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Non-steroidal anti-inflammatory drugs (NSAIDs) are extensively prescribed in daily
clinical practice. NSAIDs are the main cause of drug hypersensitivity reactions all over the
world. The inhibition of cyclooxygenase enzymes by NSAIDs can perpetuate arachidonic
acid metabolism, shunting to the 5-lipoxygenase pathway and its downstream
inflammatory process. Clinical phenotypes of NSAID hypersensitivity are diverse and
can be classified into cross-reactive or selective responses. Efforts have been made to
understand pathogenic mechanisms, in which, genetic and epigenetic backgrounds are
implicated in various processes of NSAID-induced hypersensitivity reactions. Although
there were some similarities among patients, several genetic polymorphisms are distinct
in those exhibiting respiratory or cutaneous symptoms. Moreover, the expression
levels, as well as the methylation status of genes related to immune responses
were demonstrated to be involved in NSAID-induced hypersensitivity reactions. There
is still a lack of data on delayed type reactions. Further studies with a larger
sample size, which integrate different genetic pathways, can help overcome current
limitations of gen etic/epigenetic studies, and provide valuable information on NSAID
hypersensitivity reactions.

Keywords: asthma, urticaria, epigenetic, non-steroidal anti-inflammatory drug, hypersensitivity, genetic
polymorphism

Abbreviations: AA, arachidonic acid; ADORA3, adenosine A3 receptor; ALOX5 (5-LOX), arachidonate 5-lipoxygenase;
aMDM, alveolar monocyte-derived macrophages; APC, antigen-presenting cells; ATA, aspirin/NSAID-tolerant asthmatics;
CCR3, chemokine CC motif receptor 3; CEP68, centrosomal protein 68; COX, cyclooxygenase; cPLA2, cytosolic
phospholipase; CRS, chronic rhinosinusitis; CRSwNP, chronic rhinosinusitis with nasal polyps; CTLA4, cytotoxic
T-lymphocyte-associated protein 4; CU, chronic urticaria; CXCL, chemokine (C-X-C motif) ligand; CYP, cytochrome P450;
DAG, 1,2-diacylglycerol; DAO, d-amino acid oxidase; DCBLD2, discoidin, CUB and LCCL domain containing 2; DHR,
drug-induced hypersensitivity; DME, drug-metabolizing enzymes; DPP10, dipeptidyl peptidase like 10; EMID2, emilin
and multimerin domain-containing protein 2; HETE, hydroxyeicosatetraenoic acid; HLA, human leukocyte antigen; Ig,
immunoglobulin; IL, interleukin; IP3, inositol 1,4,5-trisphosphate; LOX, lipoxygenase; LT, cysteinyl leukotrienes; NAT2,
N-acetyltransferase 2; NECD, NSAID-exacerbated cutaneous disease; NIDHR, NSAID-induced delayed hypersensitivity
reaction; NIUAA, NSAID-induced urticaria/angioedema/anaphylaxis; NP, nasal polyps; NSAID, non-steroidal anti-
inflammatory drugs; MC, mast cells; MS4A2, membrane spanning 4-domains A2; MSRA(B2), methionine sulfoxide reductase
A(B2); NLRP3, nucleotide-binding oligomerization domain-like receptor protein 3; PG, prostaglandins; PIP2, phospholipid
phosphatidylinositol 4,5-bisphosphate; PL, phospholipase; PPBP, pro-platelet basic protein; PTGS, prostaglandin H synthase;
PTGIR, prostaglandin I2 receptor; RAB1A, Ras-related protein Rab-1A; SLC6A12, solute carrier family 6 member 12;
SNIUAA, single NSAID-induced urticarial/angioedema/anaphylaxis; TAPBP transporter associated with antigen processing
(TAP) binding; protein; TBXAS1, thromboxane A synthase 1; TBXA2R, thromboxane A2 Receptor; TGFβ1, transforming
growth factor β1; TNFRSF1A, tumor necrosis factor receptor superfamily member 1A; TX, thromboxane; UBE3C, ubiquitin
protein ligase E3C; UDP, uridine diphospho glucuronic acid; UGT, UDP-glucuronosyltransferase.
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INTRODUCTION

Non-steroidal anti-inflammatory drugs (NSAIDs) are extensively
administered for the treatment of pain and inflammation, while
they commonly induce hypersensitivity reactions as well as
unexpected adverse effects (e.g., gastrointestinal hemorrhage).
Indeed, 1.9-3.5% of the general adult population reported a
hypersensitivity reaction to NSAIDs (Gomes et al., 2004; Zhou
et al., 2016); NSAIDs are the major culprits of drug-induced
hypersensitivity reactions (DHR) with the prevalence of 11.9%
in patients with DHR (Sole et al., 2011; Zhao et al., 2018).
Nevertheless, the prevalence seems to rise in high-risk subjects,
for instance, NSAID hypersensitivity reactions occur in 7.15% of
asthmatic patients exhibited, which increases to 14.89% in those
with severe asthma (Thong, 2018). Thus, efforts have been made
to investigate underlying mechanisms which can help predict
NSAID hypersensitivity reactions.

It is well known that NSAID consumption can alter the
cyclooxygenase (COX)-1 and COX-2 pathways of arachidonic
acid (AA) metabolism (Doña et al., 2020), triggering symptoms
in subjects with hypersensitivity reactions. Hypersensitivity to
NSAIDs can be classified into cross-reactive and selective
responses (Kowalski and Stevenson, 2013), which will be
discussed in more detail in the following sections. Other
phenotypes, including “blended reactions,” food-dependent
NSAID-induced anaphylaxis, and NSAID-induced multiple
selective immediate reactions were reported (Doña et al., 2020).
It is crucial to understand that the risk of DHR can be affected
by multiple factors such as sex, age, ethnicity, environmental
factors, and genetic variants (Doña et al., 2017; Lee J.U. et al.,
2019; Pérez-Sánchez et al., 2019). With advances in high-
throughput sequencing technologies, many genetic studies have
been conducted to elucidate genetic mechanisms of NSAID
hypersensitivity phenotypes. This review aimed to summarize the
current knowledge of the associations of genetic and epigenetic
mechanisms in NSAID hypersensitivity.

AA AND CYCLOOXYGENASE
METABOLISM

Overview of AA Metabolism
At the cellular level, phospholipases are a family of enzymes
responsible for phospholipid hydrolysis to liberate esterified AA
(Cornejo-García et al., 2012). The initial enzyme is phospholipase
A2 (PLA2) that catalyze the hydrolysis of the phospholipid sn-2
ester bond, generating a free fatty acid, a lysophospholipid, and
a free AA molecule (Dennis et al., 2011). The other enzymes
in the family are phospholipase C (PLC) and phospholipase
D (PLD) that may also generate free AA (Dennis et al.,
2011). Upon its activation, PLC catalyzes the hydrolysis of
the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2)
on the glycerol side of the phosphodiester bond to modulate
numerous PIP2-dependent cellular processes, yielding two PIP2
cleavage products, inositol 1,4,5-trisphosphate (IP3) and 1,2-
diacylglycerol (DAG) (Kano et al., 2009). In addition, PLD
has proved to liberate AA by catalyzing phosphatidylcholine

to generate phosphatic acid or DAG which is then hydrolyzed
DAG-lipase to generate AA (Ishimoto et al., 1994).

Arachidonic acid is a membrane omega-6 fatty acid molecule
released in the cytoplasm by the hydrolytic activity of the
cytosolic phospholipase A2 (cPLA2) (Weller, 2016). COX and
lipoxygenase (LOXs) are the 2 major enzymes in AA metabolism,
which participates in the regulation of various pathophysiological
processes, including inflammation and cancer (Bruno et al.,
2014). COX-1 and COX-2 are the 2 main COX isoforms involved,
which have a comparable molecular mass of 71 and 73 kDa,
respectively (Meade et al., 1993; Hennekens et al., 1997). COX-
1 enzyme is constitutively expressed in most tissues that induces
inflammation in response to lipopolysaccharide stimulation as
well as promotes or suppresses leukotrienes (LTs) biosynthesis
(Naraba et al., 1998). Meanwhile, COX-2 is considered as an
inducible enzyme expressed in inflammation (Green, 2001).

Following the COX pathway, PGG2 is formed and converted
to PGH2 by the enzyme peroxygenase (Nørregaard et al., 2015).
PGH2 is then transformed by proper synthases, mainly cytosolic
prostaglandin E synthase (cPGES), microsomal prostaglandin E
synthase-1 (mPGES-1), microsomal prostaglandin E synthase-2
(mPGES-2), prostaglandin I synthase (PGIS), and thromboxane
synthase (TxS), into PGs and thromboxanes, proceeding to
the synthesis of PGE2, prostacyclins (PGI2), PGD2, PGF2α, or
thromboxane A2 (TXA2) (Samuelsson et al., 2007). In the 5-LOX
pathway, 5-LOX catalyzes the oxidation of AA to 5-HPETE and
5-HPETE is subsequently converted into unstable intermediate
cysteinyl leukotriene (LT) A4, which is hydrolyzed by LTA4
hydrolase (LTA4H) to form dihydroxy acid leukotriene LTB4
(Hedi and Norbert, 2004; Doña et al., 2020). Another path is the
conversion of LTA4 to LTC4 via addition of a glutathione group
by LTC4 synthase (LTC4S), which is exported by the cell and
converted to downstream metabolites (Hedi and Norbert, 2004;
Doña et al., 2020). Conversion of LTC4 by γ-glutamyl transferase
results in LTD4 and glutamic acid release, and then dipetidase
breaks the amide bond in LTD4 to synthesize LTE4 (Rouzer and
Marnett, 2009; Doña et al., 2020).

The COX/5-LOX Pathway and LT
Production
In susceptible subjects, non-selective NSAIDs exert effects by
inhibiting COX-1 and subsequently shift the AA metabolism
from PG (especially PGE2) synthesis toward pro-inflammatory
cysteinyl LTs such as LTC4, LTD4, and LTE4 (Doña et al.,
2020). Overproduction of LTs can trigger bronchoconstriction,
recruitment of inflammatory cells (especially eosinophils) into
the airways (Paruchuri et al., 2009; Pham et al., 2016; Dholia et al.,
2020). Patients with NSAID hypersensitivity were demonstrated
to have reduced sputum PGE2 levels but increased urinary
LTE4 levels (Comhair et al., 2018; Mastalerz et al., 2019),
which can explain the hypersensitivity reactions to NSAIDs.
Besides increasing vascular permeability, bronchoconstriction,
and mucus secretion, overproduction of LTs also leads to
activation of mast cells and eosinophils. Stimulation of mast
cells and eosinophils releases pro-inflammatory mediators
and cytokines such as interleukin (IL)-33/thymic stromal
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lymphopoietin as well as facilitates the production of IL-4, IL-
5, IL-9, and IL-13, which increase eosinophilic inflammation,
mast cell activation, and IgE-secreting plasma cells differentiation
from B cells in which close interactions with epithelial cells
are involved, further enhancing type 2 airway inflammation
(Buchheit et al., 2016; Choi et al., 2019).

Moreover, NSAIDs were found to elicit immune responses
following either specific IgE or T cell production (Blanca et al.,
1989; Kowalski and Makowska, 2015). NSAIDs can induce IgE-
mediated hypersensitivity, and the symptoms range from mild
urticaria and localized angioedema to anaphylaxis, within a few
minutes or 1 h after NSAID consumption (Klar et al., 2019).
Current studies strongly suggested that the activation of platelets
as well as platelet-derived mediators play roles in the pathogenesis
of NSAID hypersensitivity (Palikhe et al., 2014; Mitsui et al.,
2016). Platelets are major sources of sphingolipid metabolites and
increased in patients with NSAID hypersensitivity, which recruit
more eosinophils and neutrophils trafficking into the airways
(Trinh et al., 2016; Kim, 2019; Kim et al., 2019). Taken together,
NSAIDs can interfere with AA-COX metabolism and trigger
specific immune response, leading to type 2 inflammatory process
in the cells and tissues involved.

PHENOTYPES OF NSAID
HYPERSENSITIVITY

Hypersensitivity reactions can be induced or triggered by
multiple NSAIDs that mainly inhibit COX-1 (multiple or cross-
reactive NSAIDs hypersensitivity) or by a single NSAID that
elicits a humoral or cellular immune response (single or selective
NSAID hypersensitivity) (Ayuso et al., 2013; Pham et al., 2016).
Among patients with NSAID hypersensitivity, 76% had cross-
reactions, and 24% had selective responses (Dona et al., 2011).

Non-steroidal anti-inflammatory drugs can aggravate rhinitis
and/or asthmatic symptoms (NSAID-exacerbated respiratory
disease, NERD), which could be considered an endotype of
asthma with a unique pathophysiological mechanism (Lee et al.,
2017), while they can elicit cutaneous symptoms including
urticaria,/angioedema, and/or anaphylaxis in patients with
chronic urticaria (CU) (called NSAID-exacerbated cutaneous
disease or NECD) or those without chronic urticaria (NSAID-
induced urticaria/angioedema/anaphylaxis, NIUAA). In
addition, they can induce both respiratory and cutaneous
symptoms (Lee Y. et al., 2019). Single NSAIDs hypersensitivity
is associated with specific IgE antibody productions, which
induces acute urticaria and/or angioedema as well as anaphylaxis
(Single NSAID-induced urticarial/angioedema/anaphylaxis or
SNIUAA) or with specific T-cell activations, which induces
delayed hypersensitivity reactions (NSAID-induced delayed
hypersensitivity reaction, NIDHR).

NSAID-Exacerbated Respiratory Disease
NSAID-exacerbated respiratory disease, which is characterized
by a triad of asthma, chronic rhinosinusitis (CRS) with
nasal polyps (NPs) and NSAID hypersensitivity, is reported
in 7%-20% of asthmatic patients and 16% of patients with

CRSwNP (Stevens et al., 2017; Lee Y. et al., 2019). Asthma
symptoms can be observed within 30-180 min after exposure to
NSAIDs. Patients with NERD present more severe phenotypes
with lower lung function but higher prevalence of CRS/NPs
compared to aspirin/NSAID-tolerant asthmatics (ATA) (Stevens
et al., 2017). Recent studies classified NERD into various
subphenotypes. A Polish study demonstrated 4 subphenotypes:
(1) moderate asthma with intensive upper airway symptoms and
blood eosinophilia, (2) mild and well-controlled asthma with
low healthcare requirement, (3) severe and poorly controlled
asthma with severe exacerbations and airway obstruction,
and (4) poorly controlled asthma with frequent and severe
exacerbations in females (Bochenek et al., 2014). Another
study in the Korean cohort revealed 4 subphenotypes with
different clinical outcomes and inflammatory profiles: (1) NERD
with CRS and atopy without urticaria, (2) non-atopic NERD
with CRS without NECD, (3) NERD without CRS/NECD, and
(4) NERD with urticaria (Lee et al., 2017). A recent study
reported 3 subphenotypes: (1) mild-to-moderate asthma with
equal sputum inflammatory cell distribution and the lowest
concentrations of eicosanoids as well as low LTE4/logPGE2 ratio,
(2) severe asthma with impaired lung function despite high-
dose steroid use, high sputum eosinophilia, and LTE4 level
with the highest LTE4/PGE2 ratio, and (3) mild-to-moderate
asthma, sputum eosinophilia, and increased production of both
LTE4 and PGE2 (Celejewska-Wojcik et al., 2020). Although
further validation studies are needed, phenotypic classification
of NERD will help achieve better control of asthma in
clinical practice.

NSAID-Exacerbated Cutaneous Disease
and NSAID-Induced
Urticaria/Angioedema/Anaphylaxis
NSAID-exacerbated cutaneous disease is an exacerbation of skin
symptoms in patients with a history of CU, whereas NIUA is
found in patients without a history of CU. Exposure to NSAIDs
could elicit urticaria/angioedema within 1 h, which could persist
for several days (Dona et al., 2011). Patients with NIUA could
develop NECD several years later (Asero, 2003; Dona et al., 2014;
Lee Y. et al., 2019). NECD is a distinct phenotype of CU with
a longer disease duration, which is more frequently associated
with angioedema, atopy, and respiratory symptoms (Sanchez-
Borges et al., 2015). Further studies are needed to classify NECD
into subphenotypes which could help achieve better management
of this disease.

GENETIC VARIANTS OF NSAID
HYPERSENSITIVITY

Diverse variations in genes involved in distinct steps related
to NSAID hypersensitivity reactions are demonstrated as
shown in Figure 1 and Supplementary Table 1. Genetic
effects can directly affect either (1) the AA/COX pathway
and its downstream signaling pathways; (2) intracellular
activation/inactivation signaling of inflammatory cells, especially
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FIGURE 1 | Schematic figures of genetic and epigenetic mechanisms of NSAID hypersensitivity. Genetic effects are suggested to affect (1) arachidonic
acid/cyclooxygenase pathway; (2) cytokine and intracellular activation/inactivation signaling of inflammatory cells; (3) histamine/adenosine metabolism; (4) activation
of IgE receptors, and (5) HLA and MHC class II. Moreover, further studies report the involvement of (6) mutations in enzymes involved in drug metabolism and (7)
epigenetic alterations. (X): NSAIDs inhibit COX enzymes; (*) indicated the pathways which are intervened by NSAIDs. APC, antigen-presenting cells; COX,
cyclooxygenase; CYP, cytochrome P450; HETE, hydroxyeicosatetraenoic acid; LT, cysteinyl leukotrienes; NSAID, non-steroidal anti-inflammatory drugs; MC, mast
cells; PG, prostaglandins; TX, thromboxane; UGT, UDP-UDP-glucuronosyltransferase.

mast cells and eosinophils; (3) histamine/adenosine metabolism;
and (4) activation of IgE receptors. The association of NSAID
hypersensitivity with human leukocyte antigen (HLA) alleles,
and drug-metabolizing enzymes were found (Fosbøl et al., 2008;
Plaza-Serón et al., 2018).

NSAID-Exacerbated Respiratory Disease
Variants in genes associated with the arachidonate 5-
Lipoxygenase (5-LOX) (LT production), and COX (PG
production) pathways were reported, including ALOX (Green,
2001) and LTC4S (Hedi and Norbert, 2004; Rouzer and Marnett,
2009). A variable number tandem repeats variant, in the
promoter region of ALOX5 can change the transcription factor
binding site and then ALOX5 down-regulation (In et al., 1997).
Associations of the single SNPs of ALOX5 gene (−1780G > A,
21C > T, 270 G > A, 1782G > A) with NERD were found in
Korean patients; there were no differences in allele or genotype
frequencies of SNPs, but its haplotype ht1[GCGA] exhibited a
higher frequency in patients with NERD than in ATA (OR = 5,
95% CI of 1.54-1.79) (Choi et al., 2004). So far, however, the data
have not been replicated in other studies (Cornejo-García et al.,
2012; Ayuso et al., 2015b). Up-regulation of LTC4S positive cells
was found in NPs of NERD patients, which was associated with
genetic polymorphisms at the LTC4 promoter region (rs730012)
(Sanak et al., 1997, 2000), although it was not replicated in other
populations (Ayuso et al., 2015b).

COX-1 and -2 are encoded by the prostaglandin H
synthase PTGS1 and PTGS2, respectively. PTGS1 is expressed
consecutively and induce the production of prostanoids, while
PTGS2 is regulated by growth factors, cytokines, glucocorticoids,

and bacterial endotoxin (Rouzer and Marnett, 2009). Two SNPs
in PTGS1 (rs5789 and rs10306135) were significantly associated
with NERD in a Spanish population (Ayuso et al., 2015b). The
PTGS1 rs5789 was associated with decreased enzymatic function,
while the rs10306135 variant could modulate the expression of
this gene. The G-765C allele frequency of PTGS2 SNP was similar
between NERD and ATA (Szczeklik et al., 2004); however, CC
homozygosity was associated with the severity of NERD, which
the PTGS2 −765G > C was linked with an increased production
of PGD2 and PGE2 (Szczeklik et al., 2004).

Following the downstream pathway of PG, PGH2 is converted
to thromboxane A2 (TBXA2) by TBXAS1, which is encoded by
TBXAS1 gene. It was reported that SNP TBXAS1 (rs96229) is
associated with NERD phenotype (Oh et al., 2011). TBXA2 is
a platelet-derived metabolite and can cause bronchoconstriction
and cell recruitment, contributing to airway hyperresponsiveness
through TBXA2 receptor (TBXA2R) (Shin et al., 2003). The
TBXA2R rs11085026 (795T > C) and rs4807491 (−4684C > T)
were significantly associated with NERD phenotypes comparing
ATA (Kim et al., 2007; Palikhe et al., 2011).

In addition, reduction in protective PGE2 is a hallmark of
NSAID hypersensitivity reactions (Meade et al., 1993; Brock et al.,
1999; Roca-Ferrer et al., 2011; Mastalerz et al., 2019). Previous
studies demonstrated the associations of polymorphisms of
PTGER2, PTGER3, and PTGER4 with NERD phenotypes. The
SNPs of PTGER2 (−12813G > A, −10814T > C, −6179A > G,
rs207597) were significantly associated with NERD in Japanese
and Korean populations (Jinnai et al., 2004; Kim et al., 2007;
Park et al., 2010). The polymorphisms of PTGER3 (rs7551789,
rs7543182, and rs959) and PTGER4−1254A > G were associated
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with NERD phenotypes (Park et al., 2010), in which the SNP
PTGER2 −12813G > A is located in the regulatory region and
assumed to involve in the down-regulation of PGE2 receptor
transcription levels (Jinnai et al., 2004).

Inflammatory responses triggered by NSAID-induced
reactions lead to the production of cytokines, which recruits
eosinophils trafficking into the airways (Kim et al., 2010b, 2016;
Bochner and Stevens, 2021). Polymorphisms of eosinophilic
inflammation-related cytokines were found to play regulatory
a role in PGE2 regulation. Periostin is an extracellular
matrix protein and involved in cell adhesion, recruitment
of inflammatory cells. Higher serum periostin levels were noted
in patients with NERD (Kim et al., 2016; Wardzyńska et al.,
2017). The expression of POSTN was up-regulated in CRS tissues
of NERD patients (Stankovic et al., 2008). SNP −509C > T of
TGFβ1was associated with NERD patients(Kim et al., 2007).
NERD patients exhibited involvement of chemokine CC motif
receptor 3 (CCR3)−CCR3 −520T > G and −174C > T–
implicated in eosinophil recruitment, suggesting susceptibility to
eosinophilic inflammation of NERD (Kim et al., 2010c).

NSAID-Exacerbated Cutaneous Disease
and NSAID-Induced
Urticaria/Angioedema/Anaphylaxis
Current data imply that NECD and NIUA share similar genetic
backgrounds, although several distinct gene polymorphisms are
discovered. Regarding the genes involved in AA metabolism, SNP
LTC4S rs730012 was implicated in not only NERD patients, but
also NECD and NIUA patients (Mastalerz et al., 2004; Adamjee
et al., 2006).

The association between ALOX5AP rs1132340 and NIUA
was confirmed (Choi et al., 2004; Cornejo-García et al., 2012).
The SNP PTGER4 −1254G > A was involved in NERD and
NECD phenotypes, possibly due to its location in the promoter
region, leading to the down-regulation of PTGER4 in these
subtypes (Park et al., 2010). Meanwhile, copy number variations
in PTGER1 were detected in NIUA phenotypes with a deletion in
exon 3, affected protein function, and were consecutively involve
in inflammatory processes (del Carmen Plaza-Serón et al., 2016).

Mast cells are key players in patients with NSAID
hypersensitivity. Cutaneous symptoms are triggered by
degranulation of cutaneous or submucosal mast cells secreting
histamine and other metabolites. The SNPs FCER1A−344C > T,
FCER1B E237G (A > G), and FCER1G −237A > G were
associated with susceptibility to atopy and higher IgE levels in
NECD patients (Bae et al., 2007; Palikhe et al., 2008). Moreover,
the PLA2G4A (rs12746200), PLCG1 (rs2228246), and TNFRS11A
(rs1805034) were significantly associated with NIUA. The
frequency of haplotype PLCG1 (rs753381-rs2228246, C-G) was
lower in NIUA patients (mainly presenting angioedema), while
that of TNFRS11A rs1805034-rs35211496 (C-T) was higher
among patients with NIUA mainly presenting urticaria or
those presenting both urticaria and angioedema, compared to
control groups (Ayuso et al., 2015a). Thus, analysis of the genetic
background of patients with NECD or NIUA can help identify
predisposing factors.

Genes of Drug-Metabolizing Enzymes
(DMEs)
Non-steroidal anti-inflammatory drugs are metabolized by
phase I drug-metabolizing enzymes (DMEs) [predominantly
cytochrome P450 (CYPs)] and phase II DMEs (e.g.,
UDP-glucuronosyltransferases) (Wyatt et al., 2012). The
polymorphisms of DMEs are known to cause interindividual
differences in pharmacodynamic responses, pharmacokinetics
and adverse reactions, which could be related to NSAID
hypersensitivity. Numerous studies have reported the
associations of CYP2C polymorphisms with NSAID- induced
adverse reactions and toxicity (Wyatt et al., 2012; Krasniqi et al.,
2016), however, the associations of NSAID hypersensitivity
and CYP2C polymorphisms are not well studied. A study in
a Japanese population showed that the GA/AA genotypes of
both CYP2C19 681G > A and 636G > A were associated with
NERD as well as lower forced expiratory volume in the first
second (FEV1%) predicted values compared to the GG genotypes
(Kohyama et al., 2011). More studies are needed to understand
the associations of CYP as well as other DEM polymorphisms
with NSAID hypersensitivity.

New Candidate Genes
Genome-wide association studies (GWAS) provide multiple
and novel candidate genes involved in NSAID hypersensitivity,
as shown in Supplementary Table 1. CEP68 was found to
be involved in NERD and NIUA with or without NECD
phenotypes. Although the exact function of CEP68 remains
unknown, its polymorphisms (rs7572857) are associated with
changes in FEV1(%) after NSAID administration, and CEP68
was thus believed to be a susceptibility gene for NSAID
hypersensitivity (Kim et al., 2010a). However, the association
of CEP68 polymorphisms with NERD or blended reactions
were indicated (Cornejo-García et al., 2014). The variant CEP68
rs1050675 (located in the 3′ UTR region) could intervene the
target of recognition of some transcription factors (Kim et al.,
2010a; Cornejo-García et al., 2014). In terms of NIUA phenotype,
a GWAS suggested the nominal associations among live loci
in the following genes: HLF, RAD51L1, COL24A1, GalNAc-
T13, and FBXL17 (Park et al., 2013). Novel signatures of acute
exacerbation have been identified, including EIF2AK2, MSRA,
and MSRB2 in patients with asthma. EIF2AK2 is a key gene for
an antiviral defense mechanism, while MRSA and MSRB2 are
involved in the oxidative stress pathway (Kang et al., 2020). It
has been demonstrated that patients with NERD expressed a
higher level of oxidative stress, and viral infection may worsen
the exacerbation of NERD (Adeli et al., 2019; Kim et al., 2019).
Therefore, these genes may be potential markers predicting
the respiratory exacerbation in patients with NERD. Additional
studies are needed to validate the above-mentioned genes for
replication, as well as to elucidate their functions.

Other Phenotypes
Some patients with NIUA develop anaphylaxis, which is called
NIUAA, and those with NIUAA showed higher allelic frequency
of HLA-DRB1∗11 compared to control groups
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(Quiralte et al., 1999). Another rare subtype is SNIUAA, in which
polymorphism of NAT2 encoding for N-acetyltransferase 2
(NAT2), including NAT2∗5, ∗6, ∗7, and ∗14, was found to be
associated with this phenotype. Through NAT2, blood LT can
be inhibited by N-acetylation. Therefore, polymorphisms of
NAT2 can increase LT levels and the risk of anaphylactoid
reactions (García-Martín et al., 2015). Taken together, the genetic
background plays a crucial role in NSAID hypersensitivity (Adeli
et al., 2019).

EPIGENETICS OF NSAID
HYPERSENSITIVITY

Gene expressions are modulated by several mechanisms
including DNA and histone modification (Figure 1). At the
DNA level, CpG islands are modified by 5-methylcytosine
(5mC), 5-hydroxymethycystosine (5hmC), 5-formylcytosine
(5fC), and 5-carboxylcytosine (5caC). 5hmC could facilitate gene
transcription, 5mc, 5fC, and 5caC decrease gene transcription by
inhibiting transcription factor binding, and promote chromatin
condensation (Lauschke et al., 2019). Previous studies have
reported different expression levels of various genes related
to immune response and/or the dysregulation of cysteinyl LTs
and PG production, suggesting the involvement of epigenetic
mechanisms in the pathophysiology of NSAID hypersensitivity
(Roca-Ferrer et al., 2011; Lee Y. et al., 2019).

A previous study investigating genome-wide DNA
methylation levels in 5 patients with NERD showed
hypermethylation of 332 CpG islands in 296 genes and
hypomethylation of 158 CpG islands in 141 genes. The
hypomethylation was found in genes involved in lymphocyte
proliferation, leukocyte activation, cytokine production, immune
responses, inflammation, and immunoglobulin binding, whereas
hypermethylation was found in genes involved in hemostasis,
wound healing, calcium ion binding, and oxidoreductase activity.
In addition, PGDS, ALOX5AP, and LTB4R were hypomethylated,
while PTGES was hypermethylated in NERD compared to ATA
patients. Genes related to Th2-immune response, including
IL5RA and IL-10 were differently methylated between NERD
and ATA groups (Cheong et al., 2011). Another study reported a
lower expression of the EP2 receptor in nasal fibroblasts of NERD
patients as well as EP2 mRNA expression correlated with histone
acetylation (H3K27ac) levels at the EP2 promoter (Cahill et al.,
2016). A recent study showed different expression levels of genes
related to chemotaxis (CXCL1-CXCL3, PPBP, CXCL8, CCL18,
and CCL20) and host defense (CD1A-CD1C, CLEC10A, and
CLEC18B) in alveolar monocyte-derived macrophages (aMDM)
from NERD patients. Moreover, aMDM of NERD patients
had 3930-fold decrease and 211-fold increase at differentially
methylated positions in genes involved in cell recruitment and
acylcarnitine metabolism compared to controls (Haimerl et al.,
2020). These findings suggest the involvement of epigenetic
regulation in the pathogenesis of NERD.

Nevertheless, results of studies on epigenetic mechanisms
should be interpreted with caution. First, epigenetic modification
patterns vary among different types of cell and tissue; therefore,

the cellular components are crucial for the investigation
of the complicated pathogenesis of NSAID hypersensitivity.
Secondly, epigenetic alterations could be the consequence of
pharmacological effects of NSAID, rather than the cause of
hypersensitivity reactions. Previous studies showed that NSAID
exposure could increase the expression levels of DNMT3a and
DMNT3b mRNA (Lee Y. et al., 2019), induce the promoter
demethylation of Secreted Protein Acidic and Cysteine Rich
(SPARC) (Pan et al., 2008), and be associated with a lower
incidence of E-cadherin (CDH1) promoter methylation (Tahara
et al., 2010). These findings suggest that NSAID could affect
epigenetic regulations; however, the mechanisms underlying
this phenomenon are not fully understood. In addition, there
is a need for further studies with larger sample sizes and
different populations to achieve a stronger statistical power.
Functional studies of the variants should be conducted to assess
which epigenetic mechanisms are significantly involved in each
phenotype of NSAID hypersensitivity.

SUMMARY AND CONCLUSION

Non-steroidal anti-inflammatory drug hypersensitivity has
different clinical phenotypes and subphenotypes, and it is the
consequence of complicated pathophysiological mechanisms. Its
underlying mechanisms are regulated by genetic and epigenetic
variants and possible interactions between them, which could
be different among populations. Genes related to the AA/COX
pathway or immune cell activation are frequently candidates for
studies; however, further genetic studies on other inflammatory
cascades are warranted. Moreover, functional studies to
determine the roles of candidate’s genetic and epigenetic
polymorphisms are essential depending on various phenotypes.
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