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Single-cell RNA sequencing (scRNA-seq) data provides unprecedented information on
cell fate decisions; however, the spatial arrangement of cells is often lost. Several
recent computational methods have been developed to impute spatial information
onto a scRNA-seq dataset through analyzing known spatial expression patterns of
a small subset of genes known as a reference atlas. However, there is a lack of
comprehensive analysis of the accuracy, precision, and robustness of the mappings,
along with the generalizability of these methods, which are often designed for specific
systems. We present a system-adaptive deep learning-based method (DEEPsc) to
impute spatial information onto a scRNA-seq dataset from a given spatial reference
atlas. By introducing a comprehensive set of metrics that evaluate the spatial mapping
methods, we compare DEEPsc with four existing methods on four biological systems.
We find that while DEEPsc has comparable accuracy to other methods, an improved
balance between precision and robustness is achieved. DEEPsc provides a data-
adaptive tool to connect scRNA-seq datasets and spatial imaging datasets to analyze
cell fate decisions. Our implementation with a uniform API can serve as a portal with
access to all the methods investigated in this work for spatial exploration of cell fate
decisions in scRNA-seq data. All methods evaluated in this work are implemented as
an open-source software with a uniform interface.

Keywords: spatial gene expression atlas, scRNA-seq data, spatial information imputation, deep learning, metric
learning, comprehensive evaluation metric

INTRODUCTION

While cells of a biological system have access to the same genetic blueprint, they navigate
through different developmental paths toward various cell fates. These diverse fate programs
of cells are controlled by their own states, interactions with spatially neighboring cells, and
other environmental cues (Guo et al., 2010). To decipher the processes of cell fate acquisitions,
observations of the transcriptomics with single-cell resolution in spatial context are desired.
The advent of sophisticated single-cell RNA sequencing (scRNA-seq) techniques now allows
investigation of the transcriptomic landscape of tens of thousands of genes across tissues at the
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resolution of individual cells (Rosenberg et al., 2018; Svensson
et al., 2018). However, a drawback to scRNA-seq methods is
the necessity of dissociating the sample in question, thereby
destroying any spatial context which can be crucial to the
understanding of cellular development and dynamics (Yuan
et al., 2017). In current common workflows of scRNA-seq data
analysis, unsupervised clustering of cells is carried out, followed
by identifying marker genes associated with each cell cluster
(Luecken and Theis, 2019). While the list of marker genes for
each cell cluster can be screened for genes associated with known
spatial regions to estimate the spatial origin of the cluster, the
spatial arrangement of individual cells remains unclear (Kiselev
et al., 2019; Luecken and Theis, 2019). Several existing methods
attempt to impute a pseudospatial or pseudotemporal axis onto
the data (Joost et al., 2016; Puram et al., 2017; Pandey et al., 2018;
Wang et al., 2019); however, little related to physical space is
immediately discernible from scRNA-seq data alone.

The loss of spatial information in scRNA-seq data can be
partially mitigated by referring to spatial staining data (Sprague
et al., 2006; Fowlkes et al., 2008). Another promising solution is
the emerging spatial transcriptomics methods such as osmFISH
(Codeluppi et al., 2018), MERFISH (Moffitt et al., 2018), seqFISH
(Shah et al., 2016), seqFISH+ (Eng et al., 2019), STARmap
(Wang et al., 2018), and Slide-seq (Rodriques et al., 2019) that
obtain in situ spatial expression patterns. Compared to scRNA-
seq, current spatial techniques often cover fewer cells or genes
or with a suboptimal resolution and depth. It is therefore a
trending theme to combine the strengths of both methods to
achieve a high coverage and individual-cell resolution while
retaining the spatial arrangement (Yuan et al., 2017; Kiselev
et al., 2019). Due to these differences among the scRNA-seq and
spatial techniques, and biological systems, it is challenging to
derive a generally applicable computation method to integrate the
two kinds of data.

Several recent computational methods have been developed
to impute spatial data onto existing scRNA-seq datasets through
analyzing known spatial expression patterns of a small subset
of genes, termed a “spatial reference atlas.” Seminal methods
were developed independently by Achim et al. (2015) and Satija
et al. (2015) and were applied to the Platynereis dumerilii brain
and zebrafish embryo, respectively, using binarized reference
atlases derived from in situ hybridization (ISH) images. DistMap,
another method that uses a binarized ISH-based reference
atlas, was developed by Karaiskos et al. (2017) and applied to
the Drosophila embryo. Achim et al. (2015) use an empirical
correspondence score between each cell-location pair based
on the specificity ratio of genes. Satija et al. (2015) (Seurat
v1) fits a bimodal mixture model to the scRNA-seq data and
then projects cells to their spatial origins using a probabilistic
score. DistMap applies Matthew’s correlation coefficients to
the binarized spatial imaging and scRNA-seq data to assign
a cell-location score (Karaiskos et al., 2017). Several methods
have also been developed which use spatial reference atlases
directly measuring the RNA counts that are comparable to
scRNA-seq data without binarization (Peng et al., 2016; Halpern
et al., 2017). More recently, computational methods have been
developed for imputing gene expression in spatial data (Lopez
et al., 2019), transferring cell type label from scRNA-seq data

to spatial data (Zhu et al., 2018; Dries et al., 2019; Andersson
et al., 2020), de novo spatial placement of single cells (Nitzan
et al., 2019), and inferring spatial distances between single cells
(Cang and Nie, 2020).

In addition to the methods designed specifically for integrating
spatial data and scRNA-seq data, other computational methods
have been developed recently for general data integration.
Such methods focus on the general task of integrating RNA
sequencing datasets obtained from the same biological system
through different technologies, in situ data being one possibility
among many, into one large dataset offering a more complete
description of the system under study. These methods include
newer versions of Seurat (Butler et al., 2018; Stuart et al.,
2019), LIGER (Welch et al., 2019), Harmony (Korsunsky et al.,
2019), and Scanorama (Hie et al., 2019) which are mainly
based on correlation analyses and matrix factorizations. Another
more specific task is to transfer high-level information such
as cell types between datasets. Many machine learning- and
deep learning-based methods have been developed for this
task by formulating a supervised learning problem with the
high-level information being the target (Kiselev et al., 2018;
Lieberman et al., 2018; Lopez et al., 2018; Wagner and Yanai,
2018; Tan and Cahan, 2019; Boufea et al., 2020; Hu et al., 2020;
Ma and Pellegrini, 2020).

Since the spatial characteristics of different biological systems
could be significantly different, we aim to develop a system-
adaptive method specifically designed for imputing spatial
information onto scRNA-seq data. To this end, unlike other
spatial integration methods that use predefined algorithms for
computing scores, we learn a specialized correspondence score
between cells and locations for a given biological system. This
can then be regarded as a general metric learning task (Kulis,
2013). In addition to linear methods that learn a pseudometric
(Weinberger and Saul, 2009), there has been increasing interest
in applying deep learning to metric learning (Kaya and Bilge,
2019; Chicco, 2020). These methods are mostly designed for
cases where the pair of data points to be compared are in the
same space. Though the common genes from the spatial data
and scRNA-seq data are used here, directly treating them as in
the same space may cause inaccuracy due to differences in the
original datasets such as scaling and noise.

Here we develop a system-adaptive deep learning-based
method (DEEPsc) for imputing spatial data onto scRNA-seq
data. A DEEPsc network accepts a low-dimensional feature
vector corresponding to a single position in the spatial reference
atlas along with a corresponding feature vector of the gene
expression of a single cell and returns a likelihood the input
cell originated from the input position. The network is trained
and validated using positions in the spatial reference atlas
as simulated scRNA-seq data. The network is also validated
through the task of predicting the scRNA-seq data from the
spatial reference atlas or the other way around. In addition,
we implemented several strong baseline methods using different
norms and linear metric learning for benchmark comparison. We
further develop a comprehensive measure, which was previously
lacking, for evaluating how well a given method maps scRNA-
seq data to known spatial origins, called a performance score.
This score contains three components that measure the accuracy,
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precision, and robustness of a method, respectively. Using this
score on four biological systems, we show that DEEPsc maintains
a comparable accuracy to four existing methods while achieving
a better balance between precision and robustness.

RESULTS

A Deep-Leaning Based Method to
Connect scRNA-seq Datasets and
Spatial Imaging Data
Given any spatial reference atlas consisting of binary or
continuous gene expression levels for a biological system on a
set of locations with known spatial coordinates, and a scRNA-seq
dataset consisting of binary or continuous gene expression levels
for the same biological system, we introduce a Deep-learning
based Environment for the Extraction of Positional information
from scRNA-seq data (DEEPsc) to impute the spatial information
onto the scRNA-seq data.

In DEEPsc, we first select a common set of genes from the
reference atlas and scRNA-seq data, then perform dimensionality
reduction via principal component analysis (PCA) on the
reduced reference atlas to shorten training time (Figure 1A).
The scRNA-seq data is then projected into the same PCA space
on which we learn a metric for comparison between cells and
spatial positions. The DEEPsc network accepts a concatenated
feature vector for a single cell and a single position and returns
a likelihood the input cell originated from the input position. The
network contains two fully connected hidden layers with N nodes
each, where N is the number of principal components kept from
PCA, and a single node in the output layer. Sigmoid activation
functions are applied to each node, including the output node,
so that the resulting output is in [0, 1] and can be interpreted as
a likelihood that the input cell originated from the input spatial
position. To train the DEEPsc network, we use the spatial position
feature vectors as simulated scRNA-seq data for comparison
(Figure 1B). Each simulated cell is compared pairwise with every
position in the spatial reference atlas; if the simulated cell is an
exact match to a given position, the target output is 1 (a high
likelihood of origin), and if the simulated cell and chosen position
are not an exact match, the target output is 0 (a low likelihood
of origin). Training is terminated when the error on a randomly
chosen validation set is no longer improving.

After training the DEEPsc network, a feature vector associated
with an actual cell from the scRNA-seq data is fed in as input and
compared to each position in the reference atlas individually. We
display the results as a heatmap on the schematic diagram of the
biological system, choosing the spatial position with the largest
likelihood of origin according to DEEPsc as the determined
origin of the cell. This process is repeated for each cell in the
scRNA-seq dataset to assign spatial origins of all cells (Figure 1C).

Quantifying Spatial Mapping
Performance
Each of the highlighted methods to impute spatial data onto
scRNA-seq data, including DEEPsc, can be essentially boiled

down to the following: For some tissue with a well-defined
standard spatial structure, given known binary or continuous
expression levels of G genes at each of P spatial locations
(the reference atlas), calculate a correspondence score, S, of
how similar each of C cells in an scRNA-seq dataset is
to each of the P positions in the atlas. That is, define a
function, S : [0, 1]G

× [0, 1]G
→ [0, 1], such that S(ci, pj); i =

1, 2, . . . , C; j = 1, 2, . . . , P; which describes the likelihood that
cell ci originated from position pj, based on the similarity of the
expression vectors of the cell and position.

To quantify how well a given method performs for a given
spatial reference atlas, we use the reference atlas itself as simulated
single cell data; that is, we generate a simulated scRNA-seq
dataset with C = P cells, each an exact copy of a reference
atlas position. This allows us to treat the simulated scRNA-
seq data as having a known spatial origin, against which we
can compare the output of each method. We define a system-
adaptive, comprehensive performance score, consisting of three
penalty terms: accuracy, which determines whether or not the
known spatial origin was given a high likelihood of origin;
precision, which determines whether or not other locations were
given low likelihoods of origin; and robustness, which determines
how sensitive a mapping method is to random noise in the input
data. Each penalty term is represented by a number in [0, 1],
with 0 being no penalty and 1 being a worst-case scenario. The

performance score is defined as E = 1
P

P∑
i=1

Ei, where

Ei = 1−
1
3


1− Si.i︸ ︷︷ ︸
Accuracy

+

∣∣∣∣∣∣∣∣
1−

∑P
j=1 Si,j

P − 1︸ ︷︷ ︸
Precision

∣∣∣∣∣∣∣∣+
(
1− σ∗

)4︸ ︷︷ ︸
Robustness


,

Si,j = S(ci, pj) is the correspondence score of cell ci to position pj,
and Ei is interpreted as the error in the mapping of cell ci. The
quantity σ∗ in the robustness term is calculated by determining
the accuracy and precision penalty terms with no Gaussian
noise added to the input data, then calculating the same two
penalties with various levels of Gaussian noise with standard
deviation σ ∈ [0, 1]. The quantity σ∗ is defined to be the level of
Gaussian noise required to raise the mean of the accuracy and
precision penalties by 0.1 from their values with no added noise,
or σ∗ = 1, whichever is smallest. The exponent of four in the
robustness term was chosen empirically such that the robustness
term does not dominate the performance score, keeping in mind
that expression levels are normalized to [0, 1] before calculating
the correspondence scores, so e.g., σ

∗

= 0.5 means a method
requires noise on the order of half of the expression levels to raise
the precision and accuracy penalties by 0.1. The performance
score has a range of [0, 1], where a performance score of E = 1
represents an ideal mapping that maps a cell to its known location
with high confidence, to all other locations with low confidence,
and does so in a manner robust to noise. An illustration of each
term in the performance score is shown in Figure 2.
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FIGURE 1 | The general workflow of training and implementing DEEPsc. (A) Given a spatial reference atlas of gene expression levels for some biological system and
a scRNA-seq dataset, genes common to both are selected, and dimensionality of the data is reduced (e.g., by PCA, UMAP). Each spatial position in the reference
atlas and each cell in the scRNA-seq dataset is associated with a feature vector in the reduced space. (B) The DEEPsc architecture takes as input the feature
vectors of one single cell and one spatial position, returning a likelihood between 0 (low likelihood) and 1 (high likelihood) that the cell originated from the spatial
position. A DEEPsc network is trained using the spatial position feature vectors as simulated scRNA-seq data. The target output is a 1 (high likelihood of origin) if the
simulated input cell matches the input position, and 0 (low likelihood of origin) if they do not match. (C) Once the DEEPsc network is sufficiently trained, a feature
vector associated with a cell in the scRNA-seq dataset can be fed into the network with each spatial position individually. The resulting likelihoods are displayed as a
heatmap depicting the likelihood of origin of the cell from each position. The position with the highest likelihood is chosen as the origin of the cell. This process is
repeated for each cell in the scRNA-seq dataset.

FIGURE 2 | Explanation of the terms constituting the performance score. In each hypothetical mapping heatmap, the known location of the input cell is highlighted
in black. (A) The accuracy score measures whether or not the known location receives a high likelihood; the precision score measures whether or not other locations
receive low likelihoods. (B) The robustness score measures how much the accuracy and precision scores change if random noise is added to the input cell.
A mapping method which is accurate, precise, and robust is given a high performance score while a mapping method that lacks in any or all of the three areas is
given a lower performance score.
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This performance score is limited by the fact that it relies on
ground truth knowledge of the spatial origin of a single cell/spot
to determine the performance of a given mapping method.
However, this ground truth knowledge is not available for
actual scRNA-seq data. To more directly quantify the mapping
performance on actual scRNA-seq datasets, we use a measure of
predictive reproducibility, obtained from a k-fold cross validation
scheme, in which we randomly split the common genes in the
reference atlas and scRNA-seq data into k folds and calculate
the correspondence score for each method using all but one
fold. The correspondence scores are then used as coefficients in
a weighted sum to predict the value of the dropped-out genes
in each fold for each cell (scRNA-seq predictive reproducibility)
or each spatial position (atlas predictive reproducibility) and
determine the error in the predicted expression level. The
predicted expression of gene k in cell ci is computed as ĉ(k)

i =
P∑

j=1
S(k)

i,j p(k)
j /

P∑
j=1

S(k)
i,j and the predicted expression of gene k in

position pj is computed as p̂(k)
j =

C∑
i=1

S(k)
i,j c(k)

i /
C∑

i=1
S(k)

i,j where S(k)
i,j

is the correspondence score between cell ci and position pj

with genes in folds not containing gene k and c(k)
i and p(k)

j
are the known expression values of gene k from the scRNA-
seq and the spatial atlas data, respectively. To accommodate the
sparsity of data, we compute the predictive reproducibility scores
separately for cells or positions with zero expression values and
with positive expression values. For example, we measure the
predictive reproducibility for the task of reproducing gene k in
scRNA-seq data on cells with zero expression using R(k)

sc_zero =

1−
∑

i∈I(k)
sc_zero

∣∣∣ĉ(k)
i − c(k)

i

∣∣∣ /|I(k)
sc_zero| where I(k)

sc_zero = {i : c
(k)
i = 0}.

Taking the average over all common genes results in a single score
Rsc_zero, and in the same manner, we define Rsc_nonzero, Ratlas_zero,
and Ratlas_nonzero. When producing predictive reproducibility
scores, we use the same k-fold split across all methods to ensure a
fair comparison.

Comparisons of Multiple Methods Using
Simulated scRNA-seq Data
Using the performance score, we benchmarked the methods
developed by Achim et al. (2015) and Satija et al. (2015) (Seurat
v1), Karaiskos et al. (2017) (DistMap), and Peng et al. (2016)
together with our DEEPsc method and applied them to four
different biological systems: the zebrafish embryo (Satija et al.,
2015), the Drosophila embryo (Karaiskos et al., 2017), the murine
hair follicle (Joost et al., 2016), and the murine frontal cortex,
downloaded from the 10x Genomics Spatial Gene Expression
Datasets. The reference atlas for the zebrafish embryo contains
the binarized expression of 47 genes on 64 spatial bins that
assemble half of the hemisphere of the 6hpf embryo (Satija
et al., 2015). The Drosophila embryo reference atlas contains 84
genes on 3,039 spatial positions (Karaiskos et al., 2017). The
spatial reference atlas generated with the Visium technology
(Ståhl et al., 2016) for the murine frontal cortex contains 32,285
genes on 961 spatial positions (a subset presenting the frontal

cortex from the original data), from which we kept 2755 genes
from the 3,000 most variable genes in spatial data that are also
present in scRNA-seq data. Segmenting a standard diagram of
the follicle into 233 spatial positions and using FISH imaging
of eight genes identified as spatially localized (Joost et al.,
2016), we manually defined a continuous reference atlas for
the follicle (section “Materials and Methods”). For mapping
methods requiring a binary reference atlas, we defined a cutoff
expression of 0.2 to be considered on in this follicle reference
atlas of follicle. We further implemented several baseline methods
for benchmark comparisons, including several methods using
predefined metrics where the correspondence score S is defined
to be the 2-norm, infinity norm, or mean percent difference in
the space of common genes between the input cell and spatial
position. We also implemented a large margin nearest neighbor
(LMNN) method that learns a linear metric (section “Materials
and Methods”). Figure 3 shows a scatter plot of the penalty
terms constituting the performance score of each implemented
method on each of the four biological systems, as well as the
average for each method across all four systems. Table 1 includes
the numerical values for each penalty term, as well as the
calculated performance score for each method. Figure 4 includes
example heatmaps of simulated cells for each of the biological
systems. The penalty terms for the individual locations are shown
in Figure 5.

The majority of methods were able to project the simulated
scRNA-seq cells to their known spatial origins with high accuracy.
Specifically, Seurat v1 and DistMap achieve high performance
scores in the zebrafish embryo and Drosophila embryo datasets
that they were originally applied to, respectively. Designed to
be a system-adaptive method, DEEPsc has the best average
performance score across the four datasets (Table 1). Moreover,
while some methods are stronger in terms robustness or
precision, DEEPsc attains a balance between robustness and
precision (Figure 3). This balance is especially important when
investigating the impact of cellular spatial neighborhood on
cell fate acquisition. It is desired to narrow down the inferred
spatial neighborhood (precision) and at the same time reduce
the sensitivity to noise (robustness). The high precision and
robustness of DEEPsc is consistently observed across all locations
in the dataset (Figure 5). Finally, it is worth mentioning that
DEEPsc has a significantly higher robustness in the follicle dataset
which has the smallest number of genes and is the noisiest among
the four datasets.

Applications to Real scRNA-seq
Datasets
We now map actual scRNA-seq data for each system and calculate
the predictive reproducibility for each method (Table 2 and
Figure 6). For the follicle, the scRNA-seq data contains 1,422
cells with 26,024 genes measured containing the eight genes in
the spatial atlas (Joost et al., 2016). For the Drosophila embryo,
we used the scRNA-seq dataset with 1,297 cells and 8,924 genes
among which all the 84 spatial genes are present (Karaiskos et al.,
2017). For the Zebrafish embryo, there are 1,152 cells and 11,978
genes in the scRNA-seq dataset with all the 47 spatial genes
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FIGURE 3 | Summary of the robustness, precision, and accuracy scores of the implemented methods on four different biological systems (A), as well as the simple
average across all four (B). These scores are each defined to be one minus the corresponding penalty term in the performance score, so that a higher score is
better. Since most methods have near perfect accuracy scores, the x-axis shows a mean of the precision and accuracy scores. The y-axis shows the robustness
scores for each method. Due to memory constraints, we were unable to run Seurat v1 on the cortex dataset.

included (Satija et al., 2015). For the murine frontal cortex, we
used the scRNA-seq dataset provided by the Allen Institute (Tasic
et al., 2016), generated with SMART-Seq2, which contains 14,249
cells and 34,617 genes, from which a set of 2,755 genes were
found to be present in the top 3,000 highly variable genes in
spatial atlas. These four datasets cover different situations. The
follicle data contains a moderate number of locations, and the
cells form well-defined layered structures such that there could
be long and thin spatial regions that contain the same cells. The
zebrafish embryo spatial data has a suboptimal resolution such
that each spatial location consists of multiple cells. This data
helps to evaluate the methods in treating coarse spatial atlases.
The Drosophila embryo data contains rich spatial characteristics.
There is a well-defined global ventral-dorsal/anterior-posterior
coordinate system. Locally, there is also a striped pattern in the
lateral side of the embryo. The frontal cortex data examines
spatial gene expression at the transcriptomics level, and functions
as a demonstration that DEEPsc is able to maintain a high
performance on high-dimensional datasets.

For the baseline models, we linearly normalized each gene
in the log-normalized scRNA-seq dataset onto the interval
[0, 1]. Continuous spatial atlases with expression values in the
[0, 1] range were used for the follicle, Drosophila embryo, and
murine frontal cortex systems, the latter two having been linearly
normalized to [0, 1] in the same fashion as the scRNA-seq data.
Since a continuous spatial atlas for Zebrafish embryo is lacking,
we applied a spatial convolution to the binary atlas and added
a small amount of Gaussian noise to simulate a continuous
atlas. The 2-norm, Inf-norm, percent difference, and LMNN
baseline models are then applied to the vectors of the commonly
expressed genes in the spatial atlas and scRNA-seq data. For

DEEPsc, we first applied a PCA reduction to the spatial atlas, and
then applied the same linear transformation to the normalized
expression values of the common genes in the scRNA-seq data.
The feature vectors for the locations in the spatial atlas and
the cells in the scRNA-seq data in the PCA space were then
fed to the neural network. For the four existing methods, we
followed the procedure as described in the associated original
publications, scaling the resulting correspondence scores to [0, 1]
for direct comparison with baseline methods. For all the methods,
we compute the predictive reproducibility by iterating over all
common genes, attempting to reconstruct the expression of
one gene using the k-fold cross validation scheme described
in the previous section. We used k = 4 for the follicle and
Drosophila embryo dataset, and k = 5 for the zebrafish embryo
and cortex dataset.

DEEPsc has a comparable accuracy compared to other
methods, and it also has a consistent performance across different
systems (Table 2 and Figure 6). This consistent performance
further demonstrates the system-adaptive advantage of DEEPsc
and the benefit of using adaptive metrics over predefined ones.
We also notice that similar to the simulated case, DEEPsc also
achieves a balance between precision and robustness in the
case of real scRNA-seq data. For example, while it exhibits
high precision by mapping the example cell to a specific local
spot in the Zebrafish embryo or a local strip in Drosophila
embryo, it also robustly maps a cell to the entire outer bulge
of the follicle instead of only part of it (Figure 7). The
high precision ensures that we can resolve the heterogeneity
in the spatial environment and further relate them to the
heterogeneity in cell fates. The high robustness prevents the
identification of false correlations. Overall, DEEPsc achieves a

Frontiers in Genetics | www.frontiersin.org 6 March 2021 | Volume 12 | Article 636743

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-636743 March 17, 2021 Time: 20:33 # 7

Maseda et al. DEEPsc: scRNA-seq Spatial Mapping

TABLE 1 | Numerical values of each of the three constituent terms of the
performance score, as determined from simulated scRNA-seq data for each
biological system, as well as the average across all systems.

Method Accuracy Precision Robustness Performance
(Author) Term Term Term Score

Follicle

(Achim) 0.0043 0.3484 0.4116 0.7452

Seurat v1 (Satija) 0.0795 0.1076 0.5704 0.7475

DistMap (Karaiskos) 0.0043 0.4076 0.3723 0.7386

(Peng) 0.0000 0.5118 0.4439 0.6814

2-norm (baseline) 0.0000 0.3255 0.2686 0.8020

Inf-norm (baseline) 0.0005 0.2299 0.3613 0.8028

% difference (baseline) 0.0000 0.2829 0.8722 0.6150

LMNN (baseline) 0.0000 0.0002 0.8455 0.7181

DEEPsc (ours) 0.0272 0.2684 0.1904 0.8380

Zebrafish

(Achim) 0.0000 0.4645 0.2516 0.7613

Seurat v1 (Satija) 0.0000 0.0156 0.0604 0.9747

DistMap (Karaiskos) 0.0000 0.3989 0.0000 0.8670

(Peng) 0.0000 0.4296 0.0000 0.8568

2-norm (baseline) 0.0000 0.2902 0.0003 0.9302

Inf-norm (baseline) 0.0000 0.0536 0.1588 0.9292

% difference (baseline) 0.0000 0.4249 0.0095 0.8552

LMNN (baseline) 0.0000 0.0315 0.1689 0.9332

DEEPsc (ours) 0.0339 0.1281 0.0230 0.9383

Drosophila

(Achim) 0.0000 0.3407 0.0759 0.8611

Seurat v1 (Satija) 0.6605 0.0848 0.0000 0.7516

DistMap (Karaiskos) 0.0000 0.3496 0.0024 0.8827

(Peng) 0.0000 0.4313 0.0000 0.8562

2-norm (baseline) 0.0000 0.2310 0.0130 0.9186

Inf-norm (baseline) 0.0000 0.0006 0.1671 0.9441

% difference (baseline) 0.0000 0.3597 0.0013 0.8797

LMNN (baseline) 0.0000 0.0052 0.0987 0.9653

DEEPsc (ours) 0.0087 0.0179 0.1827 0.9303

Cortex

(Achim) 0.0000 0.6357 0.0859 0.7594

Seurat v1 (Satija) – – – –

DistMap (Karaiskos) 0.0000 0.4778 0.0000 0.8407

(Peng) 0.0000 0.4400 0.0000 0.8533

2-norm (baseline) 0.0000 0.3008 0.1546 0.8482

Inf-norm (baseline) 0.0000 0.0006 0.3042 0.8984

% difference (baseline) 0.0000 0.4332 0.3817 0.7284

LMNN (baseline) 0.0000 0.0143 0.3376 0.8827

DEEPsc (ours) 0.0000 0.1167 0.0289 0.9515

Average

(Achim) 0.0011 0.4473 0.2063 0.7818

Seurat v1 (Satija) 0.1850 0.0693 0.2103 0.8246

DistMap (Karaiskos) 0.0011 0.4085 0.0937 0.8323

(Peng) 0.0000 0.4532 0.1110 0.8119

2-norm (baseline) 0.0000 0.2869 0.1091 0.8748

Inf-norm (baseline) 0.0001 0.0712 0.2479 0.8936

% difference (baseline) 0.0000 0.3752 0.3162 0.7696

LMNN (baseline) 0.0000 0.0128 0.3627 0.8748

DEEPsc (ours) 0.0175 0.1328 0.1063 0.9145

For each term, a value closer to zero signifies lower error. For the performance
score, a value closer to one indicates a better performing method. The best method
for each term is bolded for each system.

high predictive reproducibility across all cells in the scRNA-
seq dataset.

Comparison of Dimensionality Reduction
Methods
Dimension reduction is a crucial initial step of DEEPsc.
A dimension reduction method that can be trained on one
dataset and deterministically applied to another is needed
due to the separated training and predicting steps. Here,
we explore two different representative dimension reduction
methods in the linear and nonlinear categories, PCA and
Uniform Manifold Approximation and Projection (UMAP;
McInnes et al., 2018). To compare these two methods, we
trained several networks with varying amounts of added noise
on the reference atlases of the four studied biological systems
(Figure 8). We compared PCA (8 principal components),
UMAP30 (n_components = 8, n_neighbors = 30), and UMAP5
(n_components = 8, n_neighbors = 5). While on the follicle system
all three reduction methods performed virtually identically,
on all three other systems PCA outperformed the other
reduction methods by achieving a higher robustness score while
maintaining similar accuracy.

DISCUSSION

We have developed the DEEPsc framework, which trains a deep
neural network using the known expression levels of a small
subset of genes in a spatial context, then imputes that spatial
information onto a non-spatial scRNA-seq dataset. Instead of
using a predefined metric, DEEPsc finds a metric adaptive to data.
This framework is system-adaptive and designed to be robust
to noise. DEEPsc consistently performs at or above the level
of several existing methods across all four biological systems
studied herein, including systems for which existing methods
were originally developed (Figure 3 and Tables 1, 2), based
on our comprehensive performance measure. While DEEPsc
achieves comparable accuracy and precision to other methods, it
is significantly more robust to noise.

The source of DEEPsc’s ability to perform well across multiple
biological systems is likely the generality of its neural network
architecture and the multiple checks for robustness employed
during training on the reference atlas. The various parameters for
training a DEEPsc network, though chosen empirically, appear
to translate to multiple systems effectively, so we expect DEEPsc
to continue to perform well across more biological systems
in future study.

One notable weakness of DEEPsc is the significant amount of
training time required to produce a final mapping. While most
existing reference atlas methods simply involve a deterministic
calculation to produce a mapping, DEEPsc requires an initial
training, and the training time depends on the number of
locations in the spatial atlas. The training process of DEEPsc can
be effectively accelerated by iterating over a subset of possible
location pairs. Due to the dimension reduction step, DEEPsc
can still be trained efficiently on datasets with large amount
of genes, for example, the spatial transcriptomics data on the
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FIGURE 4 | Example mappings of simulated single cells produced by various existing methods on four different biological systems, with DEEPsc mappings for
comparison. The simulated input cell for the murine follicle system corresponds to position 228. For the Zebrafish system (for which Seurat was introduced), the
simulated input cell corresponds to position 34. For Drosophila (for which DistMap was introduced), the simulated input cell corresponds to position 1982. For the
murine frontal cortex, the simulated input cell corresponds to position 458. Each known position is highlighted in black in each of the heatmaps.

murine frontal cortex. Though the predefined metrics including
the 2-norm and inf-norm perform well in terms of accuracy and
precision, they are less robust to noise. This is further the case for
LMNN as it tries to amplify any small variations. This drawback
in robustness is mitigated by DEEPsc by controlling the balance
between precision and robustness.

Learning a metric from high-dimensional datasets can be
generally useful for analysis and integration of omics datasets.
A future research interest is to decrease training time in
such framework by developing a better method for reducing
the size of the training set to a small, targeted fraction of
relevant examples, particularly for very large atlases such as
those derived from spatial transcriptomics assays. Since the size
of the training set can increase quadratically with the number
of positions in the atlas, it is beneficial to develop a more
efficient training pipeline. We have developed a method of
sparsifying the training set (section “Materials and Methods”),
so that its size only increases linearly with the number of
positions in the atlas, though further improvement may be
warranted. The largest atlas studied here was that of Drosophila
(P = 3039), the training of which took several hours even with
the sparsified training set. Typical numbers of distinct spatial
locations in a spatial transcriptomics dataset can be orders of
magnitude larger.

DEEPsc aside, the performance score we have created can
serve as a comprehensive measure of mapping performance for
future work. The performance score is able to be calculated
for any mapping method that assigns a likelihood of origin
from each spatial location, particularly within the reference
atlas framework. It is not dependent on any specific system
or mapping method, and the individual terms which constitute
it allow for a detailed analysis and comparison of various
methods. Potential improvements might include incorporating
some amount of spatial awareness into the calculation. Currently
each spatial position is treated as completely independent
from every other spatial position, so the precision term, for
example, can yield unintuitive results if a method maps a
cell, for example, with high probability to two positions on
opposite sides of a system and low probability everywhere else,
compared to a different method mapping the same cell with
high probability to five positions in a tightly clustered, spatially
compact region of the system. If, for example, the various
correspondence scores for each position with high probability
were weighted by their physical distance from other cells with
high probability, this term might more accurately reflect the
intuitive idea of precision. Other improvements might include
simplifying the calculation of the robustness term to require fewer
intensive calculations.
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FIGURE 5 | Heatmap representation of the various components of the performance score on a per position basis in (A) the follicle system, (B) the Zebrafish, (C) the
Drosophila embryo, and (D) the murine frontal cortex. We were unable to run Seurat v1 on the Drosophila embryo and cortex data due to memory constraint. The
penalty terms for each simulated cell, including robustness, were computed individually and plotted as a heatmap.

CONCLUSION

DEEPsc achieves an accuracy comparable to several existing
methods while attaining improved precision and robustness. It
also has a more consistent performance across the four different
biological systems tested thanks to the system-adaptive design.
As spatially resolved gene expression data becomes more readily
available, our method will serve as a useful tool to infer spatial
origins from non-spatial scRNA-seq data.

Additionally, our comprehensive performance score and the
collection of reproductions of previously developed methods
in a single software framework will serve as useful tools for
future comparisons of spatial mapping methods. This systematic
approach to imputing spatial information to scRNA-seq data is
crucial to studying the spatial impact on cell fate dynamics.

MATERIALS AND METHODS

Data Preparation for DEEPsc
Given a matrix of scRNA-seq read counts where each row is a
different gene and each column is a different cell, and a matrix
representing a spatial reference atlas where each row is a different
gene and each column is a different spatial position, we first select
common genes by eliminating rows in each corresponding to
genes not in the other matrix. Once we have eliminated genes not

in common, we are left with a number of cells (C) × number
of genes (G) matrix for the scRNA-seq data and a number of
positions (P) × number of genes (G) matrix for the spatial
reference atlas.

We then apply dimensionality reduction to the atlas in the
form of a PCA projection, selecting a user-configurable number
of principal components to serve as feature vectors. We find in
our analysis that keeping the top eight principal components
yields satisfactory results. The same PCA coefficients are used to
project the scRNA-seq matrix into these principal components.
After projection, both matrices are normalized by dividing by the
largest element in each, so that the elements are all in [0, 1].

For the comparisons in section “Comparison of
Dimensionality Reduction Methods,” we use the UMAP
implementation by Meehan et al. (2021), found on the
MATLAB Central File Exchange at https://www.mathworks.
com/matlabcentral/fileexchange/71902. Specifically, we ran
the run_umap() function on the spatial reference atlas with
n_dimensions = 8 and n_neighbors = 30 or n_neighbors = 5 for
UMAP30 and UMAP5, respectively.

Training a DEEPsc Network
To train the DEEPsc network, we use the spatial position feature
vectors themselves as simulated scRNA-seq data. The training
data is a set of P2 vectors of length 2N, where N is the reduced
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TABLE 2 | Predictive reproducibility of each method for real scRNA-seq data.

Method (Author) Follicle Zebrafish Drosophila Cortex Average

Rsc_zero

(Achim) 0.8772 0.5537 0.7798 0.8019 0.7531

Seurat v1 (Satija) 0.8335 0.6842 – – 0.7589

DistMap (Karaiskos) 0.8404 0.6641 0.7850 0.8055 0.7738

(Peng) 0.8219 0.6375 0.7859 0.8092 0.7636

Two-norm (baseline) 0.8017 0.6973 0.7874 0.8114 0.7745

Inf-norm (baseline) 0.8641 0.6180 0.7807 0.8141 0.7692

% difference (baseline) 0.8357 0.5657 0.7790 0.8079 0.7471

LMNN (baseline) 0.8254 0.6795 0.7917 0.8120 0.7772

DEEPsc (ours) 0.8344 0.7335 0.7961 0.8165 0.7951

Rsc_nonzero

(Achim) 0.7495 0.7698 0.8126 0.6693 0.7503

Seurat v1 (Satija) 0.7640 0.6975 – – 0.7308

DistMap (Karaiskos) 0.7705 0.7619 0.8103 0.6685 0.7528

(Peng) 0.7801 0.7663 0.8114 0.6680 0.7565

Two-norm (baseline) 0.7891 0.7386 0.8083 0.6667 0.7507

Inf-norm (baseline) 0.7496 0.7636 0.8128 0.6695 0.7489

% difference (baseline) 0.7740 0.7721 0.8115 0.6690 0.7567

LMNN (baseline) 0.7730 0.7477 0.8117 0.6643 0.7492

DEEPsc (ours) 0.7352 0.7026 0.8080 0.6691 0.7287

Ratlas_zero

(Achim) 0.7680 0.9042 0.9264 0.8360 0.8587

Seurat v1 (Satija) 0.7681 0.9088 – – 0.8385

DistMap (Karaiskos) 0.7674 0.9005 0.9259 0.8374 0.8578

(Peng) 0.7707 0.9006 0.9267 0.8406 0.8597

Two-norm (baseline) 0.7681 0.9003 0.9278 0.8411 0.8593

Inf-norm (baseline) 0.7623 0.9050 0.9259 0.8343 0.8569

% difference (baseline) 0.7714 0.9035 0.9261 0.8438 0.8612

LMNN (baseline) 0.7677 0.8937 0.9289 0.8359 0.8566

DEEPsc (ours) 0.7881 0.9148 0.9257 0.8415 0.8675

Ratlas_nonzero

(Achim) 0.7598 0.6658 0.8523 0.5124 0.6976

Seurat v1 (Satija) 0.7570 0.6776 – – 0.7173

DistMap (Karaiskos) 0.7584 0.6709 0.8527 0.5127 0.6987

(Peng) 0.7570 0.6682 0.8530 0.5135 0.6979

Two-norm (baseline) 0.7582 0.6755 0.8530 0.5135 0.7001

Inf-norm (baseline) 0.7583 0.6745 0.8534 0.5130 0.6998

% difference (baseline) 0.7573 0.6669 0.8524 0.5134 0.6975

LMNN (baseline) 0.7573 0.6764 0.8564 0.5129 0.7008

DEEPsc (ours) 0.7724 0.7079 0.8527 0.5125 0.7114

A value closer to one signifies higher predictive reproducibility. A missing entry
signifies that we were not able to run the relevant method on the given dataset.
The best method for each term is bolded for each system.

dimensionality of the reference atlas. The first N components
correspond to a feature vector of one position in the reference
atlas (functioning as a simulated cell) and the last N components
correspond to some other position in the reference atlas. Each
simulated cell is compared pairwise with every position in the
spatial reference atlas; if the simulated cell is an exact match
to a given position, the target output is chosen to be 1 (a high
likelihood of origin), and if the simulated cell and chosen position
are not an exact match, the target output is chosen to be 0 (a low
likelihood of origin).

The DEEPsc architecture is an artificial neural network with
2N inputs, two fully connected hidden layers with N nodes
each and a single node in the output layer. Sigmoid activation
functions are attached to each node, including the output node,
so that the resulting output is in [0, 1] and can be interpreted
as a likelihood that the input cell originated from the input
spatial position. To preserve robustness and avoid overfitting the
training data, a layer of Gaussian noise is added to the simulated
cells so that the network is pushed to learn complex nonlinear
relationships among the spatial positions in the reference atlas
rather than simply activate when an exact match is encountered.
This Gaussian noise layer allows the user to configure the
standard deviation of the added noise, as well as to configure
the probability that any noise will be added in a given training
epoch. We find empirically that a noise level of about 0.10 and
a probability of 0.5 yield reasonable robustness to noise, though
this may vary from system to system.

Since the training data will naturally consist of many more
non-matches than matches, and thus the target data will contain
many more zeros than ones, we use a novel custom objective
function,

L (Y, T) =

P∑
i=1

(
yi − ti

)2 1
1.001− ti

where yi is the network’s predicted output and ti is the target
output (ti = 1 if exact match and ti = 0 if not), to more heavily
penalize the network when it gives a false negative (low likelihood
when it should be high) than when it gives a false positive (high
likelihood when it should be low). This acts to counteract the
tendency of the network to “learn” to simply return 0 for every
single input and “ignore” any comparably rare training data with
ti = 1.

To further account for the sparsity of exact matches in the
training set, we split it into a test and validation set, the former
consisting of a configurable fraction of the inputs corresponding
to exact matches as well as a configurable multiple of the
inputs corresponding to non-matches. If trainFrac = 0.9 and
trainingMultiple = 99, for example, 90% of the exact matches will
be added to the training set and 99x more non-matches will be
added, so that the exact matches make up 1% of the training
set. The rest of the inputs are reserved for the (generally much
larger) validation set. This is beneficial in reducing training time
because it allows us to train with a much smaller fraction of the
P2 input vectors, giving preference to the exact matches. Indeed,
this reduces the size of the actual training set to scale linearly with
the size of the atlas rather than quadratically.

Training is performed in MATLAB using the trainNetwork()
function in the Deep Learning Toolbox (The Mathworks, Inc,
2019a), for which we implemented the above-described custom
network layers. Since the input data is already normalized
in preprocessing, we disable the default normalization of
trainNetwork(). We use the default Glorot (Xavier and Yoshua,
2010) initialization of weights and biases in the fully connected
layers. We then train each network for a maximum of 50,000
epochs of standard gradient descent with a learning rate of
η = 0.01, shuffle the order of the data each epoch, and use
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FIGURE 6 | Ridgeline plots of the zero (A) and nonzero (B) scRNA-seq predictive reproducibility of individual cells in the scRNA-seq datasets and zero (C) and
nonzero (D) atlas predictive reproducibility of individual positions in the spatial atlas for the four studied systems. We were unable to run Seurat v1 on the Drosophila
embryo and cortex data due to memory constraints.

FIGURE 7 | Example mappings of real single cells produced by various existing methods on four different biological systems, with DEEPsc mappings for
comparison. The input cell for the murine follicle system is cell 710 from the Joost dataset. For the Zebrafish system (for which Seurat v1 was introduced), the input
cell is cell 877 from the scRNA-seq dataset (Satija et al., 2015). For Drosophila (for which DistMap was introduced), the input cell is cell 130 from the scRNA-seq
dataset (Karaiskos et al., 2017). For the murine frontal cortex, the input cell is cell 885 from the Allen reference dataset (Tasic et al., 2016).
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FIGURE 8 | A comparison of the performance of DEEPsc networks using different dimensionality reduction methods on each of the biological systems for various
levels of added noise during training. We compare principal component analysis (PCA) to Uniform Manifold Approximation and Projection (UMAP) with
n_neighbors = 30 (UMAP30) and n_neighbors = 5 (UMAP5). Each of these methods reduce the dimensionality of the initial dataset to n_dimensions = 8. These
scores are each defined to be one minus the corresponding penalty term in the performance score, so that a higher score is better. Since most methods have near
perfect accuracy scores, the x-axis shows a mean of the precision and accuracy scores. The y-axis shows the robustness scores for each method.

the ADAM optimization method (Kingma and Ba, 2014) with
the default parameters β1 = 0.9, β2 = 0.999, and ε = 10−8. In
addition to the custom objective function layer we describe above,
trainNetwork() by default adds an L2-regularization term to the
loss with a regularization factor of λ = 0.0001. We monitor
the RMSE of the validation set throughout training and manually
stop training if it is no longer improving before the maximum
number of epochs has been reached. The trainNetwork()
function also allows for parallel computation via the Parallel
Computing Toolbox (The Mathworks, Inc, 2019b), which is
highly recommended but not strictly required for training.

Creating a Reference Atlas for the
Murine Follicle
To create a spatial reference atlas for the murine follicle system,
we patterned the spatial coordinates of each position in the atlas
off of a standard diagram of a mouse follicle found in Figure 1 of
Joost et al. (2016). We constructed a Voronoi diagram around

each of the cell centers and made manual adjustments to the
vertices as we saw fit aesthetically. We then selected the eight
genes in the atlas from the systematic staining catalog made
available by Joost. We chose the genes based on a combination
of high image quality and spatial diversity. Gene expression
levels in [0, 1] were chosen manually to best represent the
images, though to eliminate any implicit bias we also added
a small level of Gaussian noise to the atlas. For all methods
requiring a binary atlas, we chose a cutoff of 0.2 to represent “on”
expression in this atlas.

Large Margin Nearest Neighbor Baseline
To implement a LMNN baseline for benchmarking comparison,
we used code from the MATLAB Toolbox for Dimensionality
Reduction found at https://lvdmaaten.github.io/drtoolbox/ and
modified it for our uses. Specifically, we used the lmnn() function
in the “techniques” subfolder, and modified the code to set
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mu = 1, i.e., to remove the “pull” term, as well as setting
the number of targets to 1 (the point itself) and treating
all other points as imposters. Further, we modified the slack
variables to enforce a minimum separation of

√
D, where D is

the dimensionality of the space (D = G for our applications).
For the numerical experiments of the LMNN method with
the cortex dataset, a PCA dimension reduction (50 PCs) was
performed before applying LMNN to accommodate the large
number of genes.
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