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Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia in the
Western world with a highly variable clinical course. Its striking genetic heterogeneity is
not yet fully understood. Although the CLL genetic landscape has been well-described,
patient stratification based on mutation profiles remains elusive mainly due to the
heterogeneity of data. Here we attempted to decrease the heterogeneity of somatic
mutation data by mapping mutated genes in the respective biological processes. From
the sequencing data gathered by the International Cancer Genome Consortium for 506
CLL patients, we generated pathway mutation scores, applied ensemble clustering on
them, and extracted abnormal molecular pathways with a machine learning approach.
We identified four clusters differing in pathway mutational profiles and time to first
treatment. Interestingly, common CLL drivers such as ATM or TP53 were associated
with particular subtypes, while others like NOTCH1 or SF3B1 were not. This study
provides an important step in understanding mutational patterns in CLL.

Keywords: chronic lymphocytic leukemia, pathway mutation score, ensemble clustering, extreme gradient
boosting, mutation subtypes

INTRODUCTION

Chronic lymphocytic leukemia (CLL) is a genetically and clinically heterogeneous disease. The
disease manifestations range from asymptomatic with no need for therapy to an aggressive disease
associated with therapeutic resistance and overall survival of less than 3 years (Kipps et al., 2017).
CLL is divided into two main diagnostic subgroups based on the somatic hypermutation status
of the immunoglobulin heavy chain variable region genes (IGHV; Damle et al., 1999; Hamblin
et al., 1999). Clinical heterogeneity within both groups is substantial, nevertheless, patients with
unmutated IGHV typically experience a more aggressive disease (Sutton et al., 2017). Over the past
decade, genomic studies in CLL have discovered several putative drivers (Landau et al., 2013, 2015;
Puente et al., 2015). Mutations in some of the drivers (e.g., mutations in TP53 and ATM genes)
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are associated with worse clinical outcomes whereas, in other
instances, reports of prognostic relevance vary (e.g., NOTCH1
and SF3B1) (Lazarian et al., 2017; Hallek, 2019). Many of
the driver genes cluster in specific signaling pathways (Landau
et al., 2013, 2015; Puente et al., 2015), however, in a significant
proportion of patients, no recurrent mutation has been found
(Puente et al., 2015). Still, only a limited set of molecular pathways
may be abnormal due to the contribution of non-recurrent
mutations that are commonly present, but their impact remains
elusive and deserves further elaboration.

Stratification of CLL patients based on the entire mutation
profile could improve the accuracy of prognostication as it has
been shown in the context of other diagnoses (Papaemmanuil
et al., 2016; Schmitz et al., 2018). In acute myeloid leukemia,
patients assigned into subgroups based on patterns of co-
mutations in 111 driver genes displayed different clinical
outcomes (Papaemmanuil et al., 2016). However, this approach
is challenging for a disease as genetically heterogenous as
CLL. An alternative approach is to use prior knowledge
of a protein-protein interaction network to reduce the
heterogeneity and classify patients into subtypes (Hofree
et al., 2013; Leiserson et al., 2015; Le Morvan et al., 2017).
For example, mutations can be aggregated in network
neighborhoods using network propagation that spreads the
signal from mutated drivers to other functionally related genes
in network space (Hofree et al., 2013). A limitation of such
approaches, using the protein-protein interaction network, is
that the genes involved in a biological process do not always
interact physically.

Kuijjer et al. (2018) developed a method for reducing
heterogeneity of mutation data using biological pathways. This
approach takes into account all genes in a pathway and quantifies
the level of disruption of the pathway function. Based on
this approach, the authors identified nine pan-cancer mutation
subtypes across the 23 cancer types from The Cancer Genome
Atlas (Kuijjer et al., 2018). To the best of our knowledge, either
network- or pathway-based stratification of CLL patients using
mutation data has not been performed until now.

Unsupervised learning, also known as clustering, has
been extensively used to gain insight into the underlying
structure of complex biological data and has led to discoveries
of various cancer molecular subtypes (Noushmehr et al.,
2010; Cancer Genome Atlas Research Network, 2011;
Hedegaard et al., 2016). However, there are several pitfalls,
stemming from the nature of biological data, which must be
considered during the clustering analysis to obtain robust
and meaningful results (Ronan et al., 2016). These pitfalls
may be overcome by the application of a combination of
multiple clustering solutions through a consensus approach
(i.e., ensemble clustering). In this study, we used sequencing
data gathered by the International Cancer Genome Consortium
(ICGC) for 506 CLL patients to generate pathway mutation
scores and applied ensemble clustering. We extracted
abnormal molecular pathways with a machine learning
approach and identified groups of CLL patients that differ
in pathway mutational profiles, as reflected by the clinical
behavior of the disease.

RESULTS

Reducing Pathway Signature
Redundancy to Enhance Prognostic
Subtype Identification
In the present work, we used 1,329 canonical pathway
signatures (covering 8,904 genes) from the collection of
curated gene sets (i.e., pathways) from the Molecular
signatures database (MSigDB) (Liberzon et al., 2011)
gathered from various sources including e.g., BioCarta,
KEGG, and Reactome. Combining multiple sources of
pathway information often leads to redundancy in the
combined dataset that can hinder the downstream analysis.
We explored the canonical signature dataset and found out
that each gene belonged to 7.6 pathways on average and that
the pathway sizes ranged from 6 to 1,028 genes with the
median pathway size of 29 genes. This means that most of
the pathways contain tens of genes encompassing specific
biological processes (see Figure 1 for a flow diagram of the
presented analysis).

A set theory algorithms (Stoney et al., 2018) aimed to
identify a minimum subset of gene sets required to cover
genes in the combined pathway database. We expected that
the application of the algorithms would reduce redundancy,
decrease dimensionality and lead to the exclusion of large
uninformative gene sets. We tested two algorithms, i.e.,
the hitting set cover and the proportional set cover, that
approach pathway reduction in a slightly different way with
their unique biases (Stoney et al., 2018). We applied these
algorithms with 100 and 99% gene coverage on the canonical
signature dataset. Using 99% gene coverage means that we
allowed the algorithms not to cover the remaining one
percent of genes as the covering of the remaining genes,
which tend to have the most overlap with other gene sets,
is often at the expense of redundancy reduction. However,
this resulted only in marginal improvement of the reduction
of redundancy (Table 1), and the excluded genes were
mutated in the tested CLL patient samples. In order not
to lose this information, for further analyses, we decided
to use a reduced pathway dataset with all genes from
canonical pathway signatures generated by the hitting set
cover algorithm. The hitting set cover algorithm resulted in
a 67% reduction of redundancy (from 7.6 to 3.2) and a
58% reduction of dimensionality (from 1,329 to 564) and
thus outperformed the proportional set cover algorithm in
both the reduction of overall redundancy and decreasing
dimensionality (Table 1).

Identification of Prognostic Mutation
Subtypes Using SAMBAR
In the next step, we tested a method called Subtyping
Agglomerated Mutations By Annotation Relations (SAMBAR;
Kuijjer et al., 2018), utilizing hierarchical clustering with
binomial distance. We applied SAMBAR in default settings,
i.e., with subsetting to cancer-associated genes, which resulted
in the loss of 22% (n = 113) samples without mutation
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FIGURE 1 | A flow diagram of the analysis. TTFT – time to first treatment.

in any of these genes from our patient dataset (n = 506).
Therefore, we decided not to subset genes in the next
analyses. We cut the dendrogram at k = 2–7 which means
that we grouped the patients into 2–7 groups containing
cases with the most similar pathway mutation profiles. We
removed clusters of size <20 and tested time to first
treatment (TTFT) differences between the subtypes. We
identified those solutions with significant differences bearing
potential clinical relevance. These concerned k = 3 and 5 that,
after filtering out clusters of size <20, contained only two clusters
(Supplementary Figure 1).

Identification of Prognostically Relevant
Patient Subtypes Using Ensemble
Clustering
We further explored whether we could identify subtypes with a
greater prognostic value in our cohort that would be defined by
distinct pathway mutation profiles. We used a combination of
multiple clustering solutions through a consensus approach to
cluster pathway mutation scores. We chose distinct clustering
algorithms in order to maximize the diversity of the ensemble
and therefore to reduce biases due to the selected algorithms
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TABLE 1 | Reducing redundancy using two different set theory algorithms (hitting set cover and proportional set cover) with 100 and 99% gene coverage. The original
canonical pathway signatures dataset is described in the first row.

Algorithm Gene coverage
[%]

No. of pathways Mean pathways
per gene

Min pathway size
[genes]

Max pathway size
[genes]

Median pathway
size [genes]

100 1,329 7.6 6 1,028 29

* Hitting set cover 100 564 3.2 8 389 34

Proportional set cover 100 669 3.5 6 389 30

Hitting set cover 99 513 2.8 8 389 32

Proportional set cover 99 603 2.9 6 389 27

Star denotes the final solution.

FIGURE 2 | (A) Kaplan–Meier curves depicting TTFT for the identified clusters. (B) Forest plot of hazard ratios for TTFT according to the identified clusters and IGHV
status. (C) Kaplan–Meier curves depicting overall survival (OS) for patients within different prognostic subtypes. (D) Forest plot of hazard ratios for OS according to
the identified clusters and IGHV status. (B,D) The column “N” represents the number of samples grouped by the “Variable” column. The column “Hazard ratio”
represents confidence intervals for hazard ratios and column “p” p-values of test statistics. The present data concern 486 patients with unique information about
IGHV status available (i.e., 10 patients without known IGHV SHM status and 1 patient with biclonal rearrangements were excluded). The difference in the total
number of patients between panels (B) and (D) is due to the fact that information about TTFT and OS was available for 485 and 482 patients, respectively.

(see section “Materials and Methods”). We split data into 2–
7 groups and evaluated differences in TTFT for the three
best solutions selected based on the proportion of ambiguous
clustering (PAC; Şenbabaoğlu et al., 2014). We identified subtypes
with significantly different TTFT (log-rank test p < 0.05)
for clustering solutions splitting data into 5 and 7 groups
(Supplementary Figure 2). Clustering samples in 5 and 7 groups
produced subtypes of 228, 33, 142, 5, 94 and 141, 57, 93, 47,
41, 66, 57 patients, respectively. As in the previous step, we
removed clusters of size <20, therefore, after this filtering step,
the clustering solution originally splitting data into 5 groups,
contained only 4 groups (Figure 2A).

Since the multiclass classification that we subsequently
performed was challenging, we further elaborated the
solution with the fewer (i.e., 4) groups in all downstream
analyses. First, we evaluated the effect of each subtype
characterized by distinct pathway mutation profiles
on the TTFT. The subtype with the most favorable
prognosis differed from the one with the worst outcome
by 20 years in the median TTFT (3 vs 23.4 years)
independently of the IGHV status (Figure 2B). We
also checked differences in OS, however, they were not
independent of the IGHV status in the multivariate analysis
(Figures 2C,D).
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FIGURE 3 | (A) The 20 most important pathways for the classification model predicting the identified clusters. There were 84 pathways in the model altogether.
Shades of blue represent clustered pathway signatures that have similar importance values. (B) The 10 most important pathways characterizing individual clusters of
the classification model. Pathway importance was ranked by its information gain, which corresponds to the relative contribution of the pathway to a prediction. The
first word in a pathway name denotes a database from which it originates. Pathways shared between clusters are colored.

Abnormal Molecular Pathways Extraction
We next wanted to build a classification model for the identified
subtypes, which would be able to assign new cases into
existing subtypes. We selected the best model based on a well
suited evaluation metric for imbalanced multiclass classification
mlogLoss from the five-fold cross-validation, which was 0.54.
Next, we evaluated the performance of the final model on a
hold-out dataset (n = 100), i.e., samples that were not used
in any step of the model development, thus representing new,
unseen data. The final model used 84 pathway signatures
and achieved high prediction performance (0.51 mlogLoss,
0.96 multiclass auROC, and 0.87 multiclass aucPR). The 84
pathway signatures contained 1,504 mutated genes in the dataset.
We analyzed protein–protein interactions of mutated genes
from each cluster and described gene communities using the
fast greedy community detection algorithm. To interpret gene
communities, we performed text mining of the column with
the description of gene function for each gene and visualized
networks (Supplementary Figures 3–6). Then, we extracted the
top ten most important features for the model and each subtype
separately (Figures 3, 4).

When investigating the most important pathway signatures
for each cluster we noticed that the top ten most important
pathways in Cluster 2, the cluster with the worst prognosis,
all contained the ATM gene. ATM is one of the most
commonly mutated genes in CLL (Puente et al., 2015) and the
tested cohort, 31 out of 33 patients in Cluster 2 had ATM
mutations. This finding prompted us to check the distributions
of other common CLL driver genes (Landau et al., 2015;
Puente et al., 2015) (i.e., TP53, NOTCH1, SF3B1, MYD88,
BIRC3, RPS15, FBXW7 BRAF, EGR2, NFKBIE, XPO1, POT1,
ZMYM3, and MGA) in all subtypes (Table 2). We found
mutations in TP53 to be solely associated with Cluster 4,

containing 94 patients, but no other mutations were specific for a
particular subtype.

Identification of Prognostically Relevant Patient
Subtypes Within IGHV Subgroups
Considering the substantial impact of IGHV somatic
hypermutation status, we then explored whether we
could identify subtypes separately within IGHV-mutated
vs -unmutated subgroups using the ensemble clustering
(Table 3). We found two subtypes among patients with
unmutated IGHV differing significantly in median TTFT
(3 vs 5.3 years; p = 0.0052; Figure 5A), but no separate
subtypes among patients with mutated IGHV. The subtype
with a more favorable prognosis among IGHV-unmutated
cases (median TTFT 5.3 years) consisted of 61 patients,
whereas the other one with a worse prognosis (median
TTFT 3 years) consisted of 117 patients. Again, we checked
the distribution of common CLL driver genes and found
mutations in ATM and TP53 only in the cluster with a worse
prognosis (Table 4).

Finally, we built a classification model for the identified
subtypes and extracted the most important pathway signatures
for the model (Figure 5B). The final model used 35 pathway
signatures (containing 1,004 mutated genes in the dataset)
and achieved good prediction performance (0.92 auROC
and 0.85 aucPR).

DISCUSSION

In the present study, we built a combination of multiple clustering
solutions through a consensus approach and applied it to the
pathway mutation scores of CLL patients. We identified four
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FIGURE 4 | A heatmap showing the 30 most important pathways for the classification model predicting the identified clusters. Copy number alterations are
displayed individually and hierarchically clustered according (Döhner et al., 2000).

clusters differing in pathway mutational profiles and TTFT.
Although the identification of prognostic mutation subtypes in
the pan-cancer analysis by clustering pathway mutation scores
has already been carried out (Kuijjer et al., 2018), to our best
knowledge, this is the first attempt to apply a similar approach
to a CLL dataset.

We developed machine learning models which classified
CLL cases into the identified mutation subtypes with high
performance. We leveraged feature importance assigned to
pathway signatures by the models to extract subtype-specific
pathway mutation profiles. Among the most important
pathway signatures, biological processes previously described
as recurrently mutated in CLL appeared frequently: namely
DNA-damage response, RNA processing, and inflammatory
pathways (Hallek, 2019). More importantly, we also identified
processes, which have not been described as recurrently mutated
in CLL but are known to play a vital role in CLL biology, such
as calcium signaling (Lawrence et al., 2013; Martincorena and
Campbell, 2015) and pathways involved in cellular motility
and interaction (Lazarian et al., 2017). Interestingly, common
CLL drivers such as ATM or TP53 were associated with

particular subtypes, while others like NOTCH1 or SF3B1
were not (Lazarian et al., 2017). These results suggest that the
clinical effect of well-known CLL driver genes depends on
mutation background.

We anticipate that the findings of our study will have
implications for the improved identification of patients
with high-risk CLL, even without well-known CLL drivers.
In addition, using pathway mutation scores rather than
single-gene approaches could help to identify groups of CLL
patients who might respond to specific targeted therapies.
This is of importance especially in the light of current
treatment options (Hallek, 2019). For example, we hypothesize
that patients with affected pathways involved in calcium
signaling could respond differently to the treatment with
Bruton’s tyrosine kinase inhibitors since calcium signaling
can be triggered by BCR pathway stimulation (Chiu and
Talhouk, 2018). We believe that our findings will pave
the way for the design of new personalized treatment
strategies focusing not only on well-known driver genes
but also taking into account mutational patterns in particular
biological pathways.
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TABLE 2 | Distribution of common CLL driver genes among the identified clusters.

Cluster No. of patients TP53 ATM NOTCH 1 SF3B1 MYD88 BIRC3 RPS15 FBXW7 BRAF EGR2 NFKBIE XPOI POT1 ZMYM3 MGA

1 228 0 (0%) 0 (0%) 22 (10%) 19 (8%) 14 (6%) 3 (1%) 3 (1%) 1 (0%) 0 (0%) 5 (2%) 3 (1%) 7 (3%) 6 (3%) 2 (1%) 5 (2%)

2 33 0 (0%) 31 (94%) 6 (18%) 8 (24%) 0 (0%) 1 (3%) 0 (0%) 1 (3%) 1 (3%) 3 (9%) 1 (3%) 0 (0%) 2 (6%) 1 (3%) 2 (6%)

3 142 0 (0%) 0 (0%) 4 (3%) 6 (4%) 0 (0%) 0 (0%) 1 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 5 (4%) 2 (1%) 1 (1%)

4 94 15 (16%) 0 (0%) 16 (17%) 8 (9%) 4 (4%) 5 (5%) 0 (0%) 3 (3%) 9 (10%) 1 (1%) 1 (1%) 2 (2%) 4 (4%) 2 (2%) 4 (4%)

TABLE 3 | Distribution of IGHV somatic hypermutation status among the
identified clusters.

Cluster No. of patients MUT UNMUT

1 228 155 (68%) 69 (30.3%)

2 33 4 (12.1%) 28 (84.8%)

3 142 107 (75.4%) 30 (21.1%)

4 94 43 (45.7%) 50 (53.2%)

MATERIALS AND METHODS

Processing of Somatic Mutation Data
Somatic mutation data were downloaded from a published
study (Puente et al., 2015) containing 506 pre-treatment patient
samples. Among these, 452 patients were diagnosed with
CLL and 54 with MBL. By IGHV somatic hypermutation
status, there were 316 IGHV-mutated cases and 179 IGHV-
unmutated cases, 1 biclonal, and 10 undetermined cases. Silent
mutations were filtered out and only mutations in protein-
coding regions and splice sites were kept. Then mutational
matrix was binarized. The average number of affected genes
per patient was 14.1. If not stated otherwise all analyses were
performed using R software v3.4.4 (R Core Team, 2020). The
supplementary Figures 3–6 were prepared using R software
v3.4.4 (R Core Team, 2020) and Cytoscape software v3.7.1
(Shannon et al., 2003).

Reducing Pathway Signature
Redundancy
Proportional and hitting set cover algorithms (Stoney et al.,
2018) were applied on the canonical pathway gene signature file
“c2.cp.v6.2.symbols.gmt” downloaded from MSigDb (Liberzon
et al., 2011). The gene coverage threshold was set to 100
and 99%, meaning that one percent of the genes from the
original dataset would be missing in the resulting reduced
datasets. Then, the excluded genes were checked, whether
they were mutated in the patient cohort, and properties
of the pathway sets (such as median pathway size, mean
paths per gene, min/max pathway size, and the number of
pathways) were calculated and compared before and after
reduction. Based on this evaluation, a pathway signature
dataset was created by the application of a hitting set cover
algorithm with a 100% gene coverage threshold was chosen for
further analysis.

Mutation Subtype Identification Using
SAMBAR R Package
The sambar function from the SAMBAR package v0.2 was
used to identify CLL mutation subtypes. The function subsets
somatic mutation data to 2,352 cancer-associated genes, divides
the number of mutations by the gene length, and calculates gene
mutation score. Then, it corrects for sample-specific mutation
rate and for the number of pathways each gene belongs to,
and de-sparsifies gene mutation score into pathway mutation
score when it corrects for pathway length. In the final step, it
performs hierarchical clustering with binomial distance on the
pathway mutation score.

However, gene length normalization is only a partial
correction for the background mutation rate, which depends on
other features including 3D structure, gene expression level, and
GC content (Martincorena and Campbell, 2015). Additionally,
we hypothesized that gene length normalization is relevant in
tumor types with a high mutation rate but in tumors with
low mutation rates, including CLL (Lawrence et al., 2013), this
correction could introduce noise in the data. Therefore, we
decided to omit this correction and binarized the mutation
score. The function was further modified to exclude subsetting to
cancer-associated genes. Then, it was applied on the whole patient
cohort following the instruction on https://github.com/mararie/
SAMBAR and in Kuijjer et al. (2018) with the reduced pathway
signature file as a signature input for the sambar function. Two
to seven subtypes were assessed.

Identification of CLL Subtypes Using
Ensemble Clustering
The pathway mutation score was calculated using the sambar
function but without gene length correction and subsetting to
cancer-associated genes. De-sparsification of somatic mutation
data resulted in a data matrix containing 503 patients and
553 pathway signatures. The pathway signatures that were
affected in less than 10 patients were removed, leaving us
with 502 patients and 344 pathways. Ensemble clustering was
applied on pathway mutation score for the whole cohort and
the cohorts with mutated and unmutated IGHV using the R
package diceR v0.5.2 (Chiu and Talhouk, 2018). Four distance-
based and two non-distance-based methods were included.
The distance-based methods were the following: Ward linkage
hierarchical clustering, divisive analysis clustering, partition
around medoids, and k-means. As the distance metrics for these
algorithms, binomial and Mahalanobis distance and random
forests proximity converted to distance were used. The non-
distance-based methods were the following: spectral clustering
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FIGURE 5 | Patients with unmutated IGHV only. (A) Kaplan–Meier curves depicting TTFT for patients within different prognostic subtypes. (B) The 10 most important
pathways characterizing individual clusters of the classification model. Pathway importance was ranked by its information gain, which corresponds to the relative
contribution of the feature to a prediction. The first word in a pathway name denotes a database from which a feature originates. Shades of blue represent clustered
pathway signatures that have similar importance values.

TABLE 4 | Distribution of common CLL driver genes between the clusters identified within the unmutated IGHV subgroup.

Cluster N of patients TP53 ATM NOTCH 1 SF3B1 MYD88 BIRC3 RPS15 FBXW7 BRAF EGR2 NFKBIE XPOI POT1 2MYM3 MGA

1 117 8 (7%) 26 (22%) 34 (29%) 14 (12%) 0 (0%) 6 (5%) 3 (3%) 4 (3%) 8 (7%) 7 (6%) 3 (3%) 6 (5%) 11 (9%) 4 (3%) 7 (6%)

2 61 0 (0%) 0 (0%) 6 (10%) 9 (15%) 0 (0%) 0 (0%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 1 (2%) 3 (5%) 5 (8%) 2 (3%) 4 (7%)

using radial-basis kernel function and self-organizing map with
hierarchical clustering. Ninety percent (90%) resampling on five
replicates was performed and the 2–7 subtypes were evaluated.
The average PAC across the clustering results was assessed and
half of the solutions with the lowest PAC were selected for further
evaluation. Subsequently, the K-modes algorithm was applied to
combine the results of the clustering.

Associations With Clinical Parameters
Publicly available clinical data were downloaded from the
ICGC Data Portal and information about TTFT as an
important clinical parameter was extracted. A log-rank test
was used to identify whether the found subtypes differed
in TTFT (p-value < 0.05). All the P values were adjusted
for multiple comparisons using the Benjamini–Hochberg
correction. If more solutions differed in TTFT statistically
significantly, the one with the least subtypes was chosen for
further analysis. A Multivariate Cox regression model was
fitted to assess the independent prognostic impact of IGHV
somatic hypermutation status of each subtype in the outcome
of the patients.

A Classification Model for the Identified
Subtypes
The Extreme gradient boosting algorithm (Chen and Guestrin,
2016) is a machine learning approach that combines a large
number of weak learners (i.e., slightly better than random

guessing) based on decision trees into a single strong learner (i.e.,
a prediction model). The prediction model can then be applied
to a single sample to calculate a group probability. Here we
aimed to build a classification model for the identified subtypes
and to extract the most important features for each cluster in
the prediction model. The extreme gradient boosting algorithm
from R package xgboost v0.82.1 was implemented using pathway
mutation scores as the input features. Before a model tuning,
highly correlated features (r > 0.7/r < −0.7) and clusters smaller
than 10 patients were removed leaving us with 497 patients and
317 pathway signatures. Then, data were split randomly into a
training set (80% of patients) and a test set (20% of patients). To
find the best number of rounds for the algorithm, it was run with
subsample parameter set to 0.25 and the following parameter
settings of learning rate and depth of trees were tested: 0.01,
0.05, 0.1, 0.3, and 4, 6, 9, respectively. The algorithm was stopped
after 100 rounds without improvement of multiclass Logarithmic
Loss function (mlogloss), which was evaluated using a five-fold
CV. The algorithm was run again with an optimized number
of rounds and selected parameter setting, which minimized
mlogloss. Feature importance was ranked by its information gain,
which corresponded to the relative contribution of the feature to
a prediction. The process of the parameter tuning was repeated
with half of the most important features and then in the following
repetitions with 3/4 of the most important features until mlogloss
started increasing. The performance of the model with optimized
parameters and extracted features was tested using mlogloss,
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multiclass auROC, and multiclass aucPR. An information gain of
the features was extracted for each subtype separately.
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