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Immune checkpoint inhibitors (ICIs) significantly improve the survival of patients
with non-small-cell lung cancer (NSCLC), but only some patients obtain clinical
benefits. Predictive biomarkers for ICIs can accurately identify people who will
benefit from immunotherapy. Lipid metabolism signaling plays a key role in the
tumor microenvironment (TME) and immunotherapy. Hence, we aimed to explore the
association between the mutation status of the lipid metabolism pathway and the
prognosis of patients with NSCLC treated with ICIs. We downloaded the mutation
data and clinical data of a cohort of patients with NSCLC who received ICIs. Univariate
and multivariate Cox regression models were used to analyze the association between
the mutation status of the lipid metabolism signaling and the prognosis of NSCLC
receiving ICIs. Additionally, The Cancer Genome Atlas (TCGA)–NSCLC cohort was used
to explore the relationships between the different mutation statuses of lipid metabolism
pathways and the TME. Additionally, we found that patients with high numbers of
mutations in the lipid metabolism pathway had significantly enriched macrophages (M0-
and M1-type), CD4 + T cells (activated memory), CD8 + T cells, Tfh cells and gamma
delta T cells, significantly increased expression of inflammatory genes [interferon-γ
(IFNG), CD8A, GZMA, GZMB, CXCL9, and CXCL10] and enhanced immunogenic
factors [neoantigen loads (NALs), tumor mutation burden (TMB), and DNA damage
repair pathways]. In the local-NSCLC cohort, we found that the group with a high
number of mutations had a significantly higher tumor mutation burden (TMB) and PD-L1
expression. High mutation status in the lipid metabolism pathway is associated with
significantly prolonged progression-free survival (PFS) in NSCLC, indicating that this
marker can be used as a predictive indicator for patients with NSCLC receiving ICIs.

Keywords: immune checkpoint inhibitors, non-small-cell lung cancer, predictive marker, lipid metabolism
pathway, immune microenvironment

INTRODUCTION

Lung cancer is a malignant tumor with the highest morbidity and mortality worldwide (Bray et al.,
2018). Non-small-cell lung cancer (NSCLC) is the most common pathological type of lung cancer,
and the 5-year survival rate is less than 15% (Herbst et al., 2018; Siegel et al., 2018). Immune
checkpoint inhibitors (ICIs) have an antitumor effect by restoring T cell-mediated antitumor
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immune function and have become a novel clinical treatment
tool for NSCLC; however, growing evidence suggests that not all
NSCLC patients benefit from ICIs. In the unscreened NSCLC
populations, the objective response rate (ORR) to ICIs is
commonly less than 20% (Garon et al., 2015). Thus, predicting
the effectiveness of ICIs, identifying patients who can benefit
from ICIs (Gibney et al., 2016), and maximizing the efficacy
of immunotherapy are of great significance for the precise
treatment of NSCLC.

PD-L1 expression and tumor mutation burden (TMB) are
commonly used markers of immune efficacy. Additionally,
high microsatellite instability (MSI-H), deficient mismatch
repair (dMMR), tumor-infiltrating lymphocytes (TILs), and the
intestinal microbial flora have also show certain predictive value.
Although the research conclusions are constantly evolving, some
limitations remain (Herbst et al., 2016; Langer et al., 2016; Brody
et al., 2017; Chen et al., 2019). For example, a small number
of NSCLC patients with low PD-L1 expression seem to be
“biomarker negative” but still respond to ICI-based treatment. In
contrast, not all patients with high PD-L1 expression can obtain
clinical benefit from ICIs (Langer et al., 2016). Additionally,
there are many challenges for detecting TMB in clinical practice,
including determining the ideal approach for detecting TMB,
determining the appropriate cutoff for high or low TMB, and
reaching a consensus regarding the different numbers of genes
detected by different platforms (Chowell et al., 2018). Moreover,
the incidence of MSI-H in NSCLC is very low, so the values
of MSI-H and dMMR for predicting the efficacy of ICIs in
NSCLC remain to be verified (Warth et al., 2016; Vanderwalde
et al., 2018). Hence, how to identify which patients with NSCLC
should be treated with ICIs has become an urgent problem in
clinical practice.

Metabolic reprogramming processes, such as lipid
metabolism, play an important role in the tumor
microenvironment (TME) and immunotherapy (DeBerardinis
et al., 2008; Yoshida, 2015; Sun, 2016; Baek et al., 2017; Ma
et al., 2019). Tumor cells produce large amounts of fatty acids
through de novo synthesis, and a fatty acid-enriched TME affects
the function of effector T cells and M1-type macrophages and
is conducive to the production of Tregs and M2 macrophages
(Gaber et al., 2017), causing an immunosuppressive TME. Jiang
et al. (2018) found that the overexpression of fatty acid synthase
(FASN) in ovarian cancer contributed to lipid accumulation
in tumor-infiltrating dendritic cells (DCs), causing T cell
dysfunction, which in turn induced an impaired antitumor
immune response and thus inhibited the ability of fatty acid
synthesis to enhance antitumor immunity. Lin et al. (Lin R. et al.,
2020) found that tissue-resident memory T (Trm) cells in gastric
adenocarcinoma do not use glucose but rather rely on fatty acid
oxidation for energy. Cancer cells and Trm cells compete for
lipid metabolism, leading to Trm cell death. Blocking PD-L1 can
regulate Trm cell metabolism, promote lipid uptake, and further
enhance antitumor immune ability. Moreover, several studies
have suggested that alterations in specific signaling pathways
are associated with the prognosis of patients receiving ICIs and
can be used as novel markers to identify patients who will gain
benefit from immunotherapy (Teo et al., 2018; Wang et al., 2018).

Hence, based on the above results, we aimed to illustrate the
association between the mutation status of the lipid metabolism
pathway and the prognosis of NSCLC patients treated with
ICIs to identify a means to further predict which population of
patients with NSCLC will respond to ICIs.

MATERIALS AND METHODS

Immunotherapy Cohort, The Cancer
Genome Atlas Cohort, and Local Cohort
One cohort of NSCLC patients who received ICIs [anti-PD-
(L)1 monotherapy or anti-PD-(L)1 in combination with anti-
CTLA-4 therapy] was derived from a published study reported
by Rizvi et al. (2018). This immunotherapy cohort included a
total of 240 NSCLC patients with clinical data and mutation
data. Additionally, we used the TCGAbiolinks R package to
download mutation data, expression data and clinical data from
the LUAD and LUSC cohorts in The Cancer Genome Atlas
(TCGA) database (Colaprico et al., 2016). The TCGA-LUAD
and TCGA-LUSC cohorts were combined into one cohort in
the subsequent analysis, called the TCGA cohort (Tomczak
et al., 2015). We collected 115 formalin-fixed paraffin-embedded
(FFPE) NSCLC samples from the Thoracic Medicine Department
I, Hunan Cancer Hospital and Thoracic Medicine Department
I, Affiliated Tumor Hospital of Xiangya Medical School of
Central South University and performed panel sequencing.
The human NSCLC tumor specimens, panel sequencing, data
processing, and pathological diagnosis are detailed in the
Supplementary Methods.

Mutation Data Preprocessing
To explore the association between the mutation status of
the lipid metabolism pathway and the prognosis of NSCLC
patients receiving ICIs, we downloaded the lipid metabolism
gene set from MSigDB (Liberzon et al., 2011). First, we filtered
the mutation data and retained only the non-synonymous
mutation data. Next, we counted the non-synonymous mutations
in the lipid metabolism pathway in each sample. According
to the median number of non-synonymous mutations that
occurred in this pathway in each dataset, each sample was
divided into a group with a high number of mutations and
a group with a low number of mutations in lipid metabolism
molecules (Supplementary Table 1). In the subsequent analysis,
we will refer to these two groups as the high mutation group
and the low mutation group for short. Additionally, in the
mutation frequency analysis, we only compared the top 20
mutations in each cohort.

Immune Microenvironment Analysis
We used the CIBERSORT algorithm and LM22.txt to estimate
the proportions of 22 types of TILs from the expression data of
NSCLC patients (Newman et al., 2015). Additionally, immune-
related genes, immune checkpoint genes and immune-related
scores were obtained from published studies (Rooney et al.,
2015; Thorsson et al., 2018). The gene set enrichment analysis
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(GSEA) algorithm was used to determine the pathways that were
significantly enriched or downregulated in the high mutation
and low mutation groups (Subramanian et al., 2007). We
analyzed and compared the gene ontology (GO) terms, Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways and
Reactome pathways enriched in the high and low mutation
groups. The enrichment score (ES) and P-value were used to
evaluate the activity of the pathway and whether there was a
significant difference.

Statistical Analysis
The Mann–Whitney U test and Fisher’s exact test were applied
to the comparison of the difference between the continuous
and categorical variables between high-mut and low-mut groups,
respectively. We used the Kaplan–Meier (KM) curve, univariate
and multivariate Cox model, and the log-rank test to evaluate the
effect of the mutation status of lipid metabolism on the prognosis
of NSCLC receiving ICIs. Also, the “ggpubr” R package was used
to visualize boxplots (Kassambara, 2018). P less than 0.05 was
regarded as statistically significant.

RESULTS

A Higher Number of Mutations in the
Lipid Metabolism Pathway Was
Associated With Favorable Prognosis in
Patients Treated With ICIs
In the ICI-treated cohort, we used a univariate-Cox model
to analyze the effects of a high number of mutations in the
lipid metabolism pathway, sex, histological type, and age at the
time of prognosis of NSCLC patients receiving immunotherapy
(Figure 1A). We found that a high number of mutations in
the lipid metabolism pathway, a high TMB and a high number
of alterations in DNA damage repair (DDR) signaling were
associated with prolonged progression-free survival (PFS) in the
ICI-treated cohort; however, the results of the multivariate Cox
analysis showed that a high number of mutations in the lipid
metabolism pathway, a high TMB, or a high number of mutations
in DDR signaling could not be used as an independent predictor
of the prognosis of patients with NSCLC receiving ICIs. Similarly,

FIGURE 1 | The value of clinical characteristics and the number of mutations in the lipid metabolism pathway for predicting ICI efficacy. (A) Forest plot displaying the
results of the univariate and multivariate Cox regression analyses in the ICI-treated cohort (Rizvi et al., 2018). The main portion of the forest plot presents the hazard
ratio (HR) and 95% confidence interval (95% CI), and red dots indicate P < 0.05. Predictors of favorable outcomes have an HR < 1, and predictors of poor outcome
have an HR > 1. (B) KM survival curves for PFS in 240 NSCLC patients from the ICI-treated cohort (Rizvi et al., 2018).
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NSCLC patients with a high number of mutations in the lipid
metabolism pathway had significantly prolonged PFS than those
with a low number of mutations [P = 0.017; HR = 0.68; 95%
confidence interval (95% CI): 0.51–0.92; Figure 1B]. Moreover,
we found that the PFS time of the high number of mutations
in the lipid metabolism pathway combined with the high TMB
group was significantly prolonged than that of the low number
of mutations in the lipid metabolism pathway combined with
the low TMB group (Supplementary Figure 1; P = 0.008;
HR = 0.548). Also, we found that the high-TMB group had
significantly prolonged PFS time compared with the low-TMB
group (Supplementary Figure 2; P = 0.024; HR = 0.73).

Comparison of Mutated Genes Between
the High and low Mutation Groups
To compare the differences in known cancer driver genes
between the high and low mutation groups, we visualized the
top 20 mutated driver genes in each group and used Fisher’s
exact test to calculate the statistical differences. In the ICI-treated
cohort, the high mutation group had more gene mutations
than the low mutation group. Compared with the low mutation
group, the high mutation group had significantly increased TP53
mutations (79.1% vs. 50.9%; P < 0.05), PTPRD mutations (20.9%
vs. 9.2%; P < 0.05), NF1 mutations (17.9% vs. 7.5%; P < 0.05),
and PTPRT mutations (17.9% vs. 7.5%; P < 0.05; Figure 2A).
Among the above-mentioned genetic mutations with significant
differences, most of the mutations were missense mutations,
followed by frameshift mutations. In the TCGA cohort, the
high mutation group had a higher frequency of driver genes
than the low mutation group (P < 0.05; Figure 2B), while
three genes (KRAS, KEAP1, and NFE2L2) showed no significant
difference between high and low mutation groups. The results of
the mutual exclusivity analysis of the lipid metabolism genes in
the high mutation group compared to the low mutation group
showed no significant difference (Supplementary Figure 3). We
also compared lipid metabolism mutation frequency differences
between the high mutation group and the low mutation group
(Supplementary Figure 4). Compared with the low mutation
group, the high mutation group had significantly increased
mutations in PIK3CG (15.0% vs. 5.20%), PIK3CA (15.0% vs.
2.31%), PIK3C2G (13.4% vs. 1.73%), PIK3C3 (11.9% vs. 1.16%),
INPP4B (10.4% vs. 1.16%), NCOR1 (10.4% vs. 1.16%), EP300
(10.4% vs. 1.58%), PTEN (8.96% vs. 1.16%), INPP4A (7.46% vs.
0%), and PIK3R2 (5.97% vs. 0.98%).

Comparison of the Immune
Microenvironment Between the High-
and Low-Mutation Groups
To explore differences in the TME between the high-mutation
group and the low-mutation group, the CIBERSORT algorithm
was applied to evaluate the proportions of twenty-two different
immune cells in the TME. Compared with the low-mutation
group, the high-mutation group had significantly enriched
macrophages (M0- and M1-type), CD4 + T cells (activated
memory), CD8 + T cells, Tfh cells, and gamma delta T cells
(all P < 0.05; Figure 3A). Additionally, as shown in Figure 3B,

the number of mutations in the lipid metabolism pathway
had a significantly positive correlation with the proportion of
macrophages (M1-type), CD4 + T cells (activated memory),
CD8 + T cells, Tfh cells, and gamma delta T cells (R > 0,
P < 0.05). A high proportion of CD8 + T cells was
significantly correlated with a high proportion of Tfh cells,
macrophages (M1-type) and CD4 + T cells (activated memory)
(R > 0, P < 0.05; Figure 3B). In contrast, some activated
immune cells had a significantly negative correlation with the
ratio of resting/suppressive immune cells (R < 0, P < 0.05;
Figure 3B). Moreover, we found that the high-mutation group
had higher expression levels of immune checkpoint molecules
(Figure 3C), such as CD274 (PD-L1), LAG3, CD276, and
PDCD1 (PD-1), than the low-mutation group. In the local-
NSCLC cohort, patients with a high number of mutations
in the lipid metabolism pathway had high levels of PD-L1
(P < 0.05; Figure 3D). Figure 3E shows typical cases for each
TPS level (lipid metabolism: 3 high-mutation vs. 3 low-mutation
cases). Similarly, the expression of inflammatory genes, such
as cytotoxicity markers (CD8A, GZMA, and GZMB), antigen
processing and presentation markers (MICB and TAP1), and
inflammatory cytokines (CXCL9, CXCL10, CCL5, IFNG, IL12A,
and TNFRSF18), was significantly higher in the high-mutation
group than in the low-mutation group (all P < 0.05, Figure 3F).

Comparison of Immunogenicity Between
the High and Low Mutation Groups
Immunogenicity is a vital factor affecting the prognosis of
patients with NSCLC receiving ICIs and the efficacy of ICIs.
We determined the differences in immunogenicity between the
high and low mutation groups. For TMB, in both the ICI-treated
cohort and the TCGA cohort, compared with the low mutation
group, the high mutation group had a significantly enhanced
TMB (all P < 0.05; Figures 4A,B). In the Local-NSCLC cohort,
we found that patients with a high number of mutations in the
lipid metabolism pathway had high levels of TMB (P < 0.05;
Figure 4C). Additionally, the high mutation group had a higher
neoantigen load (NAL) than the low mutation group (P < 0.05;
Figure 4D). DDR signaling pathways play a key role in correcting
DNA damage. We downloaded eight DDR signaling pathway
gene sets from MSigDB and merged these gene sets into one
(the merged DDR pathway gene set). In the ICI-treated cohort,
in most DDR pathways such as homologous recombination
(HR), single-strand break (SSB), double-strand break (DSB),
nucleotide excision repair (NER), non-homologous end joining
(NHEJ), Fanconi anemia (FA), and merged DDR pathways, the
high mutation group had a significantly increased number of
mutations (P < 0.05; Figure 4E). In the TCGA cohort, the
high mutation group had a higher number of non-synonymous
mutations in all DDR pathways than the low mutation group (all
P < 0.05; Figure 4F).

Differences in Pathway Activity Between
the High and Low Mutation Groups
Alterations in functional pathway activity also have impacts
on the efficacy of ICIs and the prognosis of NSCLC patients
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FIGURE 2 | Genomic profiles of NSCLC patients in the ICI-treated cohort (Rizvi et al., 2018) (A) and TCGA-NSCLC (B) cohorts. The top 20 genes with the highest
mutation frequencies and the corresponding clinical information are shown. The top five genes with the highest mutation frequencies in the ICI-treated cohort (Rizvi
et al., 2018) were TP53, KRAS, KEAP1, STK11, and PTPRD. The top five genes with the highest mutation frequencies in the TCGA cohort were TP53, TTN,
MUC16, CSMD3, and RYR2. The mutation types are indicated as follows: yellow indicates splice site mutations, blue indicates missense mutations, orange indicates
frameshift mutations, green indicates in-frame insertions/deletions, and brown indicates nonsense mutations. The clinical characteristics are shown as patient
annotations.

receiving ICIs. We used the ClusterProfiler R package to perform
GSEA with the NSCLC expression data from the high and
low mutation groups. Immune-related pathway terms, such as
lymphocyte recruitment and participation in the inflammatory
response, lymphocyte aggregation, interleukin 1, and BCR
pathway activation, were significantly enriched in the high
mutation group (Figure 5A). In contrast, some pathway terms
related to immune depletion, such as fatty acid synthesis,
fatty acid metabolism and regulation of fibroblast proliferation,
were significantly downregulated in the high mutation group
(Figure 5B). Additionally, some carcinogenic pathways, such as
the canonical WNT pathway and the NOTCH pathway, were
significantly upregulated in the low mutation group compared
with the high mutation group (Figure 5C).

DISCUSSION

To date, with the gradual increase in in-depth research on
immune checkpoints, breakthroughs have been made in the

research of ICIs, which have revolutionized the diagnosis
and treatment of NSCLC; however, many challenges remain
in clinical application, such as the limited population that
benefits and the lack of effective biomarkers (Garon et al.,
2019; Garassino et al., 2020). In the TME, both tumor cells
and immune cells can undergo metabolic reorganization to
adapt to a microenvironment with low oxygen, acidity and
low nutrition (Wu and Dai, 2017). The activity of the lipid
metabolism pathway can affect the recruitment, infiltration
and activation of TILs (Yang et al., 2016; Saleh and Elkord,
2019; Jiang et al., 2020). Novel treatments that regulate lipid
metabolism may effectively improve the immunotherapy efficacy
and patient prognosis. In this study, we found that a high
number of mutations in the lipid metabolism pathway was
related to a favorable prognosis in patients with NSCLC
receiving ICIs. Next, we analyzed the potential relationships
between the number of mutations in the lipid metabolism
pathway and immunogenicity and the TME. Patients with a
high number of mutations in the lipid metabolism pathway
had significantly enhanced immunogenic factors (such as
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FIGURE 3 | (A) Comparison of the fractions of 22 types of immune cells as estimated by the CIBERSORT algorithm between the high and low mutation groups in
the TCGA cohort. (B) The correlations between the number of mutations in the lipid metabolism pathway and the proportions of immune cells. (C) Comparison of
the expression of immune-related genes between the high and low mutation groups in the TCGA cohort. (D) Comparison of the expression of PD-L1 (TPS) between
the high and low mutation groups in the Local-NSCLC cohort. (E) The typical cases for each TPS level between the high (three samples; high PD-L1 TPS) and low
mutation (three samples; no PD-L1 TPS) groups in the Local-NSCLC. Using HE and PD-L1 stained slides, we manually assessed the number of tumor cells, the
sample size (diameter), the crush rate with a cut-off value of <1% (no PD-L1 TPS), 1–50% (low PD-L1 TPS), 50% < (high PD-L1 TPS), and the TPS for each biopsy
sample using the slide that contained the most tumor cells. The TPS level was evaluated by pathologists who completed training courses in TPS estimation.
(F) Heatmap depicting the mean differences in the expression of proinflammatory and antigen presentation genes between the high and low mutation groups in the
TCGA cohort. Each square represents the fold change or the mean difference in the expression of these genes between the high and low mutation groups in the
TCGA cohort. Red indicates upregulation.
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FIGURE 4 | (A) Comparison of TMB scores between the high and low mutation groups in the ICI-treated cohort (Rizvi et al., 2018). (B) Comparison of TMB between
the high and low mutation groups in the TCGA cohort. (C) Comparison of TMB between the high and low mutation groups in the Local-NSCLC cohort.
(D) Comparison of NAL between the high and low mutation groups in the TCGA cohort. (E) Comparison of DNA damage-related gene set alterations between the
high and low mutation groups in the ICI-treated cohort (Rizvi et al., 2018). (F) Comparison of DNA damage-related gene set alterations between the high and low
mutation groups in the TCGA cohort.
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FIGURE 5 | Comparison of GSEA results between the high and low mutation
groups in the TCGA cohort. GSEA-identified differences in immune cell (A),
exhaustion-related (B), and oncogenic pathway activities (C) between the
high and low mutation groups in the TCGA cohort.

TMB, NAL, and DDR pathway mutations) and enriched
activated immune cells with upregulated inflammatory gene
expression profiles.

The inflammatory TME in patients with a high number of
mutations in the lipid metabolism pathway may be related to
a better prognosis with ICI treatment. Compared with patients
with a low number of mutations in the lipid metabolism pathway,
patients with a high number of mutations had significantly
increased proportions of infiltrating activated immune cells
[macrophages (M0- and M1-type), CD4 + T cells (activated
memory), CD8 + T cells, Tfh cells, and gamma delta T cells]
and upregulated inflammatory expression profiles (IFNG, CD8A,
GZMA, GZMB, CXCL9, and CXCL10). Tumor cell necrosis
induced by the perforin-granzyme pathway and tumor cell
apoptosis induced by the Fas-FasL pathway are regarded as
two vital mechanisms by which CD8 + T cells exert antitumor
immunity. Additionally, CD8 + T cells can also induce iron-
mediated tumor cell death by secreting IFN-γ, which is a
newly identified method of cell death that differs from apoptosis
and necrosis (Dixon et al., 2012). IFN-γ can downregulate the
expression of two subunits of the glutamate-cystine antiporter
on the surface of tumor cells, namely, solute carrier family 3
member 2 (SLC3A2) and SLC7A11, thereby inhibiting tumors.
Cystine uptake by the cell reduces glutathione synthesis and
ultimately leads to insufficient synthesis of glutathione peroxidase
4 (GPX4), which inhibits the cell from effectively removing
peroxide. Lipids cause iron-induced death in cells under iron-
dependent conditions (Friedmann Angeli et al., 2019; Wang
et al., 2019). IFNγ is mainly derived from CD8 + T cells and
is also an important cytokine for CD8 + T cells to complete
immune-mediated killing. In addition to mediating iron-induced
cell death, IFN-γ can also promote antigen presentation and
tumor cell killing. IFN-γ can activate the JAK-STAT signaling
pathway through interferon receptors acting on tumor cells,
thereby upregulating the expression of interferon-stimulated
genes (ISGs) and enhancing major histocompatibility complex
I (MHC-I) expression on the cell membrane. The expression
of MHC-I molecules and intracellular immune proteasomes
promotes the recognition of tumor cells by immune cells and
simultaneously sensitizes tumor cells to apoptosis signals, which
ultimately leads to tumor cell death (Quail and Joyce, 2013;
Schneider et al., 2014). M1-type macrophages highly express
TNF, inducible nitric oxide synthase (iNOS), MHCII and other
proteins, which play an antitumor effect. Chemokines (CXCL9
and CXCL10) play an important role in recruiting CD8 + T
cells and NK cells to the TME. The above results suggest the
presence of an inflammatory immune microenvironment in the
high mutation group (Lin et al., 2019).

The significantly enhanced immunogenicity in patients with a
high number of mutations in the lipid metabolism signaling may
be associated with a favorable prognosis with ICIs. Mutations
in the DDR signaling can contribute to the up-regulation of
genome instability and cause accumulated DNA damage, which
may be a biomarker for identifying potential ICI responders in
multiple cancer types (Teo et al., 2018; Wang et al., 2018). Patients
with advanced urothelial cancers with mutations in the DDR
pathway had a significantly increased ORR to immunotherapy
(67.9% vs. 18.8%; P < 0.001) (Teo et al., 2018). Additionally,
Wang et al. (2018) found that patients with co-mutations in
the DDR pathway had significantly prolonged OS and PFS
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compared with patients without co-mutations. The TMB has
been regarded as a potential molecular marker for predicting
ICI response, and its utility has been gradually confirmed
(Jessurun et al., 2017). An increased TMB can promote the
production of more tumor neoantigens (McGranahan et al.,
2016). Neoantigens are presented to DCs, which can promote
the transformation of T cells into mature and activated T cells,
and high NAL is associated with sensitivity to anti-PD-1/CTLA-
4 treatments (Lin A. et al., 2020). In this study, we found
that patients with a high number of mutations in the lipid
metabolism pathway had a significantly increased TMB, NAL,
and mutations of the DDR pathway. Therefore, the above results
suggest that up-regulated immunogenicity may be a strategy
generating favorable prognoses for NSCLC patients with a high
number of mutations in the lipid metabolism pathway. This
study analyzed the prognosis of ICI treatment and mutation
status of lipid metabolism in patients with non-small cell lung
cancer and attempted to elucidate the potential role of a high
number of lipid metabolism mutations as a biomarker for
screening the predominant population of NSCLC preferred for
immunotherapy; however, this study still has several limitations.
First, this work included only one ICI-treated cohort of NSCLC,
which may introduce bias when screening biomarkers for the
prognosis of ICIs of NSCLC. Second, targeted sequencing (MSK-
IMPACT) was used to detect somatic mutations in the ICI-
treated cohort and included significantly fewer gene mutations
compared to whole-exome sequencing (WES). Third, this study
cannot separate the effect of the TMB or the mutation counts
of DDR signaling from the effect of the mutation status of
lipid metabolism on the prognosis of NSCLC patients receiving
ICIs. We hope to conduct relevant cell or animal experiments
in the future to verify how a high number of lipid metabolism
mutations affect the efficacy of immunotherapy and explore
their relationship with the TME. We also hope to study NSCLC
patients receiving ICIs to separate the effect of the TMB or the
mutation counts of DDR signaling.

CONCLUSION

Our study provided solid evidence that high-mutated lipid
metabolism signaling was associated with prolonged PFS in
NSCLC patients receiving ICIs. Hence, high-mutated lipid
metabolism signaling can act as a potential biomarker for
ICIs among NSCLC.
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