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Understanding the genetics of drought tolerance in hard red spring wheat (HRSW) in

northern USA is a prerequisite for developing drought-tolerant cultivars for this region.

An association mapping (AM) study for drought tolerance in spring wheat in northern

USA was undertaken using 361 wheat genotypes and Infinium 90K single-nucleotide

polymorphism (SNP) assay. The genotypes were evaluated in nine different locations

of North Dakota (ND) for plant height (PH), days to heading (DH), yield (YLD), test

weight (TW), and thousand kernel weight (TKW) under rain-fed conditions. Rainfall

data and soil type of the locations were used to assess drought conditions. A mixed

linear model (MLM), which accounts for population structure and kinship (PC+K), was

used for marker–trait association. A total of 69 consistent QTL involved with drought

tolerance-related traits were identified, with p ≤ 0.001. Chromosomes 1A, 3A, 3B, 4B,

4D, 5B, 6A, and 6B were identified to harbor major QTL for drought tolerance. Six

potential novel QTL were identified on chromosomes 3D, 4A, 5B, 7A, and 7B. The novel

QTL were identified for DH, PH, and TKW. The findings of this study can be used in

marker-assisted selection (MAS) for drought-tolerance breeding in spring wheat.

Keywords: drought tolerance, hard red spring wheat, association mapping, quantitative trait loci, marker-assisted

selection

INTRODUCTION

Wheat (Triticum aestivum L.) is a major crop worldwide contributing about 20% of calories to the
human population. Current genetic and genomic improvements in wheat have helped increase its
production; however, further improvements are essential to increasing wheat productivity to feed
the world’s population, which is projected to reach over nine billion by 2050 (Hertel, 2011; Sapkota
et al., 2019). Wheat production is often reduced by several biotic and abiotic stresses including
drought and heat. Plant breeding has improved crop resistance to both biotic and abiotic stresses;
nevertheless, the progress is slow and the yield gap between stress-prone areas and favorable
production regions of major crops, including wheat, is high (Edae et al., 2014). Therefore, breeding
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efforts are being focused on dissecting the genetics of abiotic
stresses including drought in wheat to develop knowledge and
resources to speed up the development of climate-resilient
wheat cultivars.

Drought poses a major threat to crop yield, highlighting the
urgent need to develop drought-tolerant cultivars (Ergen and
Budak, 2009). The majority of countries worldwide experience
drought problems, even those in humid regions as they often
have dry spells at some point. Obviously, drought is more
severe in arid areas with minimal rainfall (Sun et al., 2006).
North Dakota is the biggest producer of hard-red spring wheat
(HRSW) in the USA (North Dakota Wheat Commission, 2016).
The state, especially the semiarid western half, experiences
frequent droughts (Climate Change and the Economy, 2008).
Consequently, HRSW, a major cash crop for ND and the USA,
is regularly affected by drought in this region. Developing
and releasing drought-tolerant HRSW cultivars is critical to
countering ND drought conditions, but this cannot be done
without understanding the genetics of drought tolerance for
HRSW in northern USA.

Quantitative trait locus (QTL) analysis allows genetic
dissection, which can be a sound approach for understanding
the molecular basis of drought tolerance in HRSW. In the past,
several QTL mapping studies for drought tolerance in wheat
were conducted (Kirigwi et al., 2007; Alexander et al., 2012;
Ibrahim et al., 2012a,b). These studies have used different types of
markers, including SSRs, EST-STS, and DArTs. However, almost
all of these studies were based on low-resolution molecular maps
consisting of only 102–690 markers. The number of markers
in the previous studies seems insufficient to saturate the wheat
genome due to its large size of 17 gigabase pairs (Brenchley
et al., 2012). Also, drought tolerance is a quantitative trait
adopting different mechanisms (Blum, 1988) and should have
several QTL distributed throughout the whole genome. A high-
resolution map can provide a more complete genetic dissection
of drought tolerance and also a successful application of
associated molecular markers through marker-assisted selection
(MAS) programs. The Infinium iSelect 90K assay (Wang et al.,
2014), with more than 81,000 gene-associated SNPs to assess
polymorphism in bread wheat, provides a better means to
identify SNPs tightly linked to drought tolerance.

Biparental QTL mapping, even when using high-density
linkagemaps, suffers some limitations. The biparental population
has fewer recombination events and therefore has low resolution.
By comparison, association mapping (AM) exploits a broader
population and multiple alleles and has a better resolution of
the QTL (Yu and Buckler, 2006). A few AM studies on drought
tolerance conducted in the past have used a small number of
markers (Dodig et al., 2012; Edae et al., 2013, 2014; Ballesta et al.,
2020; Maulana et al., 2020), which seems insufficient to explore
the variation in wheat, efficiently. Dodig et al. (2012) used 46 SSR
markers, and Edae et al. (2013) used 78 DArT markers. Maulana
et al. (2020) used greenhouse for phenotyping for the association
study, whereas Ballesta et al. (2020) used field experiments for
their study but showed the association only for chromosome
4A. Furthermore, to our knowledge, no genetic studies were
conducted on HRSW germplasm to elucidate the QTL associated

with drought-related traits in the region. Therefore, the present
study was undertaken to identify genes/QTL associated with yield
and agronomic traits evaluated under drought conditions in field
experiments using an association mapping approach combined
with high-density SNP marker assay.

MATERIALS AND METHODS

Plant Materials
In 2012, a germplasm panel comprising of 350 HRSW
inbred lines developed by the HRSW breeding program
at North Dakota State University (NDSU) and different
cultivars with varying drought tolerances was used for this
study (Supplementary Table 1). Eleven more accessions were
added for the experiments conducted in 2013 and 2014
(Supplementary Table 2). These lines were developed over time
from different crosses, and pedigree selections for different
purposes such as drought tolerance, disease resistance, quality,
and yield were used for this study.

Field Experiments and Data Collection
The evaluation of agronomic performances of the AM panel
was carried out under non-irrigated field conditions at different
locations in ND, USA. In 2012, the AM was evaluated at Prosper
(46.96300◦N, 97.01980◦W), Casselton (46.540N, 97.1238◦W),
and Minot (48◦13′59′′N 101◦17′32′′W). In 2013, the evaluation
was carried out in Prosper, Minot, and Williston (48◦9′23′′N
103◦37′41′′W), while in 2014, it was evaluated in Prosper,
Minot, and Hettinger (46◦0′3′′N 102◦38′0′′W). Prosper and
Casselton are located in eastern ND, at 46.9630◦ N, 97.0198◦

W, and 46.9◦ N, 97.210556◦ W, respectively. Minot is situated
between western ND’s semiarid grassland and central ND’s
subhumid grassland (48.2330◦ N, 101.2923◦ W). Williston’s
location is in northwestern ND (48.1470◦ N, 103.6180◦ W), and
Hettinger’s is in southwestern ND (46.0014◦ N, 102.6368◦ W).
The total rainfall during the growing period (seed sowing to
ripening) in 2012, 2013, and 2014 at Prosper was 119.6, 269.7,
and 168.6mm, respectively (Table 1). Minot’s rainfall during
the growing period was 168mm in 2012, 159.8mm in 2013,
and 230.9mm in 2014. In case of Casselton, Williston, and
Hettinger, the rainfall was 122.8mm (2012), 319.3mm (2013),
and 200.3mm (2014), respectively, during the growing season
(North Dakota Agricultural Weather Network, 2015). The total
rainfall in the experimental sites during the growing period
was considered to assess the drought condition (Table 1). The
water holding capacity of the experimental sites was achieved
from the soil type (Frazen, 2003). In 2012, the experiment was
conducted in a randomized complete block design (RCBD) with
two replicates, whereas a simple lattice design was used in 2013
and 2014. The plots had an area of 2.44× 1.22m and seven rows
with a 15.24 cm gap between them in 2012 and 2013. The plot size
in 2014 was 2.44× 1.42m, but the number of rows was still seven
with a larger gap (17.78 cm) between them.

The phenotypic data was collected on DH, PH, YLD, TW, and
TKW. The heading date (DH) was recorded whenmore than 50%
of the plants in the plot were starting to flower. Plant height (PH)
was measured in the middle of the plot from plant base to tip
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TABLE 1 | Soil types, plant-available water (water-holding capacity of soil), and total rainfall for nine environments used in this study.

Environments Soil type Plant-available water

(mm water/30.48 cm soil)

Rainfall (mm)

Casselton 2012 Fine silty loam 45.72–63.5 120.1

Prosper 2012 Fine silty loam 45.72–63.5 119.6

Minot 2012 Fine sandy loam 31.75–45.72 168

Prosper 2013 Fine silty loam 45.72–63.5 269.7

Minot 2013 Fine sandy loam 31.75–45.72 442.3

Williston 2013 Fine sandy loam 31.75–45.72 319.3

Minot 2014 Fine sandy loam 31.75–45.72 230.9

Prosper 2014 Fine silty loam 45.72–63.5 168.6

Hettinger 2014 Fine sandy loam 31.75–45.72 200.3

excluding the awn. Yield per plot (YLD)was converted to yield/ha
for further analysis. Similarly, kg/0.5-pint cup was converted to
kg/m3 as the test weight (TW) for further analysis. A thousand
kernels were counted using a seed counter and were weighed for
thousand kernel weight (TKW).

Single-Nucleotide Polymorphism
Genotyping
GenomicDNAwas isolated from lyophilized young leaves of each
genotype using the DNeasy Plant Mini Kit (Qiagen, Valencia,
CA, cat. no. 69106). The quality of the DNA was checked
on 0.8% agarose gel. The NanoDrop 1000 spectrophotometer
(NanoDrop Technologies Inc., Wilmington, DE) was used to
check the DNA concentration. The accessions of the AM panel
were genotyped using the Illumina 90K iSelect wheat SNP assay
(Wang et al., 2014) in the Small Grains Genotyping Lab at USDA-
ARS, Fargo, ND. The Illumina iSelect 90K assay produced data
for 81,587 SNPs. The analyses of SNP genotyping, clustering of
the SNP alleles, and calling of the genotypes were performed with
Genome Studio v2011.1 (www.illumina.com). The minimum
number of points used in the cluster was 10 (Wang et al., 2014).
Monomorphic SNPs and SNPs having more than 20% missing
genotypic data and 10% heterozygosity were excluded. The best
linear unbiased prediction (iBLUP) method (Yang et al., 2014b)
was used to impute the missing genotypic data for the remaining
SNPs. The polymorphic SNPs selected after filtering based on the
above mentioned criteria were screened for their positions on the
chromosomes based on the wheat consensus genetic map (Wang
et al., 2014).

Phenotypic Data Analysis (ANOVA,
Descriptive Statistics, and Frequency
Distribution)
The ANOVA Proc MIXED procedure was used (SAS Institute,
2004) to analyze the phenotypic data from 2012, whereas for 2013
and 2014, the Proc LATTICE was used. The accessions of the
AM panel were considered as fixed effects, and environments and
blocks were considered as random effects in the ANOVA Proc
MIXED procedure. The mean values were separated using the
F-protected least significant difference (LSD) value at the P ≤

0.05 level of significance. CORR procedure of SAS (SAS Institute,
2004) was used to calculate Pearson correlations between traits

for each environment. The phenotypic data with a low coefficient
of variance (CV) value and significant differences among entries
were used for further analysis. The locations that did not show
significant differences for most of the traits and with a high CV
were not included for further analysis and reporting.

Marker–Trait Association Analysis
Population structure was calculated using markers with pairwise
R2 < 0.5 for all pairwise comparisons. To assign the
subpopulation membership for each genotype, STRUCTURE
software version 3.2 was used (Pritchard et al., 2000). We used
an admixture model with independent allele frequencies, a burn-
in of 100,000, and an MCMC replication of 500,000 for K =

1–10 with five replications. The delta k calculated from the
STRUCTURE software was used to select the optimum number
of subpopulations. The number of subpopulations (k) was plotted
against the delta k calculated using the STRUCTURE software.
Pairwise linkage disequilibrium (LD) betweenmarkers in the null
model was calculated as the squared allele frequency correlation
(R2) in the R-package (Lipka et al., 2012) after filtering for
minor allele frequency (MAF) ≥ 5%. Genome-wide LD decay
was estimated by plotting R2 against the corresponding pairwise
genetic distance (cM) (Wang et al., 2014). AM analysis was
conducted using the software TASSEL v.5.0 (Bradbury et al.,
2007). The mixed linear model (MLM) with PC + Kinship (K)
was used for AM, where the genotypic data were filtered for
minor allele (≤ 5%) frequency. A total of 14,816 filtered SNPs
were used for further AM study. The initial cutoff point for
marker–trait association (MTA) was considered at p ≤ 0.001.
Then, this cutoff was subjected to Bonferroni correction (Yang
et al., 2014a) to get the threshold (p ≤ 3.4 ∗ 10−6). Only the
markers identified to be associated in at least two environments
were reported.

Candidate Gene Analysis
For candidate gene analyses, the sequences of the
markers showing MTAs were obtained from the
T3/Wheat database (Blake et al., 2016) and their physical
positions were extracted using the BLAST search against
Chinese_Spring_IWGSC_RefSeq1.0 (Appels et al., 2018, Alaux
et al., 2018) to identify the most proximal gene. The physical
position of eachmarker was utilized to identify if it represents the
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perfect marker in the annotated gene space of Chinese Spring.
For markers anchored in the non-gene space, flanking genes
were obtained by manual IWGSC RefSeq1.0 (Blake et al., 2019)
genome scanning in the GrainGenes Genome Browser (https://
wheat.pw.usda.gov/GG3/genome_browser). For each MTA, the
linked gene set can be extracted from the GrainGenes database.
Finally, annotation of identified genes was included to predict
their function. In silico expression analysis was carried out in the
Wheat Expression Browser expVIP (Ramírez-González et al.,
2018, Borrill et al., 2016) dataset for drought and heat stress and
PEG to stimulate drought.

RESULTS

Phenotypic Analyses
Significant differences among genotypes were found in the
environments of Casselton 2012, Prosper 2012, Minot 2012,
Prosper 2013, Prosper and Minot 2013 and 2014, and Hettinger
2014 (Table 2). The rest of the phenotypic data was not analyzed
further. The seeds of Minot 2013 could not be cleaned due
to Fusarium head blight infection, and hence, YLD, TW, and
TKW could not be reported for that environment. Also, TKW
for Minot 2014 and Hettinger 2014 was not reported. The
phenotypic analyses of the data showed that the heading date
had a highly significant negative correlation with YLD, TW, and
TKW in all environments (Table 2). Heading date showed a
significant positive correlation with PH in four environments.
Plant height had a significantly negative correlation with YLD
in four environments including the overall mean. It had a
significantly positive correlation with TW in six environments,
whereas it did not show any correlation with TKW. The yield
had a strong positive association with TW in five environments.
Also, it showed a strong positive association with TKW in all
the environments including the overall mean. Again, TW had
a strong positive correlation with TKW in three environments
(Table 2). The frequency distributions of the phenotypic data for
DH, PH, YLD, TW, and TKW showed a continuous distribution,
a characteristic of the typical quantitative traits (Figure 1).

Marker Distribution, Population Structure,
and LD
A total of 17,514 polymorphic SNPs were selected after the
filtering-based criteria mentioned earlier in the material and
methods section (Supplementary Table 3). An additional 2,756
SNPs were excluded for lacking map positions on the consensus
hexaploid wheat maps (Wang et al., 2014). Out of 14,816 SNP
markers used in the AM study, 7,848 were located on the B-
genome, 5,503 on the A-genome, and 1,465 markers on the D-
genome. The D-genome had the lowest density of markers, with
an average distance of 0.87 cMbetween twomarkers. The number
of markers on individual chromosomes ranged from 56 (4D) to
1,433 (2B). The average number of markers per chromosome was
705.52 (Table 3). The number of subpopulations (k) was plotted
against the delta k calculated using software STRUCTURE.
The peak of the broken line graph was observed at k = 7,
indicating that the natural population can be divided into
seven subpopulations (Figure 2). The association was analyzed

TABLE 2 | Correlation coefficients between five agronomic traits in the association

mapping panel in different environments (Env.) and overall mean across

environments (M).

Trait I and Env } PH DH YLD TW

DH

1 0.16**

2 0.07ns

3 0.15**

4 0.18***

5 0.06ns

6 0.09ns

7 0.09*

8 0.09ns

YLD

1 −0.13* −0.21***

2 0.04ns −0.4***

3 0.13* −0.16**

4 0.13* 0.20***

5 −0.16** −0.15**

6 −0.13* −0.15**

7 . .

8 −0.36*** −0.24***

TW

1 0.24*** −0.16** 0.18**

2 0.27*** −0.35*** 0.41***

3 0.22** −0.27*** 0.42***

4 0.12* −0.03ns −0.03ns

5 0.09ns −0.17** 0.30***

6 0.25*** −0.34*** 0.24***

7 . . .

8 0.2*** −0.27*** 0.08ns

TKW

1 0.04ns −0.14** 0.27*** 0.11*

2 0.04ns −0.15** 0.32*** 0.19***

3 0.13* −0.21*** 0.29*** 0.39***

4 0.05ns 0.05ns 0.30*** −0.09ns

5 . . . .

6 . . . .

7 . . . .

8 −0.01ns −0.10ns 0.34*** 0.10ns

*Significant at p < 0.05, **Significant at p < 0.01, ***Significant at p < 0.001 level; IPH,

Plant height; DH, Days to heading; YLD, Yield; TW, Test weight; TKW, Thousand kernel

weight}1 = Casselton 2012, 2 = Prosper 2012, 3 =Minot 2012, 4 = Prosper 2013, 5 =

Prosper 2014, 6 Hettinger 2014, 7 = Minot 2013, 8 = Mean across environments.

using five principal components (PC), which captured 25%
of the variation. Genome-wide LD decay was estimated by
plotting the R2 value against the corresponding pairwise genetic
distance (cM) and the LD heat map was created for the whole
genome (Supplementary Figure 1). The LD pattern varied by
chromosome even after controlling for population relatedness.
Overall, the A and B genomes showed high LD compared to the
D-genome. The LD dropped at an approximate genetic distance
of 10 cM, and therefore,±10 cM was used to establish confidence
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FIGURE 1 | Frequency distribution of least-square means (lsmeans) for the agronomic traits in the hard red spring wheat panel across environments. The panel was

evaluated for days to heading (DH), plant height (PH), yield (YLD), test weight (TW), and thousand kernel weight (TKW) in nine different environments of North Dakota in

2012, 2013, and 2014.

intervals for QTL regions. Furthermore, SNP markers with a
pairwise R2 ≥ 0.7 were considered as a single locus.

Identification of QTL and Associated
Candidate Genes
In this study, we detected a total of 69 QTL involved with drought
tolerance on all chromosomes except 5D using AM (Table 4;
Supplementary Figure 2). Twenty QTL six were associated with
DH. These QTL explained 5.6–11.33% of phenotypic variation
(PV). Five of those QTL explained >10% of PV and therefore
were considered major QTL. Twelve of the QTL were identified
to be constitutive, and eight of the QTL were identified
exclusively in drought-prone environments. Similarly, a total
of 20 QTL six were associated with PH. These QTL explained
4.54–48.01% of PV, with major effects (>10% PV). Sixteen
QTL were identified as constitutive, three were identified in the
control environments, and one was identified in the drought
environment (Table 4).

Seventeen QTL were identified for YLD. These QTL explained
4.11–12.04% of PV (Table 4). Only one QTL, located on
chromosome 4B, had a major effect. Sixteen QTL were identified
as constitutive, and the remaining QTL was identified in the
drought-prone experimental sites. Five QTL were associated with
TW. All of these QTL had minor effects, explaining 3.7–7.66% of
PV. All of the QTL identified were constitutive. Seven QTL were
identified for TKW, all of which had minor effects, explaining
from 5.2 to 9.2% of PV. One QTL among them was constitutive,
and the remaining six were identified in the drought-prone
environments (Table 4).

The sequence of 69 markers associated with QTL was mined
from Wang et al. (2014) to identify their physical position in the
Chinese_Spring_IWGSC_RefSeq1.0 (Appels et al., 2018). Out of

69, seven markers (BobWhite_c47948_76, D_contig00840_473,
Kukri_c15043_326, Excalibur_c25353_1171, Ex_c3115_2742,
Excalibur_rep_c92985_510, Excalibur_c56240_176) were
manually anchored on the genome. A total of 47 SNPs were
anchored in the predicted gene space, and 22 were found
in the intergenic region (Supplementary Table 4). For these
intergenic SNPs, we identified the most proximal flanking
genes representing the possible linked gene contributing to
the phenotype. Thus, a total of 91 AM-QTL-associated most
proximal genes along with their predicted function and genome
orientation (Table 5) were mined from the genome. Using the
expVIP analysis (Ramírez-González et al., 2018, Borrill et al.,
2016), we explored the in silico expression of these genes affected
by drought stress (Supplementary Figure 3) which could be
used to prioritize the candidate genes. However, for breeding
purposes all the MTAs are valuable.

DISCUSSION

Association Analyses
Studies are conducted to dissect the genetics of drought tolerance
in many crops including wheat, and it is well-known that
drought tolerance is a complex quantitative trait affected by
genetic and environmental factors (Gahlaut et al., 2019). In
this study, the iBLUP method (Yang et al., 2014b) was used to
impute missing genotypic data as it was reported to tolerate a
high rate of missing data especially for rare alleles, compared
to the common imputation methods. High-density single-
nucleotide polymorphism (SNP) genotyping arrays explore
genomic diversity and MTAs very efficiently (Wang et al., 2014).
Infinium iSelect 90K assay uses more than 81,000 gene-associated
SNPs to reveal polymorphism in allohexaploid wheat populations
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TABLE 3 | Chromosome and genome wide distribution of markers in our spring

wheat association mapping panel based on the 90k SNP consensus map (Wang

et al., 2014).

Chromosome No. of markers Map length Average map density

cM/marker

1A 785 156.3 0.2

2A 861 185.47 0.22

3A 661 197.2 0.3

4A 663 166.71 0.25

5A 783 148.3 0.19

6A 852 175.32 0.21

7A 898 244.16 0.28

1B 1,197 173.62 0.15

2B 1,433 188.27 0.13

3B 1,139 154.48 0.14

4B 635 118.91 0.19

5B 1,348 219.77 0.16

6B 1,216 122.92 0.1

7B 880 188.64 0.21

1D 261 199.86 0.77

2D 476 152.84 0.32

3D 207 152.84 0.74

4D 56 170.43 3.04

5D 147 207.33 1.41

6D 170 160.5 0.94

7D 148 226.87 1.53

A genome 5,503 1,273.46 0.23

B genome 7,848 1,166.61 0.15

D genome 1,465 1,270.67 0.87

Whole genome 14,816 3,710.74 0.25

(Wang et al., 2014; Kumar et al., 2016, 2019). Higher genome
coverage and resolution in the dissection of wheat’s agronomic
traits are possible using this genotypic tool (Kirigwi et al., 2007;
Alexander et al., 2012; Ibrahim et al., 2012b). The marker density
found in this study (0.49 cM/marker) was in agreement with
the previous studies using the 90K Infinium iSelect assay (Wang
et al., 2014; Ain et al., 2015; Kumar et al., 2016). The MLM
model used in this association study has been proven to be
very efficient for genome-wide association studies (GWAS) and
can be used with either structure (R) or principal component
(PC) analyses. This study used five PCs, which captured 25%
of the variation. The MLM model, which accounts for both
structure and relatedness (PC+K), was used for themarker–trait
association study.

Determining the threshold for the p-value is crucial. A
liberal threshold will declare a false-positive association (a type
I error), whereas a too stringent threshold is likely to miss a
true association (a type II error). Taking this into consideration,
the initial cutoff was chosen as p ≤ 0.001, which was not very
stringent. Then, the threshold (p ≤ 3.4 ∗ 10−6) was determined
using the Bonferroni correction (Yang et al., 2014a), which was
very stringent. The MTAs identified at the initial cutoff and the
threshold were reported if they were identified in at least two

environments. This repetition of theMTA further minimized any
false associations.

Use of Secondary Data to Assess Drought
Conditions
Drought can be assessed by variable weather conditions, soil
moisture, and crop conditions over a particular growing season
(Lanceras et al., 2004). Therefore, rainfall data were collected,
and the soil types of the experimental sites, which reflect
soil moisture, were taken into consideration to assess drought
conditions for this study. The total amount of rainfall was
collected from planting date to plant physiological maturity. The
dates for the physiological maturity of the plants were calculated
by adding 30 days to DH (Simmons et al., 1914). Among
the experimental locations, Casselton 2012, Prosper 2012, and
Minot 2012 were considered to have drought conditions,
whereas Prosper 2013, Minot 2013, Prosper 2014, and Hettinger
2014 were considered to have control or normal conditions.
Although Minot 2012 and Prosper 2014 had about the same
amount of rainfall, the soil in Prosper had a better water-
holding capacity. Therefore, Minot 2012 was considered to have
drought conditions.

Use of Agronomic Data to Assess Drought
Tolerance
Days to Heading

Several major and minor QTL were revealed for DH, which
indicated the quantitative nature of the trait. The eight QTL
for DH, identified exclusively under drought conditions, could
play a vital role in drought tolerance. Also, the constitutive
QTL can be used for drought tolerance breeding in wheat.
Some of these QTL (exclusively expressed under drought
conditions, called constitutive QTL) identified in this study
likely correspond with some already reported QTL associated
with drought tolerance; however, further studies such as
allelism test is warranted to determine their relationship. Malik
et al. (2015) identified three adjacent QTL on chromosome
2A for drought tolerance related to the photosynthetic rate,
cell membrane stability, and relative water content. The
QTL QDH.ndsu.2A.1 in this study likely represent one of
those QTL previously reported (Malik et al., 2015; Gahlaut
et al., 2019), but further studies are required to determine
their relationship. Two QTL identified in this study on the
chromosome 3A which were important for drought tolerance,
QDH.ndsu.3A.1 and QDH.ndsu.3A.2, could represent the QTL
QHea.T84-3A which was earlier found to increase DH under
both drought and non-drought conditions (Ibrahim et al.,
2012b). Chromosomal arm 3AL also harbors a gene for
earliness per se (Edae et al., 2014), associated with enhanced
response to abscisic acid (ERA1), which provides drought
tolerance (Edae et al., 2014). The gene ERA1, also located
on chromosome 3B, could represent the QTL QDH.ndsu.3B
identified in this study which is closely associated with
TraesCS3B01G356000 (Table 5), putatively encoding for inositol-
1,4,5-trisphosphate 5-phosphatase (InsP3). InsP3 is reported to
be a second messenger in plants responding to many stimuli

Frontiers in Genetics | www.frontiersin.org 6 June 2021 | Volume 12 | Article 649988

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Rabbi et al. Genetics of Drought Tolerance in Wheat

FIGURE 2 | Population structure in the association mapping (AM) panel. (A) Estimation of the number of populations by calculating delta K values. (B) Estimated

population structure of the AM panel (k = 7).

and has been shown to affect drought tolerance, carbohydrate
metabolism, and phosphate-sensitive biomass increases in
tomato (Khodakovskaya et al., 2010). In wheat, differential
expression of the phospholipase C gene regulating the inositol-
1,4,5-triphosphate (IP3) signal transduction pathway possibly
results in the quick sensing of drought stress (Ergen et al.,
2009). Kamran et al. (2013) identified a QTL, QFlt.dms-4A.1,
for reduced DH at 61.2 cM on chromosome 4A, which may
represent the constitutive QTL QDH.ndsu.4A.1 identified in
this study. The constitutive QTL QDH.ndsu.2B.2 is located in
the same region as the earlier reported QTL QCrs- (Ibrahim
et al., 2012a), which deteriorate the number of root crossing
in both water regimes. A QTL for drought tolerance on 4AL
reported earlier by Alexander et al. (2012) may represent
the QTL QDH.ndsu.4A.2, which was identified exclusively for
drought-prone environments in this study. The constitutive

QTL QDH.ndsu.6B was located in the same genomic location

as the QTL QHea+, which was reported to reduce DH under
both water conditions (Ibrahim et al., 2012b). Huang et al.
(2006) reported a QTL for days to maturity, QDtm.crc-2D,
which corresponded with the constitutive QTL in this study,
QDH.ndsu.2D, representing the kinase family protein. However,
the SNP markers associated with sucrose-phosphate synthase
(TraesCS3A01G425500) and vacuolar protein sorting-associated
protein (TraesCS5A01G259200, TraesCS3A01G317000) in this
group (Table 5) may represent the important abiotic stress genes

controlling the plant height. The QTL QDH.ndsu.5B.2 and
QDH.ndsu.7B identified in this study seem to be novel.

Plant Height

The QTL QPH.ndsu.5B could represent the ortholog to the
GA-insensitive dwarf gene, GID1L2, in rice, indicating the
synergistic relationship of rice and wheat (Zanke et al., 2014).
The major QTL for PH, QPH.ndsu.6B.1 and QPH.ndsu.6B.2,
have been identified on wheat chromosome 6B, and several
previous studies also reported QTL for PH on a similar
location (Zanke et al., 2014; Gahlaut et al., 2019; Abou-
Elwafa and Shehzad, 2021). The major QTL QPH.ndsu.4B
could represent the reduced height gene Rht-B1 (Wilhelm,
2011), which was reported to be on the short arm of
chromosome 4B. This gene encodes the DELLA protein
that reduces a plant’s sensitivity to gibberellin (GA), thereby
reducing stalk length and making the plant semi-dwarf.
The QTL QPH.ndsu.1A, QPH.ndsu.2A.1, QPH.ndsu.6A.2, and
QPH.ndsu.3A.3 could represent the QTL for PH reported
earlier by Zanke et al. (2014). The QTL QPH.ndsu.3A.2 and
QPH.ndsu.3D.2, important for drought tolerance, could be the
same as those reported by Ibrahim et al. (2012a). Liu et al.
(2011) identified a QTL for PH, QHt-3B, which could occupy
the same region as the QTL QPH.ndsu.3B in the study. The
QTL QPH.ndsu.7A.1 coincided with the earlier reported QTL
QHt.crc-7A (McCartney et al., 2005). The QTL QPH.ndsu.7A.2
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TABLE 4 | Marker-trait associations (QTL) identified for yield and related traits under different environments in this study.

QTL and trait QTL region Other associated

traits I

Env. } Water regime Position§ p-value¶ R2 (%)

Days to heading

QDH.ndsu.1B 5 1*, 2, 4* Control+drought 90.26 4.83*10−7 8.96

QDH.ndsu.2A.2 10 1*, 2, 4* Control+drought 113.30 1.92*10−6 8.07

QDH.ndsu.2B.2 14 PH, TKW 1*, 2, 4*, 6*, 7* Control+drought 99.8–104.39 4.86*10−8 10.44

QDH.ndsu.2D 16 2*, 4 Control+drought 19.03 2.98*10−6 7.54

QDH.ndsu.3A.1 17 PH, TW 1*, 2, 6*, 7* Control+drought 90.55 1.25*10−8 11.33

QDH.ndsu.3B 21 TW, YLD 1*, 2, 3*, 4*, 5* Control+drought 70.09 1.44*10−8 11.24

QDH.ndsu.4A.1 25 TKW 1*, 2, 3*, 4* Control+drought 51.97 1.83*10−6 8.10

QDH.ndsu.4B 28 TW, PH, YLD 1*, 2*, 4*, 7* Control+drought 64.03–75.64 7.35*10−6 7.22

QDH.ndsu.4D 29 1*, 2, 4* Control+drought 94.22 3.11*10−8 10.74

QDH.ndsu.5B.2 35 1*, 2*, 3*, 4*, 5* Control+drought 100.64–110.19 7.67*10−6 7.19

QDH.ndsu.6B 39 TKW, PH, YLD 1*, 2*, 6*, 7* Control+drought 63.14–71.76 2.97*10−5 6.34

QDH.ndsu.7B 44 YLD 2*, 3*, 4* Control+drought 98.30–101.18 9.18*10−5 5.60

QDH.ndsu.2A.1 8 TW 1*, 2 Drought 25.02 4.95*10−8 10.43

QDH.ndsu.2A.3 11 YLD 1*, 2 Drought 141.66 1.81*10−6 8.11

QDH.ndsu.2B.1 13 YLD 1*, 2 Drought 83.80 8.13*10−7 8.62

QDH.ndsu.3A.2 18 YLD 1*, 2 Drought 117.73 1.58*10−7 9.68

QDH.ndsu.4A.2 26 TKW 1*, 2*, 3* Drought 99.19–103.03 3.69*10−5 6.21

QDH.ndsu.5A.1 30 1*, 2 Drought 55.01 2.54*10−6 7.90

QDH.ndsu.5A.2 31 1*, 2*, 3* Drought 84.13 3.98*10−6 7.61

QDH.ndsu.5B.1 33 TKW 1*, 2 Drought 5.70 8.35*10−7 8.61

Plant height

QPH.ndsu.1A 3 1*, 5, 6* Control+drought 105.74 9.80*10−13 16.83

QPH.ndsu.1B 4 YLD 2*, 4*, 7 Control+drought 76.89 3.2*10−7 7.73

QPH.ndsu.2A.1 9 2*, 3*, 4*, 7 Control+drought 98.43–101.97 2.03*10−5 6.31

QPH.ndsu.2A.2 12 2*, 6*,7* Control+drought 156.23–162.89 2.4*10−5 6.25

QPH.ndsu.2B 14 TKW, DH 2*, 3*, 4*, 5, 7* Control+drought 109.53 2.24*10−7 8.99

QPH.ndsu.3A.1 17 TW, DH 2*, 3*, 4* Control+drought 77.57 1.68*10−4 5.13

QPH.ndsu.3A.2 19 2*, 6 Control+drought 128.64 6.08*10−7 8.46

QPH.ndsu.3A.3 20 3*, 4*, 6* Control+droughte 180.33 5.42*10−5 5.72

QPH.ndsu.3B 22 2*, 3*, 5* Control+drought 102.54–106.73 5.29*10−4 4.54

QPH.ndsu.3D.1 23 2*, 5*, 7* Control+drought 0–4.46 3.29*10−4 4.67

QPH.ndsu.3D.2 24 2*, 3*, 4* Control+drought 66.99 1.62*10−4 5.27

QPH.ndsu.4B 28 TW, YLD, DH 1, 2, 3, 4, 5*, 6, 7* Control+drought 56.19 3.79*10−14 19.97

QPH.ndsu.5B 34 YLD 2*, 3*, 4*,5, 6, 7* Control+drought 63.07 6.51*10−31 48.01

QPH.ndsu.6A.2 38 1, 5* Control+drought 133.74 8.66*10−8 10.07

QPH.ndsu.6B.1 39 TKW, DH, YLD 3*, 4*, 5, 6*, 7 Control+drought 56.98 1.8*10−30 47.15

QPH.ndsu.7A.2 43 2*, 3*, 4* Control+drought 212.66 4.3*10−6 7.55

QPH.ndsu.6A.1 37 4, 5 Control 82.38 4.61*10−10 12.85

QPH.ndsu.6B.2 40 YLD 5, 7* Control 108.86 1.07*10−30 47.60

QPH.ndsu.6D 41 4*, 5, 6*, 7* Control 22.92 1.56*10−7 9.21

QPH.ndsu.7A.1 42 1*, 2 *, 3* Drought 61.36 3.38*10−4 4.83

Thousand kernel weight

QTKW.ndsu.2B.1 14 PH, DH 1*, 2*, 3* Drought 106.56–114.57 7.44*10−5 5.64

QTKW.ndsu.2B.2 15 YLD 2*, 3 Drought 155.41 9.33*10−7 8.55

QTKW.ndsu.4A.1 25 DH 1*, 2*, 3* Drought 48.98–51.97 1.74*10−4 5.22

QTKW.ndsu.4A.2 26 DH 1*, 2*, 3* Drought 105.87–108.72 1*10−4 5.59

QTKW.ndsu.4A.3 27 2, 3* Drought 154.30 2.44*10−7 9.20

QTKW.ndsu.6B 39 PH, DH, YLD 1*, 2*, 3* Drought 56.64–64.82 1.79*10−4 5.20

QTKW.ndsu.5B 33 DH 1*, 3, 4* Control+drought 17.48 1.98*10−6 6.92

(Continued)
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TABLE 4 | Continued

QTL and trait QTL region Other associated

traits I

Env. } Water regime Position§ p-value¶ R2 (%)

Test weight

QTW.ndsu.1A 1 1*, 2*, 6* Control+drought 29.11–38.11 4.39*10−4 4.63

QTW.ndsu.2A 8 DH 1*, 4*, 5* Control+drought 20.26 7.12*10−4 4.07

QTW.ndsu.3A 17 PH, DH 1*, 2*, 5* Control+drought 85.73 284*10−4 3.70

QTW.ndsu.3B 21 DH, YLD 1*, 3*, 4*, 5* Control+drought 62.31–69.53 3.83*10−6 7.58

QTW.ndsu.4B 28 PH, YLD, DH 1, 2*, 3, 4*, 5*, 6* Control+drought 55.55 4.66*10−7 7.66

Yield

QYL.ndsu.1A 2 1*, 3*, 5* Control+drought 48.45–56.81 1.49*10−5 6.77

QYL.ndsu.1B.1 4 PH 1*, 2*, 3*, 4 Control+drought 70.08 2.22*10−6 6.59

QYL.ndsu.1B.2 6 1*, 5*, 6* Control+drought 112.07 3.68*10−5 6.20

QYL.ndsu.1D 7 1, 5* Control+drought 3.40 2.89*10−6 7.80

QYL.ndsu.2A 11 DH 1, 4*, 5* Control+drought 144.41 1.86*10−6 8.08

QYL.ndsu.2B.1 13 DH 1, 4*, 6* Control+drought 88.93–90.971 1.31*10−5 5.57

QYL.ndsu.2B.2 15 TKW 1, 3, 4, 5, 6 Control+drought 157.21 1.79*10−6 8.11

QYL.ndsu.3B 21 TW, DH 1*, 4*, 5*, 6* Control+drought 62.31–69.53 5.81*10−6 7.36

QYL.ndsu.4B 28 PH, DH, TW 1, 4*, 5, 6* Control+drought 56.19 4.17*10−9 12.04

QYL.ndsu.5A 32 1*, 4*, 6* Control+drought 116.35–117.67 1.7*10−4 4.11

QYL.ndsu.5B 34 PH 1, 4* Control+drought 68.36 1.94*10−6 6.91

QYL.ndsu.6A 36 1, 3*, 4* Control+drought 12.48 1.52*10−6 8.21

QYL.ndsu.6B.1 39 1*, 4*, 5* Control+drought 64.08–64.71 6.08*10−6 7.33

QYL.ndsu.6B.2 40 PH 1, 3*, 4 Control+drought 115.25 1.38*10−6 7.12

QYL.ndsu.7B 44 DH 1*, 3*, 4* Control+drought 89.82–92.52 6.64*10−4 4.26

QYL.ndsu.7D 45 1*, 4*, 5* Control+drought 128.15–135.55 3.19*10−5 5.24

QYL.ndsu.3A 18 DH 1, 2*, 3* Drought 109.95 1.52*10−6 8.21

I DH, Days to heading; PH, Plant height; YLD, Yield; TW, Test weight; TKW, Thousand kernel weight.

}1 = Casselton 2012, 2 = Prosper 2012, 3 = Minot 2012, 4 = Prosper 2013, 5 = Prosper 2014, 6 = Hettinger 2014, 7 = Minot 2013, 8 = Mean across environments.
§Position represents the peak point of the QTL interval. The position is based on consensus map of Wang et al. (2014).

*p < 0.001 but above the threshold level.

in a receptor-like kinase gene (TraesCS7A01G540200) and
QPH.ndsu.3D.1 in a subtilisin-like protease (Table 5) in this
study did not correspondwith any reportedQTL and hence could
be novel.

YLD

In the past, Edae et al. (2014) reported a QTL for TKW on
chromosome 1BL and a QTL for TW on chromosome 2BL that
could be in the region of QTLQYL.ndsu.1B.1 andQYL.ndsu.2B.2,
respectively. More recently, Tura et al. (2020) detected a main-
effect QTL, QYld.aww-1B.2, on 1B chromosome which likely
represents the same locus as QYL.ndsu.1B.1; however, further
research is warranted to determine their relationship. Ibrahim
et al. (2012a) identified a QTL,QCrs.D84-2B, on chromosome 2B
at 93.4 cM that deteriorates the number of root crossings under
both water regimes and could represent the QTL QYL.ndsu.2B.1
(TraesCS2D01G126100-cellulose synthase) found in this study.
Another QTL for YLDQYld.T84-3Bat identified earlier (Ibrahim
et al., 2012b) occupies the same location as the QTLQYL.ndsu.3B
identified in this study. Another QTL,QYld.T84-3Bat 59.8, which
deteriorated YLD under both water regimes, could coincide with
the QTL QYL.ndsu.4B in (TraesCS4B01G047900) identified in
this study. The QTL QYL.ndsu.5B and QYL.ndsu.6B.2 also likely
correspond to the QTL for TW and TKW identified earlier by
Edae et al. (2014). Also, the QTL QYL.ndsu.5B corresponded

with the QTL QYld∗, which was reported to improve YLD under
drought stress (Ibrahim et al., 2012b). The QTL QYL.ndsu.1B.2
had the same genomic location as the constitutive QTL for the
green leaf area reported by Edae et al. (2014). Ibrahim et al.
(2012a) reported a QTL, QTgw+, which improved thousand-
grain weight under both water conditions and could represent
the QTL QYL.ndsu.1D. The QTL QYL.ndsu.2A likely coincides
with the YLD QTL QGY.caas-2A (Li et al., 2015) or a QTL
identified by Mathew et al. (2019) evaluated under drought
stress conditions. Huang et al. (2006) identified the QTL
QTgw.crc-6A for TKW that seems to be present at the same
location as the QTL QYL.ndsu.6A identified in this study. The
QTL QYL.ndsu.7D corresponded with the QTL QHi+, which
was reported to improve the harvest index under both water
conditions (Ibrahim et al., 2012b).

TW

The QTL QTW.ndsu.4B could be the same QTL earlier
reported by Li et al. (2016) on the same chromosome. The
QTL QTW.ndsu.1A corresponded with two QTL for YLD,
QYld.abrii-1A1.2 (Azadi et al., 2014) and QGY.caas-1A (Li et al.,
2015). The constitutive QTL QTW.ndsu.2A occupied the same
genomic region as the QTL for drought tolerance related to the
photosynthetic rate reported by Malik et al. (2015). The QTL
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TABLE 5 | List of candidate genes associated with QTL identified in this study.

QTL and trait Associated/proximal

flanking gene

Function Gene space? Distal flanking gene

Days to heading

QDH.ndsu.1B TraesCS1B01G359800 Alpha-glucan water dikinase Yes

QDH.ndsu.2A.2 TraesCS2A01G421100 Myosin heavy chain embryonic smooth protein Yes

QDH.ndsu.2B.2 TraesCS2B01G395600 Histone H2A deubiquitinase (DUF3755) Yes

QDH.ndsu.2D TraesCS2D01G076700 Kinase family protein Yes

QDH.ndsu.3A.1 TraesCS3A01G317000 Vacuolar sorting-associated protein 28-like protein No TraesCS3A01G316900

QDH.ndsu.3B TraesCS3B01G356000 Inositol-1,4,5-trisphosphate 5-phosphatase 4 isoform 1 No TraesCS3B01G355900

QDH.ndsu.4A.1 TraesCS4A01G275500 Importin-5 Yes

QDH.ndsu.4B TraesCS4B01G293600 Copper-transporting ATPase Yes

QDH.ndsu.4D TraesCS4D01G285000 50S ribosomal protein L18 Yes

QDH.ndsu.5B.2 TraesCS5B01G391500 Evolutionarily conserved C-terminal region 2—RNA binding Yes

QDH.ndsu.6B TraesCS5B01G416700 Citrate synthase Yes

QDH.ndsu.7B TraesCS7B01G369500 Tegument protein BRRF2 No TraesCS7B01G369400

QDH.ndsu.2A.1 TraesCS2A01G048900 Defensin Yes

QDH.ndsu.2A.3 TraesCS2A01G517500 Chloride channel protein Yes

QDH.ndsu.2B.1 TraesCS2B01G131500 THUMP domain-containing protein 1 Yes

QDH.ndsu.3A.2 TraesCS3A01G425500 Sucrose-phosphate synthase Yes

QDH.ndsu.4A.2 TraesCS4A01G359500 Squamosa promoter-binding protein Yes

QDH.ndsu.5A.1 TraesCS5A01G259200 Vps52, vacuolar protein sorting-associated protein 52 Yes

QDH.ndsu.5A.2 TraesCS5D01G381300 EEIG1/EHBP1 N-terminal domain-containing protein Yes

QDH.ndsu.5B.1 TraesCS5B01G021800 Glutathione s-transferase Yes

Plant height

QPH.ndsu.1A TraesCS1A01G356900 Choline kinase Yes

QPH.ndsu.1B TraesCS1B01G309400 Non-specific serine/threonine protein kinase Yes

QPH.ndsu.2A.1 TraesCS2A01G247000 D-Lactate dehydrogenase No TraesCS2A01G246900

QPH.ndsu.2A.2 TraesCS2A01G559200 1-Phosphatidylinositol-3-phosphate 5-kinase Yes

QPH.ndsu.2B TraesCS2A01G452200 Ribosome biogenesis protein BRX1-like protein No TraesCS2A01G452300

QPH.ndsu.3A.1 TraesCS3A01G087800 Transcription factor GTE9 Yes

QPH.ndsu.3A.2 TraesCS3B01G491000 F-box protein Yes

QPH.ndsu.3A.3 TraesCS3A01G525300 P-loop-containing nucleoside triphosphate hydrolase

superfamily

No TraesCS3A01G525200

QPH.ndsu.3B TraesCS3B01G531400 Voltage-dependent L-type calcium channel subunit Yes

QPH.ndsu.3D.1 TraesCS3B01G004600 Subtilisin-like protease Yes

QPH.ndsu.3D.2 TraesCS3D01G250900 ATP synthase subunit beta Yes

QPH.ndsu.4B TraesCS4B01G047900 NADH-ubiquinone oxidoreductase subunit Yes

QPH.ndsu.5B TraesCS5B01G303100 Hydroxyacylglutathione hydrolase Yes

QPH.ndsu.6A.2 TraesCS6A01G398000 Protein KINESIN LIGHT CHAIN-RELATED 3 Yes

QPH.ndsu.6B.1 TraesCS6B01G126900 Kinetochore protein nuf2 Yes

QPH.ndsu.7A.2 TraesCS7A01G540200 Receptor-like protein kinase Yes

QPH.ndsu.6A.1 TraesCS6A01G297400 B-cell receptor-associated like protein No TraesCS6A01G297500

QPH.ndsu.6B.2 TraesCS6B01G434900 ABC transporter G family member Yes

QPH.ndsu.6D TraesCS6D01G013700 Zinc finger BED domain-containing protein DAYSLEEPER Yes

QPH.ndsu.7A.1 TraesCS6A01G073600 DNA topoisomerase 3-alpha No TraesCS6A01G073500

1K kernel weight

QTKW.ndsu.2B.1 TraesCS2B01G491600 Transmembrane protein Yes

QTKW.ndsu.2B.2 TraesCS2B01G606100 Receptor kinase 1 No TraesCS2B01G606200

QTKW.ndsu.4A.1 TraesCS4A01G269200 TBPIP No TraesCS4A01G269400

QTKW.ndsu.4A.2 TraesCS4A01G365500 Protein PLANT CADMIUM RESISTANCE 2 Yes

QTKW.ndsu.4A.3 TraesCSU01G167400 Receptor kinase No TraesCSU01G167500

(Continued)
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TABLE 5 | Continued

QTL and trait Associated/proximal

flanking gene

Function Gene space? Distal flanking gene

QTKW.ndsu.6B TraesCS6B01G228100 RNA-binding protein No TraesCS6B01G228300

QTKW.ndsu.5B TraesCS5B01G015100 WAT1-related protein No TraesCS5B01G015200

Test weight

QTW.ndsu.1A TraesCS1D01G020000 Actin No TraesCS1D01G020100

QTW.ndsu.2A TraesCS2A01G012200 Protein transport Sec24-like Yes

QTW.ndsu.3A TraesCS3A01G149800 Dual-specificity protein phosphatase No TraesCS3A01G149900

QTW.ndsu.3B TraesCS3B01G153500 Arginine-tRNA ligase No TraesCS3B01G153600

QTW.ndsu.4B TraesCS4D01G050100 26S proteasome non-ATPase regulatory subunit No TraesCS4D01G050200

Yield

QYL.ndsu.1A TraesCS1A01G040600 Glucose-6-phosphate isomerase Yes

QYL.ndsu.1B.1 TraesCS1B01G252700 RCC1 family with FYVE zinc finger domain-containing

protein

Yes

QYL.ndsu.1B.2 TraesCS1B01G253500 UDP-sulfoquinovose synthase Yes

QYL.ndsu.1D TraesCS1A01G002300 Endoribonuclease E-like protein Yes

QYL.ndsu.2A TraesCS2D01G541500 Regulatory protein recX Yes

QYL.ndsu.2B.1 TraesCS2D01G126100 Cellulose synthase Yes

QYL.ndsu.2B.2 TraesCS2A01G567900 Tetratricopeptide repeat Yes

QYL.ndsu.3B TraesCS3B01G153500 Arginine-tRNA ligase No TraesCS3B01G153600

QYL.ndsu.4B TraesCS4B01G047900 NADH-ubiquinone oxidoreductase subunit Yes

QYL.ndsu.5A TraesCS7B01G206200 Calcium-binding family protein No TraesCS7B01G206300

QYL.ndsu.5B TraesCS5D01G326500 Alpha/beta hydrolase Yes

QYL.ndsu.6A TraesCS6D01G011300 DNA-directed RNA polymerase subunit beta No TraesCS6D01G011400

QYL.ndsu.6B.1 TraesCS6B01G173000 Sucrose-phosphate synthase Yes

QYL.ndsu.6B.2 TraesCS6B01G455400 Tuftelin-interacting protein 11 No TraesCS6B01G455500

QYL.ndsu.7B TraesCS7B01G363600 Geranylgeranyl transferase type-2 subunit alpha 1 Yes

QYL.ndsu.7D TraesCS7D01G287700 Copia-like polyprotein/retrotransposon No TraesCS7D01G287800

QYL.ndsu.3A TraesCS3A01G406700 P-loop containing nucleoside triphosphate hydrolases

superfamily protein

Yes

QTW.ndsu.3B corresponded with the YLD QTL QYld.T84-3Bat
reported by Ibrahim et al. (2012b).

TKW

TheQTLQTKW.ndsu.4A.2 had the same genomic location as the
QTL reported by Kirigwi et al. (2007) for YLD and YLD-related
traits under drought stress. Ibrahim et al. (2012a) identified the
QTgw- for thousand-grain weight under both water conditions,
which seems to represent the QTL QTKW.ndsu.6B identified
in this study. The QTL QTKW.ndsu.2B.1, QTKW.ndsu.2B.2,
and QTKW.ndsu.4A.3 could be the same QTL for thousand-
grain weight reported by Zanke et al. (2015). The QTL
QTKW.ndsu.4A.1 and QTKW.ndsu.5B seem to be novel QTL as
they do not correspond with any reported QTL.

CONCLUSIONS

This study revealed 69 QTL, which included 50 constitutive
QTL, three QTL identified for the control water regime, and
16 QTL exclusively under the drought conditions (Table 4;
Supplementary Figure 2). These 16 QTL could be used for
developing lines suitable for drought conditions. We also
reported the QTL-associated genes, their physical positions, and
predicted functions along with in silico expression prediction

in abiotic stress conditions (Supplementary Figure 3).
Chromosome 5B, 6B, and 4B seem to be very important
for drought tolerance by reducing PH and increasing YLD and
YLD-related traits. Several identified QTL occupied genomic
regions reported earlier for earliness per se, drought tolerance,
and reduced height. The consistency of some QTL in the
different environments indicated their validity. Overall, this
study provides valuable genetic and genomic resources to the
breeders to design programs to breed drought-tolerant wheat
cultivars, combining traditional and genomics-based approaches.

DATA AVAILABILITY STATEMENT

The list of markers and their genotypic data is available at
figshare, doi: 10.6084/m9.figshare.14195348 and also in the
Supplementary Table 3.

AUTHOR CONTRIBUTIONS

SR: data collection, analysis, and major write-up of the
manuscript. SM: data collection and analysis. AK: data analyses,
manuscript write-up, and review. EE, SK, and SSi: data
analysis and manuscript review. MA and AM: data and

Frontiers in Genetics | www.frontiersin.org 11 June 2021 | Volume 12 | Article 649988

https://doi.org/10.6084/m9.figshare.14195348
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Rabbi et al. Genetics of Drought Tolerance in Wheat

manuscript review. SSo and SSa: data analysis and write-
up. MM: conceptualization and design of the experiment,
phenotypic data collection, and manuscript write-up and review.
All authors contributed to the article and approved the
submitted version.

ACKNOWLEDGMENTS

The authors thank Late Dr. J. J. Hammond, Dr. A. El-Fatih El
Dolfey, J. Underdahl, M. Abdallah, A. Walz, T. Selland, D. Olsen,
K. McMonagle, C. Cossette, K. Dickey, K. Whitney, and K. Beck
for their help and support. We would also like to thank the

technical support team in the NDSU Research Centers at Minot,
Williston, and Hettinger and at the Agronomy Farm at Casselton
and Prosper for their help and supporting to conduct field trials.
The authors would also like to thank Dr. Shiaoman Chao and
Mary Osenga of Small Grains Genotyping Lab at USDA-ARS,
Fargo, ND, for genoyping our samples using 90 K Infinium assay.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.649988/full#supplementary-material

REFERENCES

Abou-Elwafa, S. F., and Shehzad, T. (2021). Genetic diversity, GWAS and

prediction for drought and terminal heat stress tolerance in bread

wheat (Triticum aestivum L.). Genet. Resour. Crop Evol. 68, 711–728.

doi: 10.1007/s10722-020-01018-y

Ain, Q. U., Rasheed, A., Anwar, A., Mahmood, T., Imtiaz, M., Xia, X.,

et al. (2015). Genome-wide association for grain yield under rainfed

conditions in historical wheat cultivars from Pakistan. Front. Plant Sci. 6:743.

doi: 10.3389/fpls.2015.00743

Alaux, M., Rogers, J., Letellier, T., Flores, R., Alfama, F., Pommier, C., et al. (2018).

Linking the InternationalWheat Genome Sequencing Consortium bread wheat

reference genome sequence to wheat genetic and phenomic data. Genome Biol.

19, 1–10. doi: 10.1186/s13059-018-1491-4

Alexander, L. M., Kirigwi, F. M., Fritz, A. K., and Fellers, J. P. (2012). Mapping and

quantitative trait loci analysis of drought tolerance in a Spring wheat population

using amplified fragment length polymorphism and diversity array technology

markers. Crop Sci. 52, 253–261. doi: 10.2135/cropsci2011.05.0267

Appels, R., Eversole, K., Stein, N., Feuillet, C., Keller, B., Rogers, J., et al. (2018).

Shifting the limits in wheat research and breeding using a fully annotated

reference genome. Science 361:eaar7191. doi: 10.1126/science.aar7191

Azadi, A., Mardi, M., Hervan, E. M., Mohammadi, S. A., Moradi, F., Tabatabaee,

M. T., et al. (2014). QTLMapping of yield and yield components under normal

and salt-stress conditions in bread wheat (Triticum aestivum L.). Plant Mol.

Biol. Rep. 33, 102–120. doi: 10.1007/s11105-014-0726-0

Ballesta, P., Mora, F., and Pozo, A. D. (2020). Association mapping of drought

tolerance indices in wheat: QTL-rich regions on chromosome 4A. Sci. Agric.

77, 2. doi: 10.1590/1678-992x-2018-0153

Blake, V. C., Birkett, C., Matthews, D. E., Hane, D. L., Bradbury, P.,

and Jannink, J. L. (2016). The triticeae toolbox: combining phenotype

and genotype data to advance small-grains breeding. Plant Genome 9:99.

doi: 10.3835/plantgenome2014.12.0099

Blake, V. C., Woodhouse, M. R., Lazo, G. R., Odell, S. G., Wight, C. P.,

Tinker, N. A., et al. (2019). GrainGenes: centralized small grain resources

and digital platform for geneticists and breeders. Database 2019:baz065.

doi: 10.1093/database/baz065

Blum, A. (1988). Plant Breeding for Stress Environments. Boca Raton, FL: CRC

Press.

Borrill, P., Ramirez-Gonzalez, R., and Uauy, C. (2016). expVIP: a customizable

RNA-seq data analysis and visualization platform. Plant Physiol. 170,

2172–2186. doi: 10.1104/pp.15.01667

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., and

Buckler, E. S. (2007). Genetics and population analysis TASSEL: software for

association mapping of complex traits in diverse samples. Bioinformatics 23,

2633–2635. doi: 10.1093/bioinformatics/btm308

Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G. L., D’amore, R., Allen, A. M.,

et al. (2012). Analysis of the bread wheat genome using whole-genome shotgun

sequencing. Nature 491, 705–710. doi: 10.1038/nature11650

Climate Change and the Economy (2008). North Dakota Assessing the costs of

Climate Change. Washington, DC: National Conference of State Legislatures.

Available online at: http://www.ncsl.org/print/environ/ClimateChangeND.pdf

(accessed December 15, 2016).

Dodig, D., M., Zoric, B., Kobiljski, J., Savic, V., Kandic, S., Quarrie, S., and

Barnes, J. (2012). Genetic and association mapping study of wheat agronomic

traits under contrasting water regimes. Int. J. Mol. Sci. 13:6167–6188.

doi: 10.3390/ijms13056167

Edae, E. A., Byrne, P. F., Haley, S. D., Lopes, M. S., and Reynolds, M. P. (2014).

Genome-wide association mapping of yield and yield components of spring

wheat under contrasting moisture regimes. Theor. Appl. Genet. 127, 791–807.

doi: 10.1007/s00122-013-2257-8

Edae, E. A., Byrne, P. F., Manmathan, H., Haley, S. D., Moragues, M., Lopes, M.

S., et al. (2013). Association mapping and nucleotide sequence variation in

five drought tolerance candidate genes in spring wheat. Plant Genome 6:13.

doi: 10.3835/plantgenome2013.04.0010

Ergen, N. Z., and Budak, H. (2009). Sequencing over 13,000 expressed

sequence tags from six subtractive cDNA libraries of wild and modern

wheats following slow drought stress. Plant Cell Env. 32, 220–236

doi: 10.1111/j.1365-3040.2008.01915.x

Ergen, N. Z., Thimmapuram, J., Bohnert, H. J., and Budak, H. (2009).

Transcriptome pathways unique to dehydration tolerant relatives of modern

wheat. Funct. Integr. Genomics 9, 377–396. doi: 10.1007/s10142-009-0123-1

Frazen, D. W. (2003). North Dakota Soil and Fertilizer Handbook. Fargo, ND:

North Dakota State University.

Gahlaut, V., Jaiswal, V., Singh, S., Balyan, H. S., and Gupta, P. K. (2019).

Multi-locus genome wide association mapping for yield and its contributing

traits in hexaploid wheat under different water regimes. Sci. Rep. 9:19486.

doi: 10.1038/s41598-019-55520-0

Hertel, T. W. (2011). The global supply and demand for agricultural land in

2050: a perfect storm in the making?. Am. J. Agric. Econ. 93, 259–275.

doi: 10.1093/ajae/aaq189

Huang, X. Q., Cloutier, S., Lycar, L., Radovanovic, N., Humphreys, D. G., Noll, J.

S., et al. (2006). Molecular detection of QTLs for agronomic and quality traits

in a doubled haploid population derived from two Canadian wheats (Triticum

aestivum L.).Theor. Appl. Genet. 113, 753–766. doi: 10.1007/s00122-006-0346-7

Ibrahim, S. E., Schubert, A., Pillen, K., and Léon, J. (2012a). QTL analysis

of drought tolerance for seedling root morphological traits in an advanced

backcross population of spring wheat. Int. J. Agri. Sci. 2, 619–629.

Ibrahim, S. E., Schubert, A., Pillen, K., and Léon, J. (2012b). Comparison of QTLs

for drought tolerance traits between two advanced backcross populations of

spring wheat. Int. J. Agri. Sci. 2, 216–227.

Kamran, A., Iqbal, M., Navabi, A., Randhawa, H., Pozniak, C., and Spaner, D.

(2013). Earliness per se QTLs and their interaction with the photoperiod

insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat

population. Theor. Appl. Genet. 126, 1965–1976. doi: 10.1007/s00122-013-

2110-0

Khodakovskaya, M., Sword, C., Wu, Q., Perera, I. Y., Boss, W. F., Brown,

C. S., et al. (2010). Increasing inositol (1, 4, 5)-trisphosphate metabolism

affects drought tolerance, carbohydrate metabolism and phosphate-

sensitive biomass increases in tomato. Plant Biotechnol. J. 8, 170–183.

doi: 10.1111/j.1467-7652.2009.00472.x

Frontiers in Genetics | www.frontiersin.org 12 June 2021 | Volume 12 | Article 649988

https://www.frontiersin.org/articles/10.3389/fgene.2021.649988/full#supplementary-material
https://doi.org/10.1007/s10722-020-01018-y
https://doi.org/10.3389/fpls.2015.00743
https://doi.org/10.1186/s13059-018-1491-4
https://doi.org/10.2135/cropsci2011.05.0267
https://doi.org/10.1126/science.aar7191
https://doi.org/10.1007/s11105-014-0726-0
https://doi.org/10.1590/1678-992x-2018-0153
https://doi.org/10.3835/plantgenome2014.12.0099
https://doi.org/10.1093/database/baz065
https://doi.org/10.1104/pp.15.01667
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1038/nature11650
http://www.ncsl.org/print/environ/ClimateChangeND.pdf
https://doi.org/10.3390/ijms13056167
https://doi.org/10.1007/s00122-013-2257-8
https://doi.org/10.3835/plantgenome2013.04.0010
https://doi.org/10.1111/j.1365-3040.2008.01915.x
https://doi.org/10.1007/s10142-009-0123-1
https://doi.org/10.1038/s41598-019-55520-0
https://doi.org/10.1093/ajae/aaq189
https://doi.org/10.1007/s00122-006-0346-7
https://doi.org/10.1007/s00122-013-2110-0
https://doi.org/10.1111/j.1467-7652.2009.00472.x
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Rabbi et al. Genetics of Drought Tolerance in Wheat

Kirigwi, F. M., Van Ginkel, M., Brown-Guedira, G., Gill, B. S., Paulsen, G. M., and

Fritz, A. K. (2007). Markers associated with a QTL for grain yield in wheat

under drought.Mol. Breed. 20, 401–413. doi: 10.1007/s11032-007-9100-3

Kumar, A., Mantovani, E., Simsek, S., Jain, S., Elias, E. M., and Mergoum, M.

(2019). Genome wide genetic dissection of wheat quality and yield related traits

and their relationship with grain shape and size traits in an elite× non-adapted

bread wheat cross. PLoS ONE 14:e0221826. doi: 10.1371/journal.pone.0221826

Kumar, A., Mantovani, E. E., Seetan, R., Soltani, A., Echeverry-Solarte, M., Jain,

S., et al. (2016). Dissection of genetic factors underlying wheat kernel shape

and size in an elite × nonadapted cross using a high density SNP linkage map.

Plant Genome 9:81. doi: 10.3835/plantgenome2015.09.0081

Lanceras, J. C., Pantuwan, G., Jongdee, B., and Toojinda, T. (2004). Quantitative

trait loci associated with drought tolerance at reproductive stage in rice. Plant

Physiol. 135, 384–399. doi: 10.1104/pp.103.035527

Li, C., Bai, G., Chao, S., Carver, B., and Wang, Z. (2016). Single nucleotide

polymorphisms linked to quantitative trait loci for grain quality traits in wheat.

Crop J. 4, 1–11. doi: 10.1016/j.cj.2015.10.002

Li, X. M., Xia, X. C., Xiao, Y. G., He, Z. H.,Wang, D. S., Trethowan, R., et al. (2015).

QTL mapping for plant height and yield components in common wheat under

water limited and full irrigation environments. Crop Pasture Sci. 67, 660–670.

doi: 10.1071/CP14236

Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., et al. (2012).

GAPIT: genome association and prediction integrated tool. Bioinformatics 28,

2397–2399. doi: 10.1093/bioinformatics/bts444

Liu, G., Xu, S. B., Ni, Z. F., Xie, C. J., Qin, D. D., Li, J., et al. (2011). Molecular

dissection of plant height QTLs using recombinant inbred lines from hybrids

between commonwheat (Triticum aestivum L.) and spelt wheat (Triticum spelta

L.). Chin. Sci. Bull. 56, 1897–1903. doi: 10.1007/s11434-011-4506-z

Malik, S., Malik, T. A., and Engineering, G. (2015). Genetic mapping of potential

QTLs associated with drought tolerance in wheat. J. Anim. Plant Sci. 25,

1032–1040.

Mathew, I., Shimelis, H., Shayanowako, A. II, Laing, M., and Chaplot, V. (2019).

Genome-wide association study of drought tolerance and biomass allocation in

wheat. PLoS ONE 14:e0225383. doi: 10.1371/journal.pone.0225383

Maulana, F., Huang, W., Anderson, J. D., and Ma, X. (2020). Genome wide

associationmapping of seedling drought tolerance in winter wheat. Front. Plant

Sci. 11:573786. doi: 10.3389/fpls.2020.573786

McCartney, C. A., Somers, D. J., Humphreys, D. G., Lukow, O., Ames, N.,

Noll, J., et al. (2005). Mapping quantitative trait loci controlling agronomic

traits in the spring wheat cross RL4452x’AC Domain’. Genome 48, 870–883.

doi: 10.1139/g05-055

North Dakota Agricultural Weather Network (NDAWN) (2015). Available at:

https://ndawn.ndsu.nodak.edu

North Dakota Wheat Commission (2016). Building Bigger Better Mark. Available

online at: http://www.ndwheat.com/buyers/default.asp?ID=294 (verified 15

December 2016).

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of

population structure using multilocus genotype data. Genetics 155, 945–959

doi: 10.1093/genetics/155.2.945

Ramírez-González, R. H., Borrill, P., Lang, D., Harrington, S. A., Brinton, J.,

Venturini, L., et al. (2018). The transcriptional landscape of polyploid wheat.

Science 361:6089. doi: 10.1126/science.aar6089

Sapkota, S., Hao, Y., Johnson, J., Buck, J., Aoun, M., and Mergoum, M. (2019).

Genome-wide association study of a worldwide collection of wheat genotypes

reveals novel quantitative trait loci for leaf rust resistance. Plant Genome

12:190033. doi: 10.3835/plantgenome2019.05.0033

SAS Institute (2004). SAS Online Doc, v. 9.1.2. Cary, NC: SAS Institute.

Simmons, S. R., Oelke, E. A., and Anderson, P. M. (1914). Growth and

Development Guide for Spring Wheat, AG-FO-2547. Minneapolis, MN:

Agricultural Extension at the University of Minnesota.

Sun, Y., Solomon, S., Dai, A., and Portmann, R. W. (2006). How often does it rain?

J. Clim. 19, 916–934. doi: 10.1175/JCLI3672.1

Tura, H., Edwards, J., Gahlaut, V., Garcia, M., Sznajder, B., Baumann, U., et al.

(2020). QTL analysis and fine mapping of a QTL for yield-related traits in

wheat grown in dry and hot environments. Theor. Appl. Genet. 133, 239–257

doi: 10.1007/s00122-019-03454-6

Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B. E., et al. (2014).

Characterization of polyploid wheat genomic diversity using a high-density

90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 12, 787–796.

doi: 10.1111/pbi.12183

Wilhelm, E. (2011).Genetic Analysis of the Group IV Rht LOCI inWheat. (Doctoral

thesis) University of East Anglia, Norwich, United Kingdom.

Yang, N., Lu, Y., Yang, X., Huang, J., Zhou, Y., Ali, F., et al. (2014a). Genome

wide association studies using a new nonparametric model reveal the genetic

architecture of 17 agronomic traits in an enlargedmaize association panel. PLoS

Genet. 10:e1004573. doi: 10.1371/journal.pgen.1004573

Yang, Y., Wang, Q., Chen, Q., Liao, R., Zhang, X., Yang, H., et al. (2014b).

A new genotype imputation method with tolerance to high missing

rate and rare variants. PLoS ONE 9:1025. doi: 10.1371/journal.pone.01

01025

Yu, J., and Buckler, E. S. (2006). Genetic association mapping and

genome organization of maize. Curr. Opin. Biotechnol. 17, 155–160

doi: 10.1016/j.copbio.2006.02.003

Zanke, C. D., Ling, J., Plieske, J., Kollers, S., Ebmeyer, E., Korzun, V., et al.

(2014). Whole genome association mapping of plant height in winter wheat

(Triticum aestivum L.). PLoS ONE 9:e113287. doi: 10.1371/journal.pone.01

13287

Zanke, C. D., Ling, J., Plieske, J., Kollers, S., Ebmeyer, E., Korzun, V., et al. (2015).

Analysis of main effect QTL for thousand grain weight in European winter

wheat (Triticum aestivum L.) by genome-wide association mapping. Front.

Plant Sci. 6:644. doi: 10.3389/fpls.2015.00644

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Rabbi, Kumar, Mohajeri Naraghi, Simsek, Sapkota, Solanki,

Alamri, Elias, Kianian, Missaoui and Mergoum. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 13 June 2021 | Volume 12 | Article 649988

https://doi.org/10.1007/s11032-007-9100-3
https://doi.org/10.1371/journal.pone.0221826
https://doi.org/10.3835/plantgenome2015.09.0081
https://doi.org/10.1104/pp.103.035527
https://doi.org/10.1016/j.cj.2015.10.002
https://doi.org/10.1071/CP14236
https://doi.org/10.1093/bioinformatics/bts444
https://doi.org/10.1007/s11434-011-4506-z
https://doi.org/10.1371/journal.pone.0225383
https://doi.org/10.3389/fpls.2020.573786
https://doi.org/10.1139/g05-055
https://ndawn.ndsu.nodak.edu
http://www.ndwheat.com/buyers/default.asp?ID=294
https://doi.org/10.1093/genetics/155.2.945
https://doi.org/10.1126/science.aar6089
https://doi.org/10.3835/plantgenome2019.05.0033
https://doi.org/10.1175/JCLI3672.1
https://doi.org/10.1007/s00122-019-03454-6
https://doi.org/10.1111/pbi.12183
https://doi.org/10.1371/journal.pgen.1004573
https://doi.org/10.1371/journal.pone.0101025
https://doi.org/10.1016/j.copbio.2006.02.003
https://doi.org/10.1371/journal.pone.0113287
https://doi.org/10.3389/fpls.2015.00644
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Genome-Wide Association Mapping for Yield and Related Traits Under Drought Stressed and Non-stressed Environments in Wheat
	Introduction
	Materials and Methods
	Plant Materials
	Field Experiments and Data Collection
	Single-Nucleotide Polymorphism Genotyping
	Phenotypic Data Analysis (ANOVA, Descriptive Statistics, and Frequency Distribution)
	Marker–Trait Association Analysis
	Candidate Gene Analysis

	Results
	Phenotypic Analyses
	Marker Distribution, Population Structure, and LD
	Identification of QTL and Associated Candidate Genes

	Discussion
	Association Analyses
	Use of Secondary Data to Assess Drought Conditions
	Use of Agronomic Data to Assess Drought Tolerance
	Days to Heading
	Plant Height
	YLD
	TW
	TKW


	Conclusions
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


