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Classification is widely used in gene expression data analysis. Feature selection is
usually performed before classification because of the large number of genes and the
small sample size in gene expression data. In this article, a novel feature selection
algorithm using approximate conditional entropy based on fuzzy information granule
is proposed, and the correctness of the method is proved by the monotonicity of
entropy. Firstly, the fuzzy relation matrix is established by Laplacian kernel. Secondly,
the approximately equal relation on fuzzy sets is defined. And then, the approximate
conditional entropy based on fuzzy information granule and the importance of internal
attributes are defined. Approximate conditional entropy can measure the uncertainty of
knowledge from two different perspectives of information and algebra theory. Finally, the
greedy algorithm based on the approximate conditional entropy is designed for feature
selection. Experimental results for six large-scale gene datasets show that our algorithm
not only greatly reduces the dimension of the gene datasets, but also is superior to five
state-of-the-art algorithms in terms of classification accuracy.

Keywords: feature selection, Laplacian kernel, fuzzy information granule, fuzzy relation matrix, approximate
conditional entropy

INTRODUCTION

The development of DNA microarray technology has brought about a large number of gene
expression data. It is a hot topic in bioinformatics to analyze and mine the knowledge behind these
data (Sun et al., 2019b). As the most basic data mining method, classification is widely used in the
analysis of gene expression data. Due to the small sample size and high dimensionality of gene
expression data, the traditional classification methods are often ineffective when applied to gene
expression data directly (Fu and Wang, 2003; Mitra et al., 2011; Phan et al., 2012; Konstantina
et al., 2015). It has become a consensus in the academic community to reduce the dimensionality
before classification. Feature selection is the most widely used dimensionality reduction method
in gene expression data because it can maintain the biological significance of each feature. Feature
selection can not only reduce the time and space complexity of classification learning algorithm,
avoid dimensionality disaster, and improve the prediction accuracy of classification, but also help
to explain biological phenomena.

Feature selection methods are generally divided into three categories: filter, wrapper, and
embedded method (Hu et al., 2018). The filter method obtains the optimal subset of features
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by judging the similarity between the features and the objective
function based on the statistical characteristics of data. The
wrapper method uses a specific model to carry out multiple
rounds of training. After each round of training, several features
are removed according to the score of the objective function, and
then the next round of training is carried out based on the new
feature set. In this way, recursion is repeated until the number of
remaining features reaches the required number. The embedded
method uses machine learning algorithm to get the weight
coefficient of each feature in the first place, and then selects the
feature according to the weight coefficient from large to small.
Wrapper and embedded methods have heavy computational
burden and are not suitable for large-scale gene data sets. Our
feature selection method belongs to the filter method, in which
a heuristic search algorithm is used to find an optimal subset of
features using approximate conditional entropy based on fuzzy
information granule for gene expression data classification.

Attribute reduction is a fundamental research topic and
an important application of granular computing (Dong et al.,
2018; Wang et al., 2019). Attribute reduction can be used for
feature selection. Granular computing is a new concept and
new computing paradigm of information processing, which
is mainly used to deal with fuzzy and uncertain information
(Qian et al., 2011).

Pawlak (1982) proposed the rough set theory. Rough set
theory is a new mathematical tool to deal with fuzziness
and uncertainty. Granular computing is one of the important
research contents of rough set theory. On the basis of
equivalence relation, rough set theory is only suitable for
dealing with discrete data widely existing in real life. When
dealing with attribute reduction problem of continuous data
in classical rough set theory, discretization method is often
used to convert continuous data into discrete data, but the
discretization will inevitably lead to information loss (Dai and
Xu, 2012). To overcome this drawback, Hu et al. proposed a
neighborhood rough set model (Hu et al., 2008, 2011). Using
neighborhood rough set model to select attribute of decision
table containing continuous data can keep classification ability
well and need not discretize it. The existing neighborhood
rough set attribute reduction methods are based on the
perspective of algebra or information theory. The definition of
attribute significance based on algebra theory only describes
the influence of attributes on the definite classification subset
contained in the universe. The definition of attribute significance
based on information theory only describes the influence
of attributes on uncertain classification subsets contained
in the universe. A single perspective is not comprehensive
(Jiang et al., 2015).

Zadeh (1979) proposed the concept of information
granulation based on fuzzy sets theory. Objects in the universe
are granulated into a set of fuzzy information granules by a
fuzzy-binary relation (Tsang et al., 2008; Jensen and Shen, 2009).

In this article, a heuristic feature selection algorithm based
on fuzzy information granules and approximate conditional
entropy is designed to improve the classification performance of
gene expression data sets. The experimental results for several
gene expression data sets show that the proposed algorithm

can find optimal reduction sets with few genes and high
classification accuracy.

The remainder of this article is organized as follows. Section
“Materials and Methods” gives the gene expression datasets for
the experiment and our feature selection algorithm. Section
“Experimental Results and Analysis” shows and analyzes the
experimental results. Section “Conclusion and Discussion”
summarizes this study and discusses future research focus.

MATERIALS AND METHODS

Gene Expression Data Sets
The following six gene expression datasets are used in this article.

(1) Leukemia1 dataset consists of 7129 genes and 72
samples with two subtypes: patients and healthy people
(Sun et al., 2019a).

(2) Leukemia2 dataset consists of 5327 genes and 72 samples
with three subtypes: ALL-T (acute lymphoblastic leukemia,
T-cell), ALL-B (acute lymphoblastic leukemia, B-cell), and
AML (acute myeloid leukemia) (Dong et al., 2018).

(3) Brain Tumor dataset consists of 10,367 genes and 50
samples with four subtypes (Huang et al., 2017).

(4) 9_Tumors dataset consists of 5726 genes and 60 samples
with nine subtypes: non-small cell lung cancer, colon
cancer, breast cancer, ovarian cancer, leukemia, kidney
cancer, melanoma, prostate cancer, and central nervous
system cancer (Ye et al., 2019).

(5) Robert dataset consists of 23,416 genes and 194 samples
with two subtypes: Musculus CD8+T-cells and L1210 cells
(Kimmerling et al., 2016).

(6) Ting dataset consists of 21,583 genes and 187 samples
with seven subtypes: GMP cells, MEF cells, MP cells,
nb508 cells, TuGMP cells, TuMP cells, and WBC cells
(Ting et al., 2014).

The six gene expression datasets are summarized in Table 1.

Fuzzy Sets and Fuzzy-Binary Relation
Let U = {x1, x2, . . . , xn} be a nonempty finite set and denote a
universe, I = [0, 1], IU denotes all fuzzy sets on U.

Fuzzy sets are regarded as the extensions of classical sets
(Zadeh, 1965).

F is a fuzzy set on U, i.e., F : U → I, then F(xi) is the
membership degree of xi to F.

The cardinality of F ∈ IU is |F| =
∑n

i=1 F(xi) .

TABLE 1 | Description of six experimental datasets.

No. Datasets Genes Samples Classes

1 Leukemia1 7129 72 2 (47/25)

2 Leukemia2 5327 72 3 (9/38/25)

3 Brain_Tumor 10,367 50 4 (14/7/14/15)

4 9_Tumors 5726 60 9 (9/7/8/6/6/8/8/2/6)

5 Robert 23,416 194 2 (88/106)

6 Ting 21,583 187 7 (18/12/75/16/20/34/12)
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Fuzzy-binary relation are fuzzy sets on two universes. IU×U
denotes all fuzzy-binary relations on U × U.

Fuzzy-binary relation R can be represented by

MR =


r11 r12 · · · r1n
r21 r22 · · · r2n
· · · · · · · · · · · ·

rn1 rn2 · · · rnn

 (1)

where rij = R(xi, xj) ∈ I is the similarity of xi and xj .

Information Systems and Rough Sets
Definition 2.1 (Li et al., 2017). Let Ube a set of objects and A a set
of attributes. Suppose that U and A are finite sets. If each attribute
a ∈ A determines an information function a : U → Va, whereVa
is the set of function values of attribute a, then the pair (U,A) is
called an information system.

Moreover, if A = C
⋃

D, C is a condition attribute set and D
is a decision attribute set, then the pair (U,A) is called a decision
information system.

If (U,A) is an information system and P ⊆ A, then an
equivalence relation (or indiscernibility relation) ind(P) can be
defined by (x, y) ∈ ind(P)⇔ ∀a ∈ P, a(x) = a(y).

Obviously, ind(P) =
⋂
a∈P

ind({a}).

For P ⊆ A and x ∈ U, denote [x]ind(P) = {y
∣∣(x, y) ∈ ind(P)}

and U/ind(P) = {[x]ind(P) |x ∈ U } .
Usually, [x]ind(P) and U/ind(P) are briefly denoted by [x]P and

U/P, respectively.
According to the rough set theory, for P ⊆ A, X ⊆ U is

characterized by P̄(X) and P(X), where P(X) =
⋃
{Y | Y ∈

U/P,Y ⊆ X} and P(X) =
⋃
{Y | Y ∈ U/P,Y

⋂
X 6= φ } .

P(X) and P̄(X) are referred to as the lower and upper
approximations of X, respectively.

X is crisp if P̄(X) = P(X) and X is rough if P̄(X) 6= P(X).

The Approximately Equal Relation on
Fuzzy Sets
Given F,G ∈ IU . For x ∈ U, F(x) and G(x) are the membership
degrees of x belonging to fuzzy sets F and G, respectively. F(x)
and G(x) ∈ [0, 1]. Actually, it is very difficult to ensure that the
equation F(x) = G(x) holds. For this reason, we propose the
following approximately equal relation of fuzzy sets.

Definition 2.2 Given A,B ∈ IU . If there exists k ∈ N (k ≥ 2)
such that for any x ∈ U, A(x),B(x) ∈ [0, 1/k) or A(x),B(x) ∈
[1/k, 2/k). . . or A(x),B(x) ∈ [(k− 1)/k, 1], then we say that A

is approximately equal to B, and denote it by A
k
≈B, where k is

regarded as a threshold value.
Definition 2.3 For each a ∈ U, define xR : U →

[0, 1], xR(a) = R(x, a) (x ∈ U), xR is referred to as a fuzzy
set that means the membership degree of a to x.

Definition 2.4 [x]R = {y
∣∣∣∣xR(a) k

≈ yR(a) , y ∈ U}, [x]Ris

referred to as the fuzzy equal class of x induced by the fuzzy
relation R on U.

Definition 2.5 [xi]R(i = 1, 2, ..., |U|) is named as the fuzzy
information granule induced by the fuzzy relation R on U.

Definition 2.6G(R) = {[x1]R, [x2]R, ..., [xn]R} is referred
to as the fuzzy-binary granular structure of the universe
U induced by R.

It is easy to prove: P(X) = {x | [x]R ⊆ X, [x]R ∈ G(R)},
P(X) = {x | [x]R

⋂
X 6= φ, [x]R ∈ G(R)} .

Fuzzy-Binary Relation Based on
Laplacian Kernel
Hu et al. (2010) found that there are some relationships between
rough sets and Gaussian kernel method, so Gaussian kernel is
used to obtain fuzzy relations. Compared with Gaussian kernel,
Laplacian kernel has higher peak, faster reduction and smoother
tail. Therefore, Laplacian kernel is better than Gaussian kernel
in describing the similarity between objects. In this article, we
use Laplacian kernel k(xi, xj) = exp(−

||xi−xj||
σ

) to extract the
similarity between two objects from decision information system,
where ||xi − xj|| is the Euclidean distance between two objects xi
and xj. In general, σ is a given positive value.

Obviously, k(xi, xj) satisfies:

(1) k(xi, xj) ∈ (0, 1].
(2) k(xi, xj) = k(xj, xi).
(3) k(xi, xi) = 1.

Let R = (k(xi, xj))n×n, then R is called the fuzzy relation
matrix induced by Laplacian kernel.

Feature Selection Using Approximate
Conditional Entropy Based on Fuzzy
Information Granule
Approximate Accuracy and Approximate Conditional
Entropy
Definition 2.7 Given a decision information system (U,C

⋃
D),

∀X ⊆ U, X 6= φ (φ is an empty set), then the approximate
accuracy of X is defined as

a(X) =

∣∣P(X)
∣∣∣∣P̄(X)
∣∣ (2)

where |.| denotes the cardinality of set. Obviously, 0 ≤ a(X) ≤ 1.
Definition 2.8 Given a decision information system

(U,C
⋃

D), ∀B ⊆ C, the fuzzy information granule of object
x under B is [x]RB , the partition of U derived from D is
{X1,X2, ...,Xk}, then the conditional entropy of D relative to B is
defined as

H(D/B) = −

k∑
j=1

|U|∑
i=1

∣∣[xi]RB ⋂Xj
∣∣

|U|
log

∣∣[xi]RB ⋂Xj
∣∣∣∣[xi]RB ∣∣ (3)

where RB denotes the fuzzy relation based on attribute set B and
log is a base-2 logarithm.

The approximate accuracy can effectively measure the
imprecision of the set caused by the boundary region, while
the conditional entropy can effectively measure the knowledge
uncertainty caused by the information granularity. We combine
the two to propose approximate conditional entropy.
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Definition 2.9 Let (U,C
⋃

D) be a decision information
system, ∀B ⊆ C, the fuzzy information granule of object x under
B is [x]RB , the partition of U derived from D is {X1,X2, ...,Xk},
aB(Xi) is the approximate accuracy of Xi under RB, then the
approximate conditional entropy of D relative to B is defined as

Hace(D/B) = −

k∑
j=1

|U|∑
i=1

log(2− aB(Xj))

∣∣[xi]RB ⋂Xj
∣∣

|U|

log

∣∣[xi]RB ⋂Xj
∣∣∣∣[xi]RB ∣∣ (4)

Theorem 2.1 Let (U,C
⋃

D) be a decision information system,
∀B ⊆ C, the fuzzy information granule of object x under B is
[x]RB , the partition of U derived from D is {X1,X2, ...,Xk } .

(1) Hace(D/B) gets the maximum value |U| log |U| if and only
if [xi]RB = U(i = 1, 2, ..., n) and

∣∣Xj
∣∣ = 1(j = 1, 2, ..., k =

n).
(2) Hace(D/B)gets the minimum value 0 if and only if [xi]RB ⊆
[xi]RD(i = 1, 2, ..., n).

Proof. (1) Due to [xi]RB = U(i = 1, 2, ..., n) and
∣∣Xj
∣∣ =

1(j = 1, 2, ..., k), we have aB(Xj) = 0(j = 1, 2, ..., k) according to
Definition 2.7.

Thus, log(2− aB(Xj)) = 1(j = 1, 2, ..., k).

Clearly, |[xi]RB
⋂

Xj|
|U| log |[xi]RB

⋂
Xj|

|[xi]RB |
=

1
|U| log 1

|U| .
By Definition 2.9, we have Hace(D/B) = |U| log |U|.
The converse is also true.
(2) Due to [xi]RB ⊆ [xi]RD(i = 1, 2, ..., n), we have aB(Xj) =

1(j = 1, 2, ..., k) according to Definition 2.7. Thus log(2−
aB(Xj)) = 0(j = 1, 2, .., k). Obviously, Hace(D/B) = 0 according
to Definition 2.9.

The converse is also true.
Theorem 2.2 Let (U,C

⋃
D) be a decision information

system, ∀L,M ⊆ C, if M ⊆ L, then Hace(D/M) ≥ Hace (D/L).
Proof. Due to M ⊆ L ⊆ C, we have PM(X) ⊆ PL(X) and

PM(X) ⊇ PL (X).
Then aM(X) ≤ aL(X) according to Definition 2.7.
By M ⊆ L and U/D = {X1,X2, ...,Xk}, we have

−

∣∣[xi]RM ⋂Xj
∣∣

|U|
log

∣∣[xi]RM ⋂Xj
∣∣∣∣[xi]RM ∣∣

≥ −

∣∣[xi]RL ⋂Xj
∣∣

|U|
log

∣∣[xi]RL ⋂Xj
∣∣∣∣[xi]RL ∣∣ ≥ 0 (5)

Consequently, Hace(D/M) ≥ Hace(D/L) according
to Definition 2.9.

Theorem 2.2 shows that Hace(D/B) decreases monotonically
with the increase of the number of attributes in B, which is
very important for constructing forward greedy algorithm of
attributes reduction.

Definition 2.10 Let (U,C
⋃

D) be a decision information
system and B ⊆ C, if Hace(D/B) = Hace(D/C) and Hace(D/(B−
{b})) > Hace(D/C)(∀b ∈ B), then B is called a reduction of C
relative to D.

The first condition guarantees that the selected attribute subset
has the same amount of information as the whole attribute set.
The second condition guarantees that there is no redundancy in
the attribute reduction set.

Definition 2.11 Assume that (U,C
⋃

D) be a decision
information system, ∀c ∈ C, define the following indicator,

IIA(c,C,D) = Hace(D/(C − {c}))−Hace(D/C) (6)

then IIA(c,C,D) is called the importance of internal attribute of
c in C relative to D.

Definition 2.12 Assume that (U,C
⋃

D) be a decision
information system, ∀c ∈ C, if IIA(c,C,D) > 0, then attribute c
is called a core attribute of C relative to D.

Definition 2.13 Assume that (U,C
⋃

D) be a decision
information system, B ⊆ C, ∀d ∈ C−B, define the following
indicator,

IEA(d,B,C,D) = Hace(D/B)−Hace(D/(B
⋃
{d})) (7)

then IEA(d,B,C,D) is called the importance of external attribute
of d to B relative to D.

IEA(d,B,C,D) shows the change of approximate conditional
entropy after adding attribute d. The larger IEA(d,B,C,D) is, the
more important d is to B relative to D.

Feature Selection Algorithm Using Approximate
Conditional Entropy
In this article, a novel feature selection algorithm using
approximate conditional entropy (FSACE) is proposed and
described as follows.

Input: A decision information system (U, C
⋃

D) and σ.

Output:A selected gene subset B.

Step 1. Initialize B = φ.

Step 2. Compute Hace(D/C).

Step 3.∀c ∈ C, compute IIA(c, C, D), if IIA(c, C, D) > 0, then B = B
⋃
{c}.

Step 4. If B = φ, then turn to step 5. If B 6= φ, compute Hace(D/B). If
Hace(D/B) = Hace(D/C), then turn to step 6; otherwise, turn to step 5.

Step 5. Let M = C− B, select a attribute m ∈ M so that it satisfies
IEA(m, B, C, D) = max

x∈M
IEA(x, B, C, D). Let B = B

⋃
{m}, compute Hace(D/B). If

Hace(D/B) = Hace(D/C), then turn to step 6; otherwise, turn to step 5.

Step 6. The feature selection subset B is obtained, and the algorithm ends.

EXPERIMENTAL RESULTS AND
ANALYSIS

All experiments are performed on a personal computer running
Windows 10 with an Intel(R) Core(TM) i7-4790 CPU operating
at 3.60 GHz with 8 GB memory using MATLAB R2019a. The
classifiers (KNN, CART, and SVM) are selected to verify the
classification accuracy, where the parameter k = 3 in KNN and
Gaussian kernel function is selected in SVM. Other parameters
of the three algorithms are the default values of the software.
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Influence of Different Values of σ on
Classification Performance
In this part, the classification accuracy of different Laplacian
kernel parameters values of σ is tested. For gene expression
data, feature selection aims to improve classification accuracy by
eliminating redundant genes. The different values of σ influence
the size of granulated gene data, which affects the classification
accuracy of selected genes. Therefore, the different values of
σ should be set in the process of feature selection of gene
expression data sets. Moreover, the different values of σ also
affect the composition of the selected gene subset. To obtain a
suitable σ and a good gene subset, the classification accuracy
of the selected gene subset for different values of σ should be
discussed in detail.

The corresponding experiments are performed to graphically
illustrate the classification accuracy of FSACE under different
values of σ. The results are shown in Figure 1, where the
horizontal axis denotes σ ∈ [0.05, 1] at intervals of 0.05, and the
vertical axis represents the classification accuracy.

Figure 1 shows that σ greatly influences the classification
performance of FSACE. σ is usually set to make the classification
accuracy highest. Thus, the appropriate parameter values of σ can
be obtained for each data set from Figure 1. In Figure 1A, for
Leukemia1 data set, when σ is 0.95, the classification accuracy
is the highest. In Figure 1B, for Leukemia2 data set, when σ is
0.55, the classification accuracy is the highest. In Figure 1C, for
Brain tumor data set, when σ is 0.80, the classification accuracy is
the highest. In Figure 1D, for 9-tumors data set, when σ is 0.75,
the classification accuracy is the highest. In Figure 1E, for Robert
data set, when σ is 0.60, the classification accuracy is the highest.
In Figure 1F, for Ting data set, when σ is 0.75, the classification

accuracy is the highest. Therefore, the appropriate values of σ for
different data sets are determined.

The Feature Selection Results and
Classification Performance of FSACE
The classification results obtained from the three classifiers
(KNN, CART, and SVM) with 10-fold cross-validation are shown
in Table 2 on the test data by FSACE.

Table 2 shows that FSACE not only greatly reduces the
dimensionality of all six gene expression data sets, but also
improves the classification accuracy.

The results of feature genes selection from six gene expression
data sets are shown in Table 3 using FSACE.

Comparison of the Classification
Performance of Several Entropy-Based
Feature Selection Algorithms
To evaluate the performance of FSACE in terms of classification
accuracy, FSACE algorithm is compared with several
state-of-the-art feature selection algorithms, including EGGS
(Chen et al., 2017), EGGS-FS (Yang et al., 2016), MEAR (Xu
et al., 2009), Fisher (Saqlain et al., 2019), and Lasso (Tibshirani,
1996). According to the change trend of Fisher scores of six gene
datasets, we select the top-200 genes as the reduction set for
Fisher algorithm.

Tables 4–9 show the experimental results of six gene
expression data sets using six different feature selection methods.

As shown in Tables 4, 5, FSACE has the highest average
classification accuracy for Leukemia1 and Leukemia2, and

FIGURE 1 | Classification accuracy for six gene expression data sets with different values of σ.
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TABLE 2 | Classification results of six gene expression data sets.

Data sets Original data Feature selection
data using FSACE

Genes CART KNN SVM Genes CART KNN SVM

Leukemia1 7129 0.822 0.839 0.917 9 0.911 0.947 0.931

Leukemia2 5327 0.849 0.820 0.834 9 0.891 0.894 0.878

Brain tumor 10,367 0.571 0.604 0.737 5 0.743 0.631 0.614

9-tumors 5726 0.273 0.349 0.334 2 0.318 0.359 0.355

Robert 23,416 0.947 0.928 0.933 14 0.985 0.974 0.990

Ting 21,583 0.864 0.826 0.841 17 0.873 0.847 0.882

Average 12,258 0.721 0.728 0.766 9.333 0.787 0.775 0.775

TABLE 3 | The selected feature genes on six gene expression data
sets using FSACE.

Data sets The selected feature gene subsets

Leukemia1 (758,1144,1630,2659,3897,4196,5552,6471,6584)

Leukemia2 (568,848,861,1610,2197,3256,3358,4688,5032)

Brain tumor (642,7169,7844,9413,9794)

9-tumors (1677,2590)

Robert (12883,1600,9892,16398,8720,4510,18137,2320,14931,
14679,10352,12481,18034,406)

Ting (4754,5676,2503,5379,3304,4752,6015,2193,15687,641,
7938,2629,6837,4653,19016,8621,4267)

TABLE 4 | Classification accuracy of Leukemia1 using six different feature
selection algorithms.

Feature selection method Genes CART KNN SVM Average

ECGS (Li et al., 2017) 8 0.744 0.619 0.813 0.725

EGGS-FS (Hu et al., 2010) 5 0.821 0.794 0.701 0.772

MEAR (Chen et al., 2017) 3 0.939 0.919 0.925 0.928

Fisher (Saqlain et al., 2019) 200 0.639 0.857 0.778 0.758

Lasso (Tibshirani, 1996) 52 0.857 0.960 0.972 0.929

FSACE 9 0.911 0.947 0.931 0.930

TABLE 5 | Classification accuracy of Leukemia2 using six different feature
selection algorithms.

Feature selection method Genes CART KNN SVM Average

ECGS (Li et al., 2017) 3 0.571 0.509 0.557 0.546

EGGS-FS (Hu et al., 2010) 2 0.907 0.871 0.874 0.884

MEAR (Chen et al., 2017) 5 0.903 0.829 0.872 0.868

Fisher (Saqlain et al., 2019) 200 0.726 0.803 0.846 0.792

Lasso (Tibshirani, 1996) 37 0.817 0.914 0.909 0.880

FSACE 9 0.891 0.894 0.878 0.888

exhibits better classification performance than the other
five algorithms.

As shown in Tables 6, 7, MEAR cannot work on Brain Tumor
data set and 9-tumors data set, its results are denoted by the
sign –. FSACE obtains the highest average classification accuracy
among the five feature selection algorithms for Brain Tumor data
set and 9-tumors data set.

TABLE 6 | Classification accuracy of Brain tumor using six different feature
selection algorithms.

Feature selection method Genes CART KNN SVM Average

ECGS (Li et al., 2017) 9 0.515 0.491 0.544 0.517

EGGS-FS (Hu et al., 2010) 5 0.388 0.490 0.531 0.470

MEAR (Chen et al., 2017) – – – – –

Fisher (Saqlain et al., 2019) 200 0.630 0.704 0.617 0.650

Lasso (Tibshirani, 1996) – – – – –

FSACE 5 0.743 0.631 0.614 0.663

TABLE 7 | Classification accuracy of 9-tumors using six different feature
selection algorithms.

Feature selection method Genes CART KNN SVM Average

ECGS (Li et al., 2017) 1 0.177 0.102 0.672 0.317

EGGS-FS (Hu et al., 2010) 1 0.224 0.203 0.393 0.273

MEAR (Chen et al., 2017) – – – – –

Fisher (Saqlain et al., 2019) 200 0.249 0.335 0.414 0.333

Lasso (Tibshirani, 1996) 27 0.199 0.361 0.322 0.294

FSACE 2 0.318 0.359 0.355 0.344

TABLE 8 | Classification accuracy of Robert using six different feature
selection algorithms.

Feature selection method Genes CART KNN SVM Average

ECGS (Li et al., 2017) 11 0.948 0.937 0.964 0.950

EGGS-FS (Hu et al., 2010) 6 0.957 0.954 0.975 0.962

MEAR (Chen et al., 2017) – – – – –

Fisher (Saqlain et al., 2019) 200 0.976 0.990 0.989 0.985

Lasso (Tibshirani, 1996) 21 0.984 0.991 0.989 0.988

FSACE 14 0.993 0.991 0.985 0.990

TABLE 9 | Classification accuracy of Ting using six different feature
selection algorithms.

Feature selection method Genes CART KNN SVM Average

ECGS (Li et al., 2017) 12 0.793 0.781 0.651 0.742

EGGS-FS (Hu et al., 2010) 9 0.745 0.717 0.626 0.696

MEAR (Chen et al., 2017) – – – – –

Fisher (Saqlain et al., 2019) 200 0.833 0.779 0.770 0.794

Lasso (Tibshirani, 1996) 56 0.833 0.833 0.845 0.837

FSACE 17 0.833 0.833 0.872 0.846

Tables 8, 9 shows that MEAR still can not work on Robert data
set and Ting data set, which indicates that the algorithm is not
stable. Our algorithm still has the highest classification accuracy
among all the algorithms. Although the classification accuracy
of our algorithm is only a little higher than lasso algorithm, the
number of attributes reduced by our algorithm is much less than
lasso algorithm.

Tables 4–9 show that the average number of attributes reduced
by our algorithm is slightly more than that of MEAR, ECGS, and
EGGS-FS, but the average classification accuracy is much higher
than that of these three algorithms.
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Therefore, FSACE can not only effectively remove noise and
redundant data from the original data, but also improve the
classification accuracy of gene expression data sets.

CONCLUSION AND DISCUSSION

Firstly, the concept of approximate conditional entropy is given
and its monotonicity is proved in this article. Approximate
conditional entropy can describe the uncertainty of knowledge
from two aspects of boundary and information granule. And
then, a novel feature selection algorithm FSACE is proposed
based on the approximate conditional entropy. Finally, the
effectiveness of the proposed algorithm is verified on several gene
expression data sets. Experimental results show that compared
with several state-of-the-art feature selection algorithms, the
proposed feature selection algorithm not only can obtain
compact features, but also improve classification performance.
The time complexity of FSACE is O(|U|2 |C|2). Because the
gene expression data sets usually contain a large number of

genes, the time complexity of FSACE is high. In addition,
FSACE does not consider the interaction between attributes.
Therefore, reducing the time complexity of FSACE and
seeking more efficient feature selection algorithm considering
interaction between attributes are two issues that we will
study in the future.
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