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Abundant Genome-wide association study (GWAS) findings have reflected the sharing
of genetic variants among multiple phenotypes. Exploring the association between
genetic variants and multiple traits can provide novel insights into the biological
mechanism of complex human traits. In this article, we proposed to apply the
generalized Berk-Jones (GBJ) test and the generalized higher criticism (GHC) test
to identify the genetic variants that affect multiple traits based on GWAS summary
statistics. To be more robust to different gene-multiple traits association patterns across
the whole genome, we proposed an omnibus test (OMNI) by using the aggregated
Cauchy association test. We conducted extensive simulation studies to investigate the
type one error rates and compare the powers of the proposed tests (i.e., the GBJ, GHC
and OMNI tests) and the existing tests (i.e., the minimum of the p-values (MinP) and
the cross-phenotype association test (CPASSOC) in a wide range of simulation settings.
We found that all of these methods could control the type one error rates well and the
proposed OMNI test has robust power. We applied those methods to the summary
statistics dataset from Global Lipids Genetics Consortium and identified 19 new genetic
variants that were missed by the original single trait association analysis.

Keywords: multiple phenotypes, summary statistics, the generalized higher criticism, the generalized Berk-Jones
test, the aggregated Cauchy association test

INTRODUCTION

Genome-wide association studies (GWASs) have identified thousands of genetic variants or single
nucleotide polymorphisms (SNPs) that are associated with hundreds of complex human traits
(Solovieff et al., 2013). The abundance of GWASs findings provides novel insights into the genetic
architecture of complex human traits and suggests the existence of sharing of SNPs among
multiple traits (Luo et al., 2020). Therefore, there is an increasing interest in exploring powerful
statistical methods to detect the association between a single SNP and multiple traits (Liu and Lin,
2018). The existing methods can be broadly classified into multivariate approaches and univariate
approaches (Solovieff et al., 2013). Multivariate approaches analyze all of the interesting traits in
a unified framework (Solovieff et al., 2013; Zhu et al., 2015). However, they require to pool the
individual-level phenotype and genotype data, which are always difficult to access (Pasaniuc and
Price, 2017). In contrast, univariate approaches try to aggregate the GWAS results of each trait
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to jointly analyze multiple traits while accounting for the
between-trait correlation (Liu and Lin, 2018). The most
attractive advantage of univariate approaches is that they can
be implemented by existing GWAS summary statistics, which
contain rich information and are also easier to access than
individual-level data. The minimum of the p-values (MinP)
(Conneely and Michael, 2007) of multiple traits is one of the most
classical univariant methods that accounting for the correlation
structures among multiple phenotypes. It has been demonstrated
to be powerful when signals are extremely sparse, that means
a SNP only affects a very small number of multiple traits (Liu
and Lin, 2018). However, it may lose power when the signals
become dense. Later, Zhu et al. (2015) proposed two cross-
phenotype association tests (CPASSOC) to integrate the evidence
of multiple phenotypes. However, these two tests strongly depend
on the assumption of homogeneous or heterogeneous effect. If
the assumption is violated, they will lose power. In addition,
the P-value of these tests need to be calculated by Monte-
Carlo simulations, which are computationally intensive especially
for large-scale genome data (Liu and Lin, 2018). It is hence
of substantial interest to develop robust and computationally
efficient statistical tests to jointly analyze multiple traits based on
the univariate GWAS summary statistics.

The higher criticism (HC) (Donoho and Jin, 2004) and the
Berk-Jones (BJ) (Berk and Jones, 1979) test are two efficient ways
to aggregate the sparse and weak signals into a stronger one when
signals are independent. To account for the correlation among
marginal test statistics, the generalized higher criticism (GHC)
test (Barnett et al., 2017) has been proposed and used for SNP-
set analysis. The GHC test neither requires any transformation
of the original test statistics nor simulation-based procedure to
obtain the P-value. Several previous studies have shown that
the GHC test has good performance under extreme sparsity
settings while might lose power under moderate sparsity settings.
To adapt the case of weak and moderately sparsity signals,
Sun and Lin developed the generalized Berk-Jones (GBJ) test
(Sun and Lin, 2020) also in the SNP-set analysis context. The
GBJ test is an extension of the BJ test while considering the
correlation structure of signals. Besides, they provided a more
computationally efficient analytic P-value calculation procedure.
Both the GHC and GBJ tests are originally designed to test
for association between a SNP-set and an outcome, and they
haven’t been adapted for multi-trait analysis. Since the power
of multi-trait analysis depends on the correlation structure, the
signal directions and the signal sparsity which typically varies
with genetic variants across the whole genome, therefore, a more
robust omnibus testing procedure is deserved. Recently, Liu et al.
proposed an attractive P-value combination method, i.e., the
aggregated Cauchy association test (ACAT) (Liu et al., 2019). The
ACAT is not only robust to the correlation structure between
combined P-values but is also computationally efficient.

In this article, we presented powerful procedures to jointly
analyze multiple traits based on GWAS summary statistics. First,
we adapted the GBJ and GHC tests originally developed for SNP-
set association studies to analyze multiple traits. We replaced
the linkage disequilibrium (LD) matrix among SNPs with the
correlation matrix among multiple traits. Second, we proposed

a more robust omnibus (OMNI) test to combine the P-values of
the GBJ, GHC and MinP tests by the ACAT. We investigated the
type one error rates of the proposed tests (i.e., The GBJ, GHC
and OMNI tests) and compared their statistical powers with the
existing tests (i.e., the MinP and CPASSOC tests) by conducting
extensive simulations. Through analyzing three lipid traits, i.e.,
high-density lipoprotein (HDL), low-density lipoprotein (LDL)
and triglyceride (TG) from the global lipids genetics consortium
(GLGC) (Teslovich et al., 2010), we identified 19 new SNPs that
were ignored by the original univariate GWAS.

MATERIALS AND METHODS

Consider N subjects and K correlated phenotypes Y =
(Y1, · · · ,YK)

T , where T denotes the transpose of a vector or
matrix. Traditional GWAS is used to performing univariate
phenotype analysis by analyzing each of the K phenotypes and
a given SNP separately, which generate K marginal test statistics
(Liu and Lin, 2018). Suppose Z = (Z1, . . . ,ZK)T (k = 1, . . . ,K)
is a vector of Z scores with each element of Z obtained from large-
scale GWASs. Under the null hypothesis H0, Z asymptotically
follows a multivariate normal distribution with mean µ and
covariance matrix 6 (Zhu et al., 2015; Liu and Lin, 2018). The
covariance matrix 6 can be accurately estimated by the sample
correlation matrix across all the independent SNPs after LD
pruning under H0 (Liu and Lin, 2018). Since this estimation
procedure is valid if the GWAS summary statistics are obtained
from one cohort, or multiple cohorts with possible overlapping
subjects or phenotype-specific meta-analysis (Liu and Lin, 2018),
our K phenotypes allow being measured on the same or the
different study subjects. When jointly analyzing multiple traits,
we are interested in exploring whether a given SNP is associated
with these K correlated phenotypes, that is to test the hypothesis
H0 : µ = 0 versus Ha : µ 6= 0 (i.e., at least one element of µ is
not equal to zero). Since there may exist sparse signal (Liu and
Lin, 2018), that is only a small set of non-zero values in µ under
Ha, we first adapted the GBJ and GHC tests to detect these weak
and sparse signals.

The Generalized Higher Criticism Test
The HC test is an attractive method to detect the sparse signals
in high-dimensional data when test statistics are independent
and the number of parameters is very large (Barnett and
Lin, 2014). The GHC test statistic is an extension of the HC
test and allows for arbitrary correlation structures. This test
has been used to account for the LD structure among SNPs
when performing gene-based genome-wide association analyses.
However, to jointly analyze multiple phenotypes, we account
for the between-phenotype correlation structure 6 rather than
the LD structure because we conduct association analysis for
each SNP individually. Therefore, the definition of the GHC test
statistic for combining information over K marginal test statistics
can be written as

GHC =
sup

t ≥ t0

{
S (t)− 2K8̄ (t)
√
v̂ar (S (t))

}
,
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where 8̄ (t) = 1−8(t) is the survival function of a normal

distribution, S (t) =
K∑

k=1
1{|Zk|≥t}, v̂ar (S (t)) is the estimated

variance of S (t) that can be obtained by 6 as demonstrated
by Barnett et al. (2017). The P-value of the GHC test
can be calculated analytically, refer to Barnett et al. (2017)
for more details.

The Generalized Berk-Jones Test
The GBJ test is derived from a class of tests that originally
developed to test for the association between a SNP-set
and an outcome (Sun and Lin, 2020), while accounting
for LD structures among SNPs. Here, we also use the
between-phenotype correlation structure 6 to replace
the LD structure among SNPs. Then, the GBJ test
for testing K multiple phenotypes can be defined as
the maximum of a set of likelihood ration type tests,
that is:

GBJ

= max
1≤k≤K/2

log

Pr
{
S
(
|Z|(K−k+1)

)
= k|E (Z) = µ̂k,K · JK , cov (Z) = 6

}
Pr
{
S
(
|Z|(K−k+1)

)
= k|E (Z) = 0 · JK , cov (Z) = 6

}


·I
{

28
(
|Z|(k−K+1)

)
<

k
K

}
,

where I is an indicator function, JK is a K × 1
unit vector and µ̂k,K > 0 solves the following
equation

k/K

= 1−
{
8
(
|Z|(K−k+1) − µ̂k,K

)
−8

(
− |Z|(K−k+1) − µ̂k,K

)}
.

When 6 = I, the GBJ test reduces to the BJ test and S (t)
follows a binomial distribution. When 6 6= I, the distribution
of S (·) can be approximated by an extended Beta-Binomial
distribution (Prentice, 1986), so that the analytical P-value
can be calculated efficiently, refer to Sun et al. for more
detail (Sun and Lin, 2020). This P-value calculation strategy
can also be generalized to other supremum-based tests,
such as the HC and GHC tests. Sun and Lin (2020)
constructed an R package named GBJ, that can provide both
the test statistics and the P-values of the GBJ, GHC and
MinP tests1.

The Omnibus Test
As demonstrated by Sun and Lin (2020), the GBJ test is better
when signals are moderately spare, while the GHC and MinP
tests have better performance when the signals were extremely
sparse. We further proposed an omnibus test based on the
ACAT method that is more robust to different degrees of
sparsity and correlation structures. We define our omnibus

1https://cran.r-project.org/web/packages/GBJ/index.html

test as

OMNI =
1
3

tan
{(

0.5− pGBJ
)
π
}
+

1
3

tan
{(

0.5− pGHC
)
π
}

+
1
3

tan
{(

0.5− pMinP
)
π
}
,

wherepGBJ, pGHC and pMinP are the P-values of the GBJ,
GHC and MinP tests. Since pGBJ, pGHC and pMinP are
calculated under the null distribution, the transformation
1
3 tan

{(
0.5− p

)
π
}

follows Cauchy distribution (Liu et al.,
2019). Therefore, the OMNI test is approximately following a
Cauchy distribution with a location parameter 0 and a scale
parameter 1. The P-value of the OMNI test can be calculated by

pOMNI ≈
1
2
−

arctan (OMNI)
π

.

The program from https://rdrr.io/github/xihaoli/STAAR/src/
R/CCT.R can be used to directly implement the ACAT
method. We also developed an R package for the above
proposed tests2.

SIMULATION STUDY

Type One Error Rates
We conducted simulation studies to investigate the type one
error rates of the GBJ, GHC, MinP and OMNI tests at
significance levels α = 0.05, 0.01, 10−3 and 10−4 respectively.
We set the number of traits K equal to 2, 4 and 10. For
a given K, the correlation matrix 6 of interested traits was
exchangeable with the correlation coefficient ρ = 0.1, 0.3, 0.5.
Based on these, we generated 103, 104, 105, and 106 summary
statistics by a multivariate normal distribution with mean 0
and covariance matrix 6. Then we calculated the P-values
of the GBJ, GHC, MinP and OMNI tests for each of the
above settings. The type one error rates for each test were
calculated as the proportion of P-values less than the significance
level. The results were summarized in Table 1, which showed
that the type one error rates could be well controlled by all
of these tests at different significant levels in multiple-trait
analysis settings.

Power
We further compared the empirical powers of the proposed tests
(i.e., the GBJ, GHC and OMNI tests) with the existing MinP and
CPASSOC tests. The powers were calculated by the proportion of
P-values less than the significant level α = 0.05. In particular, we
account for the following factors: signal direction, signal sparsity
and the correlation structure among multiple traits. First, we
considered the number of traits K = 2 with µ = (2, 2)T and µ =
(2,−2)T respectively to illustrate the effect of the signal direction
on the power of multi-trait analysis. For each µ, we set the
correlation coefficient ρ = 0.1, 0.3, 0.5 and 0.8 to investigate how

2https://github.com/Vivian-Liu-Wei64/Onmi_Multi
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5 the correlation structure affects the power. Second, we considered
K = 3 and two correlation structures 61 and 62, i.e.,

61 =

 1.00 0.30 0.30
0.30 1.00 0.30
0.50 0.30 1.00

 , 62 =

 1.00 −0.08 −0.42
−0.08 1.00 0.27
−0.42 0.27 1.00

 .
Here, 62 is estimated from the real summary statistics of three
lipid traits (i.e., HDL, LDL and TG). We investigated the impact
of the location of the heterogeneity effect on power. The details
of the settings for each correlation structure were listed in
Table 2. Third, we consider K = 10 and K = 20 to investigate
the effect of signal sparsity. For both K = 10 and K = 20, we
set the correlation coefficient ρ = 0.3 and allowed 1, 3, 6 and 9
traits among them with a mean value of 2. We generated 1,000
random samples based on a multivariate normal distribution
with the above different mean µ and covariance matrix 6. The
P-values are then calculated by the GBJ, GHC, OMNI, MinP and
CPASSOC tests, respectively.

Figure 1 shows the estimated powers of the GBJ, GHC,
OMNI, MinP and CPASSOC tests when K = 2. Regardless of the
correlation structures, the CPASSOC test has the largest power
for the homogeneous effect µ = (2, 2)T . However, it decreased
less than 0.1 for the heterogeneous effect µ = (2,−2)T , which
is consistent with Zhu et al.’s simulation (Zhu et al., 2015). In
contrast, our proposed tests (i.e., the GBJ, GHC and OMNI tests)
and the MinP test are robust to the heterogeneous effect µ =
(2,−2)T . With the correlation increasing from 0.1 to 0.8, the
powers of all the tests decrease for µ = (2, 2)T , while increasing
for µ = (2,−2)T . In addition, the GHC test is more powerful
than the GBJ and MinP tests with smaller ρ, while less powerful
with larger ρ. The performance of the GBJ and MinP tests
are very similar when K = 2. They have the largest power for
heterogeneous effect µ = (2,−2)T with ρ = 0.8. The OMNI
test has a moderate performance among all of the settings. The
estimated powers of the GBJ, GHC, OMNI, MinP and CPASSOC
tests when K = 3 were summarized in Table 2. Except for the
CPASSOC test that less powerful for the heterogeneous effect,

TABLE 2 | Estimated power of the GBJ, GHC, MinP, OMNI and CPASSOC tests
when K = 3 at significance level of α = 0.05 based on 1× 103 replications
for each setting.

6 µT GBJ GHC MinP OMNI CPASSOC

61 (−2, 2, 2) 0.792 0.793 0.749 0.802 0.146

(2, −2, 2) 0.832 0.823 0.778 0.827 0.153

(2, 2, −2) 0.818 0.799 0.749 0.808 0.150

62 (−2, 2, 2) 0.719 0.720 0.670 0.728 0.094

(2, −2, 2) 0.829 0.811 0.757 0.821 0.686

(2, 2, −2) 0.774 0.757 0.726 0.768 0.164

61 (−2, −2, 2) 0.794 0.789 0.755 0.799 0.140

(−2, 2, −2) 0.831 0.821 0.779 0.829 0.168

(2, −2, −2) 0.810 0.803 0.754 0.808 0.144

62 (−2, −2, 2) 0.779 0.775 0.719 0.778 0.149

(−2, 2, −2) 0.869 0.841 0.798 0.854 0.726

(2, −2, −2) 0.724 0.714 0.675 0.719 0.087
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FIGURE 1 | Estimated powers of the GBJ, GHC, OMNI, MinP and CPASSOC tests when K = 2 based on 1,000 replications at the significant level α = 0.05.

FIGURE 2 | Estimated powers of the GBJ, GHC, OMNI, MinP and CPASSOC tests when ρ = 0.3 based on 1,000 replications at the significant level α = 0.05.

all other tests perform well under both 61 and 62. The GBJ test
always has the best performance, closely followed by the OMNI
and GHC tests. The performance of the MinP test is worse than
all of our proposed tests when K = 3. Interestingly, all the tests
have the largest power for µ = (2,−2, 2)T , while lowest power
for µ = (−2, 2, 2)T . Figure 2 shows the estimated powers of the
GBJ, GHC, OMNI, MinP and CPASSOC tests when K = 10 and
K = 20 allowing 1, 3, 6 and 9 traits with non-zero effect. As

expected, the GBJ test almost outperforms other tests when the
signals are moderately sparse while has the lowest power when
the signals are extremely sparse. On the contrary, the MinP test
provides the best power performance under extreme sparse while
losing power as the signals becoming dense. The performance of
the GHC test approximates the MinP test when the number of
affected traits is very small, but it is less sensitive to the signal
sparsity than the MinP test. The CPASSOC test performs poorly
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TABLE 3 | Application of the GBJ, GHC, OMNI, MinP and CPASSOC tests to the GCLC dataset with P-values of the OMNI test less than the GWAS significant level
5× 10−8.

SNP Chr pHDL pLDL pTG GBJ GHC MinP OMNI CPASSOC

rs7307053 12 5.53× 10−8 1.94× 10−3 1.01× 10−7 1.02× 10−10 7.62× 10−8 1.66× 10−7 3.05× 10−10 0.637

rs3890384 19 0.386 7.06× 10−8 2.07× 10−7 2.84× 10−10 1.55× 10−7 2.11× 10−7 8.49× 10−10 3.33× 10−11

rs330095 8 7.67× 10−8 2.19× 10−7 0.228 3.07× 10−10 1.64× 10−7 2.30× 10−7 9.17× 10−10 2.69× 10−8

rs6993714 8 3.02× 10−7 0.023 1.80× 10−7 4.90× 10−10 2.27× 10−7 5.40× 10−7 1.47× 10−9 0.711

rs3918241 20 3.71× 10−7 0.799 2.62× 10−7 6.59× 10−10 2.79× 10−7 7.85× 10−7 1.97× 10−9 0.585

rs968567 11 8.32× 10−5 3.87× 10−7 4.96× 10−7 9.98× 10−10 3.72× 10−7 1.16× 10−6 2.98× 10−9 0.176

rs11823918 11 1.32× 10−7 0.011 5.56× 10−7 1.18× 10−9 3.96× 10−7 3.96× 10−7 3.51× 10−9 1.55× 10−20

rs1112073 6 0.242 5.77× 10−7 4.38× 10−7 1.24× 10−9 4.33× 10−7 1.31× 10−6 3.71× 10−9 3.78× 10−6

rs11754548 6 6.56× 10−7 2.91× 10−7 0.593 1.49× 10−9 4.92× 10−7 8.74× 10−7 4.46× 10−9 1.14 ×10−8

rs13432797 2 6.74× 10−7 1.68× 10−4 5.16× 10−8 1.55× 10−9 1.55× 10−7 1.55× 10−7 4.56× 10−9 0.230

rs2943633 2 9.43× 10−7 0.139 3.71× 10−7 2.52× 10−9 7.09× 10−7 1.11× 10−6 7.53× 10−9 0.863

rs489693 18 1.49× 10−6 0.099 4.81× 10−7 4.86× 10−9 1.12× 10−6 1.44× 10−6 1.45× 10−8 0.371

rs653178 12 1.59× 10−6 8.60× 10−8 0.203 5.34× 10−9 2.58× 10−7 2.58× 10−7 1.54× 10−8 3.93× 10−7

rs636202 6 6.48× 10−8 0.011 1.64× 10−6 5.62× 10−9 1.95× 10−7 1.94× 10−7 1.59× 10−8 0.917

rs10516787 4 2.11× 10−6 0.043 1.80× 10−6 8.10× 10−9 1.59× 10−6 5.41× 10−6 2.41× 10−8 0.788

rs157582 19 2.49 ×10−3 2.24× 10−6 7.99× 10−8 8.76× 10−9 2.40× 10−7 2.40× 10−7 2.45× 10−8 1.55× 10−3

rs1240777 11 2.19× 10−6 0.3751 1.36× 10−6 8.52× 10−9 1.65× 10−6 4.09× 10−6 2.54× 10−8 0.932

rs511154 3 2.69× 10−6 0.191 1.01× 10−7 1.15× 10−8 3.03× 10−7 3.03× 10−7 3.20× 10−8 0.632

rs10790519 11 5.62× 10−8 3.98× 10−6 0.729 2.03× 10−8 1.68× 10−7 1.68× 10−7 4.90× 10−8 4.24× 10−11

when the signals are sparse, while becomes better when nearly all
the traits with non-zero effect. As shown in Table 2, Figures 1
and 2, there is no single test that can outperform others among
all the settings. In contrast, the OMNI test is robust to the signal
directions, the correlation structures and the degrees of sparsity.

REAL DATA ANALYSIS

We now illustrate the proposed methods using the summary
statistics of three lipid traits (i.e., HDL, LDL and TG) provided by
the GCLC (Teslovich et al., 2010) from http://csg.sph.umich.edu/
willer/public/lipids2010/. We began our real data analysis with
a total of 2,691,421 SNPs that were shared by these three traits.
Based on these SNPs, we calculated the sample correlation matrix
62 of Z-scores of HLD, LDL and TG using the same method as
in Liu and Lin (2018). We used the GBJ, GHC, OMNI, MinP and
CPASSOC tests to calculate the P-values and obtained 68 new
SNPs (missed by single-trait analysis) that reached the genome-
wide significance level (5× 10−8) according to the P-values of
the OMNI test. Here, for comparison, we used the same genome-
wide significance level as in the original single-trait analysis
paper (Teslovich et al., 2010). To avoid dependent SNPs, we
conducted LD pruning with threshold r2< 0.01 within the 500kb
region (Liu and Lin, 2018). Finally, we found 19 independent
new SNPs that were missed by all of the three original GWAS.
The detail information of these SNPs was listed in Table 3. For
example, the most significant SNP found by the ONMI test is
rs7307053 (p = 3.05× 10−10), which was also identified by the
GBJ test with p = 1.02× 10−10. The CPASSOC test identified 5
new SNPs, which provided the most significant SNP rs11823918
(p = 1.55× 10−20). The GHC and MinP tests did not found new
SNPs. The genomic inflation factor of these five tests was very

close to 1.0 (0.98–1.10). Overall, the real data analysis results
further demonstrated that the proposed OMNI test is a useful
method to detect novel SNPs for multiple-trait analysis.

DISCUSSION

As there is increasing evidence suggesting the sharing of genetic
background among multiple traits, it is of great interest to
develop robust and powerful statistical methods to detect the
association between a single SNP and multiple traits. In this
article, we proposed to use the GBJ and GHC tests for multi-traits
analysis based on GWAS summary statistics. Since no single test
can have superior performance among different situations, we
further proposed a more robust omnibus test using the ACAT
method. Simulation studies showed that the proposed OMNI
test has a robust performance across different settings. Through
analyzing the lipids GWAS data of three traits (i.e., HDL, LDL
and TG), our proposed OMNI test identified new SNPs that were
missed by original single-trait GWAS analysis.

Our methods have several advantages. First, our methods
are based on the GWAS summary statistics that are easier
to access than individual level data for multiple-trait analysis.
Second, we adapted two powerful methods (i.e., the GBJ and
GHC tests) originally developed for SNP-set association studies to
conduct multi-trait analysis while accounting for the correlation
structures. Third, we propose an omnibus test that used the
recently developed computationally efficient and accurate ACAT
method that can provide robust performance over different
degrees of association signal sparsity. In summary, all of these
tests can be applied to detect SNPs that associated with multiple
traits when there exist weak and sparse signals. For future work,
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we will try to extend our work to test the associations between
multiple traits and a set of SNPs which requiring considering both
LD among SNPs and the correlation structure among multiple
traits as also mentioned by Liu et al. (2020), even including rare
variants in sequencing association studies.
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