
n is a vector sampled from a fixed noise distribution.

Similar to GAIN, we mask the n-dimensional noise vector as
z ⊙ (1 − m), encouraging a bijective association between noise
components and genes. Before passing the output x̄ to the
discriminator, we replace the prediction for the non-missing
components by the original, observed expression values:

x̂ = m⊙ x̃+ (1−m)⊙ x̄. (9)

Discriminator. The discriminator takes the imputed samples
x̂ and attempts to distinguish whether the expression value of
each gene has been observed or produced by the generator.
This is in contrast to the original GAN discriminator, which
receives information from two input streams (generator and data
distribution) and attempts to distinguish the true input source.

Formally, the discriminator is a function D :R
n ×R

n ×R
k ×

N
c → R

n that outputs the probabilities ŷ ∈ R
n:

ŷ = D(x̂, h, r, q), (10)

where the i-th component ŷi is the probability of gene i being
observed (as opposed to being imputed by the generator) for
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FIGURE 1 | Architecture of the proposed methods. (Left) Pseudo-Mask Imputer (PMI). (Right) Generative Adversarial Imputation Networks for GTEx (GAIN-GTEx). In

both cases, the imputer takes gene expression values x̃ with missing components according to a mask m, and categorical (e.g., tissue type; q) and numerical (e.g.,

age; r) covariates, and outputs the imputed values x̄. The observed components of the imputer’s output are then replaced by the actual observed expression values x̃,

yielding the imputed sample x̂. For PMI, the pseudo-mask mechanism masks out some of the observed components, which are then recovered at the output. For the

adversarial model (right), we additionally train a discriminator that receives x̂, the sample covariates, and the hint vector h, and produces the output ŷ, whose i-th

component ŷi represents the probability of gene i being observed as opposed to being imputed by the generator.

each i ∈ {1, . . . , n} and the vector h ∈ R
n corresponds to the

hint mechanism described in Yoon et al. (2018), which provides
theoretical guarantees on the uniqueness of the global minimum
for the estimation of P(X|X̃,M,R,Q). Concretely, the role of the
hint vector h is to leak some information about the maskm to the
discriminator. Similar to GAIN, we define the hint h as follows:

h = b⊙m+ 1

2
(1− b) b ∼ B(1, p) p ∼ U(α,β), (11)

where b ∈ {0, 1}n is a binary vector that controls the amount of
information from the mask m revealed to the discriminator. In
contrast to GAIN, which discloses all but one components of the
mask, we sample b from a Bernoulli distribution parametrized by
a random probability p ∼ U(α,β), where α ∈ [0, 1] and β ∈
[α, 1] are hyperparameters. This accounts for a high number of
genes n and allows to trade off the number of mask components
that are revealed to the discriminator.

Optimization. Similarly to GAN and GAIN, we optimize the
generator and discriminator adversarially, interleaving gradient
updates for the discriminator and generator.

The discriminator aims at determining whether genes have
been observed or imputed based on the imputed vector x̂, the
covariates q and r, and the hint vector h. Since the hint vector
h readily provides partial information about the ground truth
m (Equation 11), we penalize D only for genes i ∈ {1, 2, . . . , n}
such that hi = 0.5, that is, genes whose corresponding mask
value is unavailable to the discriminator. We achieve this via the
following loss function LD :{0, 1}n × R

n × {0, 1}n → R:

LD(m, ŷ, b) = −1

Z
(1− b)⊤

(

m⊙ log ŷ+ (1−m)⊙ (1− log ŷ)
)

,

(12)
where Z = 1 + (1 − b)⊤(1 − b) is a normalization term.
The only difference with respect to the binary cross entropy
loss function is the dot product involving (1 − b), which we
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employ to ignore genes whose mask has been leaked to the
discriminator through h.

The generator aims at implicitly estimating P(X|X̃,M,R,Q).
Therefore, its role is not only to impute the expression
corresponding to missing genes, but also to reconstruct the
expression of the observed inputs. Similar to GAIN, in order to
account for this and encourage a realistic imputation function,
we use the following loss function LG :{0, 1}n ×R

n ×R
n ×R

n ×
{0, 1}n → R for the generator:

LG(m, x, x̄, ŷ, b) = −1

Z1

(

(1−b)⊙(1−m)
)⊤

log ŷ+ λ

Z2
m⊤(x−x̄)2,

(13)
where Z1 = 1+(1−b)⊤(1−b) and Z2 = m⊤m are normalization
terms, and λ > 0 is a hyperparameter. Intuitively, the first term
in Equation (13) corresponds to the adversarial loss, whereas
the mean squared error (MSE) term accounts for the loss that
the generator incurs in the reconstruction of the observed gene
expression values.

Architecture. We model the discriminator D and the
generator G using neural networks. Similar to PMI, D and G
leverage independent instances eG and eD of the categorical
embeddings described in Equation (6). Specifically, we model the
two players as follows:

G(x̃, z̃,m, r, q) = MLP(x̃‖z̃‖m‖r‖eG)
D(x̂, h, r, q) = MLP(x̂‖h‖r‖eD), (14)

where MLP denotes a multilayer perceptron and x̃ = x⊙m ∈ R
n

and z̃ = z ⊙ (1 −m) ∈ R
n are the masked gene expression and

noise input vectors, respectively. Figure 1 shows the architecture
of both players.

3. EXPERIMENTAL DETAILS

In this section, we provide an overview of the dataset and describe
the experimental details, including all the different case studies
and imputation scenarios that we considered. We also describe
the implementation details of PMI (see Supplementary Figure 6)
and GAIN-GTEx (see Supplementary Figure 7).

3.1. Materials
Dataset. The GTEx dataset is a public genomic resource of
genetic effects on the transcriptome across a broad collection of
human tissues, enabling linking of these regulatory mechanisms
to trait and disease associations (Aguet et al., 2020). Our dataset
contained 15,201 RNA-Seq samples collected from 49 tissues
of 838 unique donors. We also selected the intersection of all
the protein-coding genes among these tissues, yielding 12,557
unique genes. In addition to the expression data, we leveraged
metadata about the sample donors, including sex, age, and cohort
(post-mortem, surgical, or organ donor).

Standardization. A large proportion of gene expression
data in public repositories contains normalized values. Thus,
imputation in this context has practical utility. Imputing the
relative expression levels (in normalized data) vs absolute
levels (in non-normalized data) is also biologically meaningful,

with important applications, e.g., differential expression analysis
(between disease individuals and controls) that is robust to
expression outliers. To this end, we normalized the expression
data via the standard score, so that the standardized expression
values have mean 0 and standard deviation 1 for each gene across
all samples.

Training, validation, and test splits. To prevent any leakage
of information between the training and test sets, we enforced
all samples from the same donor to be within the same set.
Concretely, we first flipped the GTEx donor identifiers (e.g.,
111CU-1826 is flipped to 6281-UC111), we then sorted the
reversed identifiers in alphabetical order, and we finally selected
a suitable split point, forcing the two sets to be disjoint. After
splitting the data, the training set, which we used to train the
model, consisted of ∼ 60% of the total samples. The validation
set, which we used to optimize the method, consisted of ∼ 20%
of the total samples. The test set, on which we evaluated the final
performance, contained the remaining∼ 20% of the data.

3.2. Case Studies
We benchmarked the methods on two case studies:

Case 1: Protein-coding genes. As a first case study, we
selected the intersection of all the protein-coding genes among
the 49 GTEx tissues, resulting in a set of 12,557 unique genes.
This case study is challenging for imputation methods that are
not scalable across the number of input variables.
Case 2: Genes in a pathway. We selected a subset of 273
genes from the Alzheimer’s disease pathway extracted from the
Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa
and Goto, 2000). This case study allows to benchmark
imputation methods that do not scale well with the number
of variables.

3.3. Imputation Scenarios
We considered two realistic imputation scenarios:

Scenario 1: In-place imputation. Our goal is to impute the
missing values of a dataset D = {(m ⊙ x,m, r, q)} without
access to the ground truth missing values (1 − m) ⊙ x.
Importantly, for this scenario we assumed that the data is
missing completely at random (MCAR; Little and Rubin, 2019),
that is, themissingness does not depend on any of the observed
nor unobserved variables.
Scenario 2: Inductive imputation. Given a training dataset
Dtrain = {(x, 1, r, q)} where all expression values x ∈ R

n are
observed, our goal is to impute the missing expression values
of an independent test dataset Dtest = {(x̃,m, r, q)}. Methods
trained in inductive mode (e.g., on comprehensive datasets
such as GTEx) can be used to perform imputation on small,
independent datasets where the small number of samples is
insufficient to train a model in in-place mode.

3.4. Implementation
For both PMI and GAIN-GTEx, we included the donor’s age
as numerical covariate in r and the tissue type, sex and cohort
as categorical covariates in q. We normalized the numerical
variables via the standard score. For each categorical variable
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TABLE 1 | Gene expression imputation performance with a missing rate of 50% across 3 runs (complete set of protein-coding genes).

Scenario 1: In-place imputation Scenario 2: Inductive imputation

Method R2 Runtime (hours) R2 Runtime (hours)

MICE − − − −
MissForest − − − −
Blood surrogate −0.693± 0.000 0.000± 0.000 −0.952± 0.000 0.000± 0.000

Median imputation 0.000± 0.000 0.001± 0.000 −0.009± 0.000 0.001± 0.000

1-NN imputation 0.179± 0.000 1.616± 0.004 0.203± 0.000 0.985± 0.003

5-NN imputation 0.461± 0.000 2.224± 0.107 0.482± 0.000 1.441± 0.096

10-NN imputation 0.468± 0.000 2.140± 0.035 0.495± 0.000 1.711± 0.160

GAIN-MSE-GTEx 0.637± 0.005 0.199± 0.074 0.638± 0.003 0.456± 0.053

GAIN-GTEx 0.638± 0.007 0.625± 0.294 0.636± 0.001 1.199± 0.157

PMI 0.479± 0.003 0.241± 0.024 0.707± 0.001 0.244± 0.019

We do not report the R2 scores for MICE and MissForest, because the runtime is longer than 7 days. Note GAIN-GTEx outperforms all the other methods in in-place imputation while

PMI displays the highest performance in inductive imputation.

qj ∈ {1, 2, . . . , vj}, we used the rule of thumb dj =
⌊√

vj
⌋

+ 1
to set all the dimensions of the categorical embeddings. We used
ReLU activations for each hidden layer in the MLP architectures
of both PMI and GAIN (see Equations 7 and 14).

We trained both models using the Adam optimizer (Kingma
and Ba, 2014). We used batch normalization (Ioffe and Szegedy,
2015) in the hidden layers of the MLPs, which yielded a
significant speed-up to the training convergence according to our
experiments. We used early stopping with a patience of 30. The
rest of parameters for each model, case study, and imputation
scenario are presented in the Supplementary Material.

3.5. Baseline Methods
We compared PMI andGAIN-GTEx to several baselinemethods:

Common methods of imputation. We considered two
simple gene expression imputation approaches: blood surrogate
and median imputation. The use of blood, an easily accessible
tissue, as a surrogate for difficult-to-acquire tissues is done in
studies of biomarker discovery, diagnostics, and eQTLs, and
in the development of model systems (Gamazon et al., 2018;
Kim et al., 2020). For blood surrogate imputation, we imputed
missing gene expression values in any given tissue with the
corresponding values in whole blood for the same donor.
For median imputation, we imputed missing values with the
median of the observed tissue-specific gene expression computed
across donors.

k-Nearest Neighbours. The k-Nearest Neighbours (k-NN)
algorithm is an efficient method that is commonly used for
imputation (Beretta and Santaniello, 2016). Here, we leveraged
k-NN as a baseline for different values of k. This model estimates
the missing values of a sample based on the values of the missing
components in the k closest samples.

State-of-the-art methods. We considered two state-of-the-
art imputation methods: Multivariate Imputation by Chained
Equations (MICE; Buuren and Groothuis-Oudshoorn, 2010) and
MissForest (Stekhoven and Bühlmann, 2012). MICE leverages
chained equations to create multiple imputations of missing data.
The hyperparameters of MICE include the minimum/maximum

possible imputed value for each component and the maximum
number of imputation rounds. MissForest (Stekhoven and
Bühlmann, 2012) is a non-parametric imputation method based
on random forests trained on observed values to impute
the missing values. Among others, the hyperparameters of
MissForest include the number of trees in the forest and the
number of features to consider when looking for the optimal split.

4. RESULTS

Here we provide an overview of the imputation results, including
a comparison with other imputation methods, an evaluation
of the tissue-specific results, and an analysis of the cross-study
relevance across different levels of missingness.

4.1. Comparison
Tables 1, 2 show a quantitative summary of the imputation
performances for the two case-studies and the two imputation
scenarios. In addition to the imputation scores, we report
the runtime of all the methods. We labeled methods as
computationally unfeasible when they took longer than 7 days
to run on our server (CPU: Intel(R) Xeon(R) Processor E5-
2630 v4. RAM: 125GB), after which we halted the execution.
For example, MICE and MissForest were unfeasible for each
imputation scenario on the complete set of protein-coding genes.
An empirical study of the scalability of both methods (see
Supplementary Material) showed that the runtime increases
rapidly with the number of genes. However, on a smaller
set of genes (i.e., 273 from the Alzheimer’s disease pathway),
evaluation of the performance was successfully obtained, with
the runtime substantially higher for both methods than for
the other methods. In addition, we included GAIN-MSE-GTEx
as a baseline, consisting of a simplification of GAIN-GTEx
that was optimized exclusively via the mean squared error
term of the generator. GAIN-MSE-GTEx performed reasonably
well relative to GAIN-GTEx, suggesting that the mean squared
error term of the loss function was driving the learning (see
Supplementary Material).
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TABLE 2 | Gene expression imputation performance with a missing rate of 50% across 3 runs (for a subset of 273 genes from the Alzheimer’s disease pathway).

Scenario 1: In-place imputation Scenario 2: Inductive imputation

Method R2 Runtime (hours) R2 Runtime (hours)

MICE 0.574± 0.001 2.062± 0.335 0.569± 0.001 2.252± 0.096

MissForest (1 tree) −0.147± 0.002 0.145± 0.002 −0.042± 0.003 0.575± 0.167

MissForest (10 trees) 0.458± 0.001 0.839± 0.176 0.514± 0.001 3.220± 0.371

MissForest (20 trees) 0.478± 0.000 1.836± 0.068 0.540± 0.000 4.842± 0.495

MissForest (100 trees) 0.493± 0.000 6.438± 0.498 0.561± 0.001 16.186± 1.709

Blood surrogate −0.698± 0.002 0.000± 0.000 −0.971± 0.002 0.000± 0.000

Median imputation 0.001± 0.000 0.000± 0.000 −0.009± 0.000 0.000± 0.000

1-NN imputation 0.186± 0.001 0.037± 0.001 0.301± 0.000 0.021± 0.001

GAIN-MSE-GTEx 0.519± 0.001 0.038± 0.002 0.533± 0.001 0.045± 0.004

GAIN-GTEx 0.533± 0.001 0.139± 0.041 0.527± 0.003 0.569± 0.017

PMI 0.536± 0.001 0.048± 0.002 0.630± 0.011 0.037± 0.002

FIGURE 2 | R2 imputation scores per GTEx tissue with a missing rate of 50% (PMI; inductive mode). Each box shows the distribution of the per-gene R2 scores in the

extended test set. The color of each box represents the number of training samples of the corresponding tissue.

In terms of the evaluation metrics, we report the coefficient
of determination (R2). This metric ranges from −∞ to 1 and
corresponds to the ratio of explained variance to the total
variance. Negative scores indicate that the model predictions are
worse than those of a baseline model that predicts the mean
of the data. Here, to evaluate the performance, we generated

random masks with a missing rate of 50% and computed the
imputation R2 per gene. We repeated the last step 3 times
and reported the overall mean R2 and the average per-gene
standard deviation of the R2 scores, averaged across the 3 runs.

In inductive mode, blood surrogate and median imputation
exhibited negative scores. Under in-place imputation on the
protein-coding genes, GAIN-GTEx outperformed all the other
methods (0.638 ± 0.007). Under inductive imputation on the
protein-coding genes, PMI showed the best overall performance
(0.707± 0.001) among all the methods.

4.2. Imputation Results
Tissue-specific results. Figure 2 shows the R2 scores achieved
by PMI across all 49 tissue types. To obtain these results, we
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FIGURE 3 | UMAP visualization of the tissue embeddings from the generator. Colors are assigned to conform to the GTEx Consortium conventions. Note that the

central nervous system, consisting of the 13 brain regions, clusters together on the top right corner.

TABLE 3 | Cross-study results for GAIN-GTEx and PMI trained on GTEx (inductive

mode).

GAIN-GTEx PMI

Tissue R2 Tissue R2

TCGA LAML 0.386± 0.057 TCGA LAML 0.394± 0.065

TCGA BRCA 0.408± 0.023 TCGA BRCA 0.427± 0.023

TCGA LUAD 0.439± 0.034 TCGA LUAD 0.451± 0.050

GTEx Whole blood 0.678± 0.031 GTEx Whole blood 0.709± 0.034

GTEx Breast 0.724± 0.036 GTEx Breast 0.751± 0.039

GTEx Lung 0.713± 0.033 GTEx Lung 0.744± 0.035

We report the R2 scores on data from 3 TCGA cancer types and their healthy counterpart

on GTEx for a missing rate of 50%.

generated random masks with a missing rate of 50% for the
test set, performed imputation, and plotted the distribution
of 12,557 gene R2 scores for each tissue. Mean R2 scores in
the individual tissues ranged from ∼ 0.5 (Epstein Barr virus
transformed lymphocytes; EBV) to ∼ 0.78 (small intestine).
Kidney cortex, the tissue with the smallest sample size, had
the highest variability in R2 with an interquartile range
of Q3 − Q1 = 0.30.

Figure 3 illustrates the ability of GAIN-GTEx to learn
rich tissue representations. Specifically, we plotted a UMAP
representation (McInnes et al., 2018) of the learnt tissue
embeddings Wj ∈ R

49×8 from the generator (see Equation
5), where j indexes the tissue dimension. Strikingly, the tissue
representations showed strong clustering of biologically-related
tissues, including the central nervous system (i.e., the 13
brain regions), the gastrointestinal system (e.g., the esophageal

and colonic tissues), and the female reproductive tissues (i.e.,
uterus, vagina, and ovary). The clustering properties were
robust across UMAP runs and could be similarly appreciated
using other dimensionality reduction algorithms such as tSNE
(Maaten and Hinton, 2008).

Cross-study results across missing rates. To evaluate
the cross-study relevance and generalizability of PMI and
GAIN-GTEx, we leveraged the model trained on GTEx to
perform imputation on The Cancer Genome Atlas (TCGA)
gene expression data in acute myeloid leukemia (TCGA LAML;
Cancer Genome Atlas Research Network et al., 2013), breast
cancer (TCGA BRCA; Cancer Genome Atlas Network, 2012),
and lung adenocarcinoma (TCGA LUAD; Cancer Genome Atlas
Research Network, 2014). For each TCGA tissue and its non-
diseased test counterpart on GTEx, we show the imputation
quality in Table 3 as well as the performance across varying
missing rates in Figure 4.

Imputation results on genes from the Alzheimer’s

disease pathway. Figure 5 shows the per-gene imputation
scores for GAIN-GTEx trained on a subset of 273 genes
corresponding to the Alzheimer’s disease pathway. Amyloid-beta
is a core element of senile plaques which are characteristic
of the debilitating disease, with various pathophysiological
consequences on cellular processes. The pathway consists of
genes that are involved in a number of processes, including
neuronal apoptosis, autophagy deficits, mitochondrial defect,
and neurodegeneration. We observed that some genes in
the pathway (e.g., PSMB6, COX6C, PSMD7, PSMA2,
PSMD14, SDHB, TUBB1, TUBA8, FZD9, LPL, KIF5C,
TUBB4A, TUBB2B, APOE) exhibited different distributions
between brain and non-brain tissue types. The most highly
imputed genes were enriched in known gene sets (see
Supplementary Figures 9, 10).
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FIGURE 4 | GAIN-GTEx R2 imputation scores per tissue across missing rate for 3 TCGA cancer types and their healthy counterpart in GTEx. The shaded area

represents one standard deviation of the per-gene R2 scores in the corresponding tissue. The greater the rate of missingness, the lower the performance.

FIGURE 5 | Per-gene imputation R2 scores on genes from the Alzheimer’s disease pathway. Each point represents the average R2 score in a tissue type. We note

that some genes in the pathway (e.g., PSMB6, COX6C, PSMD7, PSMA2, PSMD14, SDHB, TUBB1, TUBA8, FZD9, LPL, KIF5C, TUBB4A, TUBB2B, APOE) exhibited

different distributions between brain and non-brain tissue types.
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5. DISCUSSION

We developed two imputation approaches to gene expression,
facilitating the reconstruction of a high-dimensional molecular
trait that is central to disease biology and drug target discovery.
The proposed methods, which we called Pseudo-Mask Imputer
(PMI) and GAIN-GTEx, were able to approximate the gene
expression manifold from incomplete gene expression data and
relevant covariates (potential global determinants of expression)

and impute missing expression values. A characteristic feature of
our architectures is the use of word embeddings, which enabled
to learn distributed representations of the tissue types (see
Figure 3). Importantly, this allowed to condition the imputation
algorithms on factors that drive gene expression, endowing the
architectures with the ability to represent them in a biologically
meaningful way.

We leveraged the most comprehensive human transcriptome
resource available (GTEx), allowing us to test the performance
of our method in a broad collection of tissues (see Figure 2).
The biospecimen repository includes commonly used surrogate
tissues (whole blood and EBV transformed lymphocytes), central
nervous system tissues from 13 brain regions, and a wide
diversity of other primary tissues from non-diseased individuals.
In particular, we observed that EBV transformed lymphocytes,
an accessible and renewable resource for functional genomics,
are a notable outlier in imputation performance. This is perhaps
not surprising, consistent with studies about the transcriptional
effect of EBV infection on the suitability of the cell lines
as a model system for primary tissues (Carter et al., 2002).
Interestingly, similar tissues exhibit similar R2 scores (see
Supplementary Figure 12).

We analyzed the performance of the proposed approaches
and found that they compare favorably to several existing
imputation methods in terms of imputation performance and
runtime (see Table 1). We observed that standard approaches
such as leveraging the expression of missing genes from a
surrogate blood tissue yielded negative R2 values and therefore
did not perform well. Median imputation, although easy to
implement, had a very limited predictive power. Imputation
methods based on k-Nearest Neighbours were computationally
feasible and yielded solid but poorer R2 scores. In terms of state-
of-the-art-methods, MICE and MissForest were computationally
prohibitive given the high-dimensionality of the data and we
halted the execution after running our experiments for 7 days.
In particular, we performed an empirical study of the scalability
of both methods (see Supplementary Figures 1–5) and observed
that the runtime increases very rapidly with the number of genes.
To alleviate this issue, we compared PMI and GAIN-GTEx with
these methods on a subset of 273 genes from the Alzheimer’s
disease pathway (see Table 2). Under the in-place imputation
scenario (Alzheimer’s disease pathway), MICE performed better
than PMI, GAIN-GTEx, and MissForest (100 trees). Under the
inductive imputation setting, PMI outperformed all the other
methods by a large margin.

In terms of the comparison between PMI and GAIN-
GTEx, our experiments suggest that the latter is generally
harder to optimize (see hyperparameter search in
Supplementary Material). In particular, GAIN resembles a

deep autoencoder in that the supervised loss penalizes the
reconstruction error of the observed components. While this is
a natural choice, autoencoder-like architectures are considerably
sensitive to the user-definable bottleneck dimension. On one
hand, a small number of units results in under-fitting. On the
other hand, an excessively big bottleneck dimension allows the
neural network to trivially copy-paste the observed components.
In contrast, the loss function of PMI does not penalize the
reconstruction error for the pseudo-observed components (e.g.,
the loss function of PMI penalizes the prediction error of the
pseudo-missing components, which are not provided as input
at training time). Together with the fact that the pseudo-mask
mechanism dynamically enlarges the training size, this subtlety
allows training considerably bigger networks without over-
fitting. Finally, we observed that a simplification of GAIN-GTEx,
GAIN-MSE-GTEx, performed similarly well, suggesting that
the mean squared error term of the generator’s loss function
is driving the learning process. In Supplementary Material,
we discuss our empirical findings about the adversarial loss
of GAIN. For the purpose of reproducibility, as the gains of
the adversarial loss appear to be small or negligible given our
observations, we recommend training GAIN-GTEx without the
adversarial term.

To evaluate the cross-study relevance of our method, we
applied the trained models derived from GTEx (inductive
mode) to perform imputation on The Cancer Genome
Atlas gene expression data in acute myeloid leukemia, lung
adenocarcinoma, and breast cancer. In addition to technical
artifacts (e.g., batch effects), generalizing to this data is highly
challenging because the expression is largely driven by features
of the disease such as chromosomal abnormalities, genomic
instabilities, large-scale mutations, and epigenetic changes
(Baylin and Jones, 2011; Weinstein et al., 2013). Our results
show that, despite these challenges, the methods were robust
to gene expression from multiple diseases in different tissues
(see Table 3), lending themselves to being used as tools to
extend independent transcriptomic studies. Next, we evaluated
the imputation performance of PMI and GAIN-GTEx for
a range of values for the missing rate (see Figure 4 and
Supplementary Figure 8). We noted that the performance is
stable and that the greater the proportion of missing values,
the lower the prediction performance. Finally, we analyzed
the imputation performance across genes from the Alzheimer’s
disease pathway (see Figure 5) and across all genes (see
Supplementary Figure 9). We observed that the most highly
imputed imputed genes are non-random and, indeed, cluster in
some known pathways (see Supplementary Figures 10, 11).

Broader Impact. The study of the transcriptome
is fundamental to our understanding of cellular and
pathophysiological processes. High-dimensional gene
expression data contain information relevant to a wide
range of applications, including disease diagnosis (Huang et al.,
2010), drug development (Sun et al., 2013), and evolutionary
inference (Colbran et al., 2019). Thus, accurate and robust
methods for imputation of gene expression have the enormous
potential to enhance our molecular understanding of complex
diseases, inform the search for novel drugs, and provide key
insights into evolutionary processes. Here, we developed a
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methodology that attains state-of-the art performance in several
scenarios in terms of imputation quality and execution time.
Our analysis showed that the use of blood as a surrogate for
difficult-to-acquire tissues, as commonly practized in biomedical
research, may lead to substantially degraded performance, with
important implications for biomarker discovery and therapeutic
development. Our method generalizes to gene expression in
a disease class which has shown considerable health outcome
disparities across population groups in terms of morbidity and
mortality. Future algorithmic developments therefore hold
promise for more effective detection, diagnosis, and treatment
(Hosny and Aerts, 2019) and for improved implementation
in clinical medicine (Char et al., 2018). Increased availability
of transcriptomes in diverse human populations to enlarge
our training data (a well-known and critical ethical challenge)
should lead to further gains (i.e., decreased biases in results
and reduced health disparities) (Wojcik et al., 2019). This work
has the potential to catalyze research into the application of
deep learning to molecular reconstruction of cellular states and
downstream gene mapping of complex traits (Cookson et al.,
2009; Zhou et al., 2020).

6. CONCLUSION

In this work, we developed two methods for gene expression
imputation, which we named PMI and GAIN-GTEx. To increase
the applicability of the proposed methods, we trained them on
RNA-Seq data from the Genotype-Tissue Expression project, a
reference resource that has generated a comprehensive collection
of transcriptomes in a diverse set of tissues. A characteristic
feature of our architectures is the use of word embeddings
to learn distributed representations for the tissue types. Our
approaches compared favorably to several standard and state-of-
the-art imputation methods in terms of predictive performance
and runtime, and generalized to transcriptomics data from
3 cancer types of the The Cancer Genome Atlas. PMI and
GAIN-GTEx show optimal performance among the methods in
inductive and in-place imputation, respectively, on the protein-
coding genes. This work can facilitate the straightforward
integration and cost-effective repurposing of large-scale RNA
biorepositories into genomic studies of disease, with high
applicability across diverse tissue types.
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