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A comprehensive annotation of transcript isoforms in domesticated species is lacking.
Especially considering that transcriptome complexity and splicing patterns are not well-
conserved between species, this presents a substantial obstacle to genomic selection
programs that seek to improve production, disease resistance, and reproduction.
Recent advances in long-read sequencing technology have made it possible to directly
extrapolate the structure of full-length transcripts without the need for transcript
reconstruction. In this study, we demonstrate the power of long-read sequencing for
transcriptome annotation by coupling Oxford Nanopore Technology (ONT) with large-
scale multiplexing of 93 samples, comprising 32 tissues collected from adult male
and female Hereford cattle. More than 30 million uniquely mapping full-length reads
were obtained from a single ONT flow cell, and used to identify and characterize the
expression dynamics of 99,044 transcript isoforms at 31,824 loci. Of these predicted
transcripts, 21% exactly matched a reference transcript, and 61% were novel isoforms
of reference genes, substantially increasing the ratio of transcript variants per gene,
and suggesting that the complexity of the bovine transcriptome is comparable to that
in humans. Over 7,000 transcript isoforms were extremely tissue-specific, and 61% of
these were attributed to testis, which exhibited the most complex transcriptome of all
interrogated tissues. Despite profiling over 30 tissues, transcription was only detected
at about 60% of reference loci. Consequently, additional studies will be necessary to
continue characterizing the bovine transcriptome in additional cell types, developmental
stages, and physiological conditions. However, by here demonstrating the power of ONT
sequencing coupled with large-scale multiplexing, the task of exhaustively annotating
the bovine transcriptome – or any mammalian transcriptome – appears significantly
more feasible.

Keywords: transcriptome, annotation, nanopore, cattle, tissue-specific, alternative splicyng, long-read
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INTRODUCTION

The proteome diversity observed in eukaryotes is largely
attributed to alternative transcript isoforms, which result from
use of alternate transcription start sites, polyadenylation sites,
and splice sites. In particular, the complexity of alternative
splicing seems to have increased during the course of evolution
(Keren et al., 2010), such that transcript isoforms exist for
the majority of genes in higher order eukaryotes (Pan
et al., 2008; Wang et al., 2008; Mercer et al., 2012). This
diversification of the transcriptome and proteome not only
drives adaptation and speciation (Harr and Turner, 2010;
Mudge et al., 2011), but also facilitates cellular diversity
and the development of complex organisms with tissues
and organs (Graveley, 2001; Linker et al., 2019). Indeed,
transcript isoforms and splicing patterns vary between cell
types, tissues, developmental stages, and environmental
conditions (Kalsotra et al., 2008; Wang et al., 2008; Vaquero-
Garcia et al., 2016; Zhang et al., 2016). Moreover, because
alternative splicing can fundamentally alter protein structure
and function, aberrant isoforms have been linked to
various diseases, including cancer (Paronetto et al., 2016;
Zhang et al., 2019).

More than 90% of human genes are subject to alternative
splicing (Pan et al., 2008; Workman et al., 2019); as such,
considerable efforts have been made by consortia such as
GENCODE to exhaustively annotate transcript isoforms in
humans and mice. However, projects seeking to annotate
the genomes of non-model organisms generally lack the
necessary resources for manual curation. Consequently,
transcriptome annotations for non-model organisms, including
species of high economic significance like livestock, are
often incomplete or inaccurate (Andersson et al., 2015;
Ungaro et al., 2017). Moreover, transcriptome complexity
and splicing patterns are not well-conserved between
species (Barbosa-Morais et al., 2012). Transcript structures
inferred from related species are therefore likely to be
insufficient or inaccurate.

Worldwide, over a billion cattle (Bos taurus) are raised for
meat and dairy production (Robinson et al., 2014), and although
selection programs have significantly benefited from genomics
tools in the past decade (Meredith et al., 2012; Saatchi et al.,
2012; Thompson-Crispi et al., 2014; García-Ruiz et al., 2016),
a comprehensive characterization of the bovine transcriptome
is essential to improve our understanding of the biological
processes that underpin complex traits like productivity,
efficiency, and disease resistance (Georges et al., 2019).

Until recently, transcriptome annotations – including that
of the bovine genome – were primarily based on short-
read RNA-seq data from next-generation sequencing (NGS)
platforms. The high throughput of these sequencers was optimal
for quantifying gene expression, but because of sequencing
length limitations, it is necessary to fragment RNA or cDNA
during library preparation. The resulting reads are generally
shorter (<200 bases) than most full-length transcripts, and
although several computational approaches have been developed
to reconstruct transcript structures from short-read RNA-seq

data, they do not always infer the correct structures (Grabherr
et al., 2011; Trapnell et al., 2012; Pertea et al., 2015;
Conesa et al., 2016).

Alternatively, long-read sequencing technologies, such as
Pacific Biosciences (PacBio) (McCarthy, 2010; Rhoads and Au,
2015) and Oxford Nanopore Technologies (ONT) (Bayega et al.,
2018), have made it possible to sequence reads up to 50 kb
in length, allowing for the sequencing of full-length transcripts
without the need for reconstruction. In recent years, PacBio
single-molecule real-time (SMRT) isoform sequencing (Iso-seq)
has been implemented to improve transcriptome annotations in
humans (Sharon et al., 2013; Tilgner et al., 2014), rabbits (Chen
et al., 2017), chickens (Thomas et al., 2014; Kuo et al., 2017),
pigs (Li et al., 2018; Beiki et al., 2019), and cattle (Rosen et al.,
2020). Indeed, the transcriptome accompanying the most recent
bovine genome assembly was curated from both short-read RNA-
seq and Iso-seq data (Rosen et al., 2020); however, the Iso-seq
dataset was limited, as it included fewer tissue transcriptomes
than the short-read RNA-seq data, and was of considerably
lower sequencing depth, producing only about a half a million
consensus reads.

An alternative long-read sequencing technology, ONT
sequencing, measures changes in ionic current as fragments
move through protein nanopores, and does not depend
on enzyme-based nucleotide incorporation or detection of
fluorescence (Ip et al., 2015). Due to its affordability and higher
throughput – the ONT PromethION generates 20 times more
reads per flow cell than the PacBio Sequel II (Garalde et al.,
2018) – ONT has been widely used for transcriptome annotation
in organisms ranging from yeast to humans (Sharon et al.,
2013; Tilgner et al., 2014; Oikonomopoulos et al., 2016; Byrne
et al., 2017; Jenjaroenpun et al., 2018; Kadobianskyi et al., 2019;
Seki et al., 2019; Sessegolo et al., 2019; Workman et al., 2019;
Müller et al., 2020; Sahoo et al., 2020), permitting the discovery
of isoforms that were difficult to observe from short-read
sequencing alone (Steijger et al., 2013; Venturini et al., 2018).

Despite the incorporation of Iso-seq data (Rosen et al., 2020),
the bovine transcriptome still only includes 1.59 transcripts
per gene on average, whereas the human genome annotation
accounts for an average of 3.78 transcript isoforms per gene
(Ensembl v101 annotations). This discrepancy suggests that
the transcriptomic complexity of the bovine genome has yet
to be fully characterized, and that current annotations are
likely missing information on rare and tissue-specific isoforms.
In this study, we coupled ONT sequencing with large-scale
multiplexing to identify and characterize the expression of
transcript isoforms in cattle. From a single ONT flow cell,
we obtained over 25 million full-length uniquely mapped
reads, allowing us to characterize the transcriptomes of 32
adult bovine tissues across four individuals. This powerful
approach paves the way for future transcriptomic studies,
facilitating research on a wider variety of cell types, physiological
conditions, and developmental stages. Moreover, the resulting
transcript predictions will help to inform selection programs
seeking to improve production traits, fertility, and environmental
adaptation – factors which are of considerable scientific and
economic interest.
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MATERIALS AND METHODS

Sample Collection
Tissue samples were collected from two male and two female
Line 1 Hereford cattle, aged 14 months old, which were provided
by the Fort Keogh Livestock and Range Research lab. Animals
were euthanized by captive bolt under USDA inspection at the
University of California, Davis, with all permissions obtained and
in concordance with Protocol for Animal Care and Use no. 18464
(approved by Institutional Animal Care and Use Committee
at the University of California, Davis). Samples were collected
within 1–2 h of euthanasia, flash frozen in liquid nitrogen, and
stored at –80◦C until processing.

RNA Extraction and Library Construction
Frozen tissues kept at –80◦C were homogenized with a mortar
and pestle in liquid nitrogen. Total RNA was extracted using
Trizol (Invitrogen, Carlsbad, CA, United States) followed by a
column clean-up using the Direct-zol RNA Mini Prep Plus kit
(Zymo Research, Irvine, CA, United States) and performing an
in-column DNA digestion. Integrity of the DNase-treated RNA
was verified on the Experion electrophoresis system (Bio-Rad,
Hercules, CA, United States). For each sample, 50 ng total RNA
was transferred to 0.2 ml PCR tubes and adjusted to a final
volume of 9 µl with nuclease free water. Reactions were prepared
(9 µl total RNA, 1 µl 10 µM VNP primer, 1 µl 10 mM dNTPs)
and incubated for 5 min at 65◦C, then snap cooled on a pre-
chilled freezer block. Strand-switching buffer (4 µl 5x RT buffer,
1 µl RNaseOUT, 1 µl nuclease-free water, and 2 µl 10 µM strand-
switching primer) was then added to the snap-cooled, annealed
mRNA, and incubated at 42◦C for 2 min. One µl of Maxima
H Minus Reverse Transcriptase was added, and reactions were
incubated at 42◦C for 90 min, 85◦C for 5 min, then held at 4◦C.
A round of PCR was used to introduce barcodes to the cDNA
using the Oxford Nanopore PCR barcoding expansion 1-96 kit
(Cat. No. EXP-PBC096). Barcoding PCR reactions were set up
for each cDNA (1 µl PCR barcode, 19 µl first-strand cDNA,
20 µl LongAmp Taq 2x master mix), and cycled for [3 min at
95◦C] x1 cycle, [15 s at 95◦C, 15 s at 62◦C, 7 min at 65◦C] x13
cycles, [15 min at 65◦C] x1 cycle, then held at 4◦C. Each barcoded
cDNA was purified in 1x Ampure XP Beads, eluted in 20 µl of
nuclease free water and quantified using Qubit. Barcoded cDNAs
were pooled in a final volume of 47 µl. The DNA Technologies
Core and Expression Analysis Laboratory at the University of
California Davis performed adapter ligation on the cDNA pool
with the SQK-DCS109 kit following manufacturer’s guidelines.
Finally, 50 fmol of adapter ligated library was loaded onto a
PromethION flow cell (vR9.4.1).

Pre-processing of ONT Sequencing Data
The quality of raw sequencing data, including read length and
average quality, was checked using Nanoplot (v1.0.0). Base calling
and demultiplexing (Supplementary Table 1) were performed
using ont-guppy-for-minknow (v3.0.5) and reads with a quality
score below 7 were discarded. Data were then processed with
Pychopper (v2.4.0) to identify and orient full-length reads;

these were then mapped to the ARS-UCD1.2 genome assembly
using minimap2 (v2.16r922) (Li, 2018) with options “-ax splice
-uf -k14 -G 1000000.” The maximum allowable intron size was
increased to 1 Mb, based on the longest intron observed in
the Ensembl (v101) annotation. Uniquely mapped reads with a
minimum quality score of 10 were extracted with Samtools (v1.7).

Preliminary Analysis of Gene Expression
Uniquely mapped reads were used to obtain raw gene expression
counts, based on the Ensembl v101 annotations for each species,
using HTSeq (v0.11.2) (Anders et al., 2015) with options “-i
gene_id –type = exon –stranded = yes –mode = intersection-non-
empty.” Raw gene counts were subjected to variance stabilizing
transformation (VST) with DESeq2 (v1.26.0) (Love et al., 2014)
for principal components analysis, conducted with the prcomp
function from the R package Stats (v3.6.3). Expression profiles of
the top 5,000 genes with the most variance in VST counts were
visualized with pheatmap (v1.0.12).

Predicting Transcript Isoforms
Uniquely mapped reads from all samples were pooled to predict
transcripts using the Pinfish pipeline (v0.1.0)1. Briefly, reads
with similar structure were grouped into clusters of three or
more alignments, with an exon boundary tolerance of 20 bp
and terminal exon boundary tolerance of 60 bp. These transcript
clusters were then polished and mapped back to the genome.
Polished transcripts were then grouped into “loci” based on
3′ ends and collapsed to remove likely products of RNA
degradation, using an internal exon boundary tolerance of
5 bp, a 3′-exon boundary tolerance of 100 bp, and a 5′-exon
boundary tolerance of 5,000 bp. Because of the high prevalence
of predicted single-exon transcripts, predicted transcripts were
then compared to the Ensembl (v101) and NCBI RefSeq (release
106) annotations using gffcompare (v0.12.1), and only single-
exon transcripts that demonstrated same-strand overlap with
reference exons of protein-coding genes, or which were strongly
supported (cluster size ≥ 100 alignments), were retained in
the final transcript set. The set of predicted transcripts was
converted to GTF format using gffread (v0.12.2) and visualized in
the Integrated Genomics Viewer (v2.8.9). To visualize repetitive
elements, the RepeatMasker track was downloaded from the
UCSC genome annotation database for the April 2018 ARS-
UCD1.2/bosTau9 assembly.

Comparing Predicted Transcripts to
Reference Annotations
Based on gffcompare class codes, predicted transcripts were
classified as known isoforms of a reference gene (class code
“ = ” when comparing to either annotation), novel isoforms of a
reference gene (class codes ‘c,’ ‘k,’ ‘j,’ ‘m,’ ‘n,’ or ‘o’ when comparing
to either annotation, never ‘ = ’), novel loci (class codes ‘i,’ ‘u,’ ‘y,’
or ‘x’ when comparing to either annotation, never ‘ = ,’ ‘c,’ ‘k,’ ‘j,’
‘m,’ ‘n,’ or ‘o’), or potential artifacts (class codes ‘e,’ ‘s,’ or ‘p’ when
comparing to either annotation, but never any other class codes).

1github.com/nanoporetech/pinfish

Frontiers in Genetics | www.frontiersin.org 3 May 2021 | Volume 12 | Article 664260

https://github.com/nanoporetech/pinfish
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-664260 May 14, 2021 Time: 17:50 # 4

Halstead et al. Annotation of 32 Full-Length Bovine Transcriptomes

Characterization of Predicted Transcripts
To determine the novelty of start and end sites of predicted
novel isoforms, the TSS and TES of predicted novel isoforms
were compared to the TSS and TES of the closest matching
reference transcripts (based on gffcompare output). The usage
of alternative polyadenylation sites for reference Ensembl
transcripts was determined using TAPAS (Arefeen et al., 2018)
with read length set to 750 bp, which was the mean read
length according to the Nanoplot report. As input for TAPAS,
genome-wide read depth was determined with Samtools (v1.7).
The prevalence of different alternative splicing events in the
final set of predicted transcripts was determined with SUPPA
(v2.3), using the function generateEvents to identify local events,
including skipped exons, mutually exclusive exons, retained
introns, alternative 5′ or 3′ splice sites, and alternative first and
last exons. Finally, the coding potential of predicted transcripts
was calculated with CPPred (Tong and Liu, 2019) using the
built-in human model with default parameters. To determine
if predicted intergenic transcripts (gffcompare class code ‘u’)
preferentially occurred near annotated genes, distance from
each predicted intergenic transcript to the nearest reference
gene was calculated using Bedtools closest (v2.26.0) with option
“-d.” For comparison, the genomic coordinates of predicted
intergenic transcripts were randomized with Bedtools shuffle
(excluding regions that were already annotated as genes by
Ensembl or NCBI), and these coordinates were also compared
to reference genes using Bedtools closest. The distance between
predicted intergenic transcripts and the closest reference genes
was compared to the distance between randomized coordinates
and the closest reference genes with an independent 2-group
Mann–Whitney U-test.

Inferring Biological Functions of
Predicted Transcripts at Novel Loci
To interpret the function of predicted transcripts at novel loci,
their sequences were compared against several databases. First,
sequences were compared against the NT (NCBI non-redundant
nucleotide, v5) database with BLASTN (v2.6.0), requiring a
minimum e-value of 1e-10 for matches. Then, sequences were
compared against the NR (NCBI non-redundant protein, v5)
and SwissProt (downloaded from NCBI, v5) databases with
Diamond BLASTX (v2.0.5.143), again setting the minimum
e-value to 1e-10. For transcripts with SwissProt matches,
the corresponding UniProt identifiers were associated with
functional terms using DAVID (v6.8), including KEGG terms,
GO “DIRECT” terms, and Clusters of Orthologous Groups of
proteins (COG) ontology terms.

Predicted Transcript Expression
Quantification
To determine the expression of predicted transcripts, reads
were directly mapped to the predicted transcriptome. Predicted
transcripts were converted from GTF to FASTA format with
the gffread utility (v0.12.2). Strand-corrected full-length ONT
reads (output of Pychopper) were then directly mapped to
the predicted transcriptome using minimap2 (v2.16r922) with

options “-t 10 -ax map-ont -p 0.” Alignments with a minimum
quality score of 10 were extracted with Samtools (v1.7).
From these alignments, expression of predicted transcripts in
transcripts per million (TPM) was determined with Nanocount
(v2.3.0). For the identification of tissue-specific transcripts,
samples with unclear identity were excluded. These samples
included those that did not cluster with biological replicates
(abomasum-F1, colon-F1, and lung-M1), tissues with unclear
identity because samples did not cluster together (esophagus, skin
and thyroid), and tissues with only a single replicate (duodenum-
M1, hypothalamus-M1, and uterine endometrium-F1).

Identification and Characterization of
Tissue-Specific Transcripts
The tissue specificity index (TSI) (Julien et al., 2012) for each
transcript was calculated as follows, such that xi was the average
expression (TPM) in a given tissue, and n was the number of
tissues:

TSI =
max

1≤i≤n
(xi)∑n

i=1 xi

Transcripts were then categorized as tissue-specific (TSI ≥ 0.8),
broadly expressed (TSI < 0.5), or biased toward a group of
tissues (0.5 ≤ TSI < 0.8). To interpret the biological significance
of tissue-specific transcripts, those with corresponding Ensembl
IDs were submitted to DAVID (v6.8) for functional enrichment
analysis, considering only GO “DIRECT” terms. In each case, the
top five most significant GO terms were reported (Benjamini-
corrected p-value < 0.05). Finally, to determine whether the
TSS used by tissue-specific transcripts were uniquely active in
that tissue, the coordinates of TSS (±50 bp) for tissue-specific
transcripts for a given tissue were extracted and compared to the
TSS (±50 bp) of every other predicted transcript using Bedtools
(v2.26.0) intersect, with option “-s” to only consider same-strand
overlap. The TSS from tissue-specific transcripts that did not
overlap any other TSS from the remaining set of predicted
transcripts were considered uniquely active in that tissue.

RESULTS

Total RNA was extracted from 93 biological samples and used to
generate cDNA libraries, which were multiplexed and sequenced
on a single PromethION flow cell. Samples consisted of 32 tissues
collected from two male (M1, M2) and two female (F1, F2) adult
Line 1 Hereford cattle. These animals were specifically chosen
for their relation to Dominette, the individual sequenced for the
original cattle reference genome. Sequencing yielded 53.7 million
reads, with a read length N50 of 893, average read length of
759 bases, and average quality of 8.8 (Supplementary Figure 1).
After demultiplexing, 35.3 million reads passed quality thresholds
(greater than Q7), and further processing yielded 30.3 million
full-length strand-oriented reads which were aligned to the ARS-
UCD1.2 assembly, resulting in 25.5 million unique alignments
that could be used for transcript prediction (Supplementary
Table 2). On average, about 270,000 reads were obtained per
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sample (Supplementary Table 2), and about 800,000 reads were
obtained per tissue (Supplementary Table 3).

A preliminary evaluation of gene expression was conducted by
counting alignments attributed to genes in the Ensembl (v101)
annotation (Supplementary Data 1). Principal components
analysis and hierarchical clustering of normalized gene
expression generally clustered samples by tissue and organ
system (Figure 1), with the exception of lung-M1, which was
attributed extremely few reads, abomasum-M1 and colon-F1,
which did not cluster with biological replicates, and esophagus,
skin, and thyroid samples, which clustered ambiguously. In
particular, male esophagus samples clustered with muscle,
whereas female esophagus clustered with skin and stomach
samples, suggesting potential sampling error during collection
of male esophagus. Samples of questionable origin, based on

aberrant clustering patterns, were excluded from tissue-specific
analyses, but retained in the complete dataset for predicting
transcript models. Brain and testis were among the most
informative tissues, based on transcriptomic complexity and
number of expressed loci (Supplementary Figure 2A).

Mapped reads from all samples were pooled to predict
transcript models using the Pinfish pipeline. Briefly, transcripts
were predicted from clusters of three or more alignments.
Predicted transcripts were then polished and collapsed to filter
out likely degradation products. In total, 244,945 transcript
models were predicted, consisting of 76,110 multi-exon and
168,835 single-exon transcripts. Multi-exon transcripts localized
to 23,694 loci, of which 13,053 (55%) corresponded to multiple
transcripts. Comparing the predicted multi-exon transcripts to
Ensembl and NCBI gene annotations revealed high precision,

FIGURE 1 | Preliminary analysis of transcriptomes. (A) Principal components analysis of VST-normalized gene counts. (B) Hierarchical clustering of samples based
on top 5,000 genes with highest variance in VST counts.
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particularly at the base and intron levels, with most reference
exons and introns captured by the predicted multi-exon
transcripts (Table 1).

Compared to multi-exon transcripts, single-exon transcripts
were supported by fewer reads (p < 2.2e-16; one-sided Z-test)
(Supplementary Figure 3A), and tended to not directly overlap
annotated exons, instead occurring predominantly within
reference introns (Supplementary Figure 3B). Consequently,
only single-exon transcripts that corresponded to annotated
protein-coding genes, or those which were supported by
more than 100 alignments (i.e., the top 1% most strongly
supported single-exon transcripts) (Supplementary Figure 4),
were retained in the final transcript set, which comprised 99,044
predicted transcripts (22,934 single-exon and 76,110 multi-
exon transcripts) belonging to 31,824 genomic loci. Although
only a small percentage of the retained single-exon transcripts
were predicted to be coding (5%), the expression patterns
of single-exon transcripts clearly distinguished brain tissues
from the others (Supplementary Figure 5), suggesting these
transcripts are biologically relevant. Expression of non-coding
transcripts also distinguished brain, as well as testis, from other
tissues (Supplementary Figure 6). Overall, transcript predictions
accounted for 72% (15,716/21,861) of protein-coding genes in the
Ensembl annotation and 78% (16,487/21,039) of protein-coding
genes in the NCBI annotation.

Comparing the predicted transcript set to either the Ensembl
or the NCBI annotations (Supplementary Data 2, 3) revealed
that most predicted transcripts either exactly matched a reference
transcript exon-by-exon, or demonstrated some same strand
overlap with reference exons (Figure 2A). In all, 21% of predicted
transcripts exactly matched a reference transcript from either
Ensembl or NCBI, 61% were considered novel isoforms of
reference genes based on same strand overlap of reference
exon(s), 6% did not correspond to a reference gene and were
considered novel loci, and 12% were classified as potential
artifacts, possibly due to mapping error, pre-mRNA fragments,
or polymerase run-on.

Considering the largest class of predicted transcripts were
novel isoforms of known genes, we then sought to quantify

the extent to which variation in transcription start sites, end
sites, alternative splicing, and alternative polyadenylation
sites contributed to transcriptome complexity. Transcript
degradation, especially at the 5′ end, is certainly a concern in
long-read transcriptomics, although the 3′ ends are considered to
be more reliable. The Pinfish pipeline used to predict transcripts
tries to take this limitation into account by collapsing transcripts
with similar exon structure and variable 5′ ends, within a 5,000 bp
5′ exon boundary tolerance. Considering all 5′ ends of predicted
transcripts (±100 bp), we found that 28% overlapped 5′ ends of
Ensembl or RefSeq transcripts (±100 bp), and 45% overlapped
TSS (±100 bp) identified by the 5′-complete sequencing
technique RAMPAGE (Goszczynski et al., 2020). Even when
predicted 5′ ends did not directly coincide with Ensembl,
RefSeq or RAMPAGE annotations (Supplementary Data 4),
they still preferentially occurred in the vicinity of RAMPAGE
TSS (39% of these 5′ ends occurred within 1kb of RAMPAGE
TSS) and were not biased downstream of RAMPAGE TSS
(Supplementary Figure 7), which would have been characteristic
of degradation. Most novel isoforms began within 2 kb of the
reference transcription start site (51%, 28,289 transcripts) and
terminated within 2 kb of the reference transcription end site
(58%, 31,913 transcripts) (Supplementary Figure 8). Additional
variation was present at TES, as alternative polyadenylation
sites were detected for 30% of reference Ensembl transcripts
(5,821/19,613 transcripts) (Supplementary Figure 9).

The main source of transcriptional variation resulted from
alternative splicing (Figure 2B). Alternative first exons were
common in predicted multi-exon transcripts, reflecting the use
of alternative promoters in different regulatory contexts. This
phenomenon was clearly reflected at the RSPH9 locus, which
encodes a component of motile flagella and is associated with
multiple transcript variants from alternative splicing in humans,
although only a single isoform had been annotated in cattle
(Figure 2C). Besides the alternative splicing evident at this
locus, three different transcription start sites were utilized,
resulting in ten isoforms, several of which demonstrated tissue-
specific expression patterns (Supplementary Figure 10). In a
given tissue sample, 10,844 ± 2,010 (S.D.) loci were expressed

TABLE 1 | Sensitivity and precision estimates of predicted multi-exon transcripts compared to reference multi-exon transcripts from the Ensembl (v101) and NCBI
(release 106) annotations.

Predicted vs. Ensembl Predicted vs. NCBI NCBI vs. Ensembl

Level Sensitivity Precision Sensitivity Precision Sensitivity Precision

Base 58.5 72.5 49.6 81.2 88.7 66.3

Exon 54.8 58.3 55.7 66.5 81.3 73.2

Intron 60.1 80.7 57.3 86.5 90.0 79.4

Transcript 29.3 12.9 24.6 20.2 48.8 26.7

Locus 52.6 47.9 62.7 56.8 75.6 76.9

Missed exons 53,069/171,341 (31.0%) 65,592/207,468 (31.6%) 8,891/222,022 (4.0%)

Novel exons 15,130/193,597 (7.8%) 8,366/203,236 (4.1%) 27,725/257,826 (10.8%)

Missed introns 48,381/151,779 (31.9%) 55,075/177,905 (31.0%) 3,643/195,870 (1.9%)

Novel introns 4,528/112,911 (4.0%) 2,447/117,961 (2.1%) 12,338/222,064 (5.6%)

Comparison excludes reference loci without predicted transcripts and predicted transcripts at novel loci.
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FIGURE 2 | Predicted transcripts capture transcriptome complexity. (A) Comparison of predicted isoforms to Ensembl and NCBI gene annotations. (B) Frequency of
alternative splicing events in predicted multi-exon transcript isoforms. (C) Predicted isoforms at the RSPH9 locus, which is thought to code for a component of motile
cilia and flagella. In humans, multiple splicing is known to produce transcript variants, but only one transcript had been annotated in cattle, according to both the
Ensembl and NCBI annotations. (D) Based on the predicted transcript set, number of expressed loci and ratio of expressed transcripts per loci, averaged per tissue.

with 1.35 ± 0.06 (S.D.) predicted isoforms expressed per
locus. Testis was the most informative tissue, with the most
expressed loci and highest ratio of expressed transcripts per gene,
whereas abomasum demonstrated the lowest transcriptomic
complexity (Figure 2D).

Given the large number of sampled tissues, tissue-specific
isoforms could be identified from this dataset with high
resolution. Tissue-specific transcripts are fundamental to
understanding the basis of biological differences between tissues,
and can serve as useful biomarkers (Stutterheim et al., 2008;
Prensner et al., 2013), as they are often implicated in tissue-
specific functions, development, and disease (Leucci et al., 2016).
To identify tissue-specific isoforms, the tissue-specificity index

(TSI) was calculated from the average expression of predicted
transcripts (transcripts per million; TPM) in each tissue with at
least two high-confidence biological replicates (adipose, bladder,
bone marrow, brain cortex, cecum, cerebellum, colon, heart,
ileum, isthmus, jejunum, kidney, liver, lung, mammary gland,
muscle, omasum, ovary, reticulum, rumen, spleen, testis, thymus,
trachea, and uterine endometrium) (Supplementary Data 5).
For a given transcript, the TSI varies between 0 (uniformly
expressed across all tissues) and 1 (uniquely expressed in a single
tissue). Transcripts that were only expressed in a single sample
were excluded from the tissue-specificity analysis.

Overall, the TSI demonstrated a bimodal distribution,
with most transcripts either broadly (TSI closer to zero)
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or specifically (TSI closer to 1) expressed (Figure 3A).
This pattern was observed for both single- and multi-exon
transcripts (Supplementary Figure 11A). The TSI was closely
linked to the average expression across samples, with highly
expressed transcripts (average TPM ≥ 10) more often generally
expressed across many tissues, whereas moderately- (1≤ average
TPM < 10) and lowly expressed transcripts (average TPM < 1)
tended to be more tissue-specific (Figure 3B). Overall, 48,867
transcripts (74%) were widely expressed (TSI < 0.5), 7,066
transcripts (11%) were highly tissue-specific (TSI ≥ 0.8), and
10,203 transcripts (15%) demonstrated expression in a small
subset of tissues (0.5 ≤ TSI < 0.8). Interestingly, compared
with multi-exon transcripts, single-exon transcripts were more

likely to be brain-specific (Supplementary Figure 11B), and were
generally predicted to be non-coding (95%), which is consistent
with the central role of non-coding RNA in the brain (Guennewig
and Cooper, 2014). Transcripts with intermediate TSI scores
likely includes isoforms specific to higher-order structures from
which multiple tissues were sampled (e.g., brain, pre-stomach,
gastrointestinal tract), or tissues of similar embryonic origin
(e.g., ectodermal, mesodermal, endodermal) as has been observed
by previous transcriptomic studies in the pig (Perez-Montarelo
et al., 2012).

An overwhelming proportion of tissue-specific transcripts
(61%) were attributed to testis, and most of these were either
novel isoforms (49%) or novel loci (20%) (Figure 3C). More than

FIGURE 3 | Identification of tissue-specific isoforms. (A) Density plot of the tissue-specificity index (TSI) identified for each predicted transcript, based on average
transcripts per million (TPM) in each tissue. (B) Density plot of TSI for predicted transcripts with low (average TPM < 1), moderate (1 ≤ average TPM < 10), or high
expression (average TPM ≥ 10). (C) Number of tissue-specific transcripts (TSI ≥ 0.8) attributed to each tissue, categorized as known or novel isoforms, novel loci, or
potential artifacts. (D) The annotated transcript at the CRYM locus was expressed across a range of tissues, whereas novel isoforms were either testis- or
brain-specific. (E) Functional enrichment of genes corresponding to tissue-specific isoforms in brain cortex, kidney, liver, muscle, and testis. Top five most significant
gene ontology terms reported (Benjamini corrected p-value < 0.05).

Frontiers in Genetics | www.frontiersin.org 8 May 2021 | Volume 12 | Article 664260

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-664260 May 14, 2021 Time: 17:50 # 9

Halstead et al. Annotation of 32 Full-Length Bovine Transcriptomes

80% of the transcription start sites used by testis-specific isoforms
were only active in testis (Supplementary Figure 12), suggesting
pervasive use of alternative promoters in this tissue. This
alternative promoter usage was evident at the CRYM locus, with
a novel testis-specific isoform beginning at the third annotated
exon (Figure 3D). The remaining novel CRYM isoforms were
brain-specific, whereas the sole annotated transcript variant was
broadly expressed across tissues. This locus illustrated a broader
pattern: novel isoforms of annotated genes were expressed in
fewer tissues and at lower levels than previously annotated
isoforms (p < 2.2e-16; Welch two sample t-test) (Supplementary
Figure 13), suggesting that the reference genome annotations
failed to capture rare isoforms with potentially significant
biological functions. Indeed, genes with tissue-specific isoforms
were strongly biased toward tissue-specific functions (Figure 3E).

To gain some insight into the potential biological functions
of isoforms at novel loci, transcript sequences were compared
against several BLAST databases (Supplementary Data 6).
Strong matches (E-value < 1e-10) were identified for 93%
(5,944/6,370) of transcripts at novel loci when comparing
against the NT database (NCBI non-redundant nucleotide
sequences), 42% (2,678/6,370) against the NR database (NCBI
non-redundant protein sequences), and 12% (794/6,370)

against the SwissProt database (curated protein sequences).
Based on gene ontology (GO) terms and KEGG pathways
associated with SwissProt identifiers, transcripts at novel
loci are involved in a variety of biological functions, such
as lysine degradation, cAMP signaling, and phosphodiester
bond hydrolysis (Figure 4A). Of note, two of the top ten
most common biological process GO terms were related
to RNA-mediated transposition, indicating that some novel
transcripts could correspond to transposons that have not been
completely silenced.

The genomic distribution of novel loci was biased toward
contigs; whereas only 0.4% of all predicted transcripts
(342/99,044) localized to contigs, 7.7% of transcripts at novel
intergenic sites (126/1,628) were on contigs. Nevertheless, novel
intergenic transcripts preferentially occurred closer to annotated
genes (on average 60 kb away from an Ensembl transcript)
than would be expected by random chance (on average 140kb
away from an Ensembl transcript) (p < 2.2e-16; Independent
two-group Mann–Whitney U-test) (Supplementary Figure 14).
Transcripts at novel loci tended to be shorter than those
of annotated genes with fewer exons (Supplementary
Figure 15), despite the exclusion of most intergenic single-exon
predicted transcripts.

FIGURE 4 | Characterization of predicted transcripts at novel loci. (A) The top ten represented KEGG pathways and GO terms (separated into Cellular Component,
Molecular Function, and Biological Process terms) represented in transcripts at novel loci that corresponded to a UniProt identifier. (B) Coding potential of predicted
transcripts. (C) Novel non-coding antisense transcript at the CEP63 locus. (D) Highly expressed section of chromosome 16. RepeatMasker track shows repetitive
elements, which were depleted in the highly expressed region (highlighted in yellow).
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Nearly all predicted transcripts at novel loci appeared to
be non-coding (Figure 4B), which could partially explain the
lower number of matches in protein-based databases (NR and
SwissProt) as compared to the nucleotide-based database (NT).
For instance, transcription of the anti-sense strand at the CEP63
locus – a centrosomal protein crucial for division of brain cells –
produces short (∼2 kb long) non-coding transcripts (Figure 4C)
that are expressed in a mutually exclusive pattern with the
main CEP63 isoform (Supplementary Figure 16), potentially
suggesting that CEP63 expression is regulated by a previously
unannotated antisense non-coding RNA.

Of note, more than 1.5 million reads (6.5% of the entire
dataset), were aligned to a single 15 kb region on chromosome
16 (Figure 4D). Surprisingly, this region contained no RefSeq
transcripts, although the Ensembl annotation included three
single-exon transcripts that were predicted to code for NADH
hydrogenase and ATP synthase subunits. Considering this region
was strongly expressed across all samples (Supplementary
Figure 17), these transcripts likely serve fundamental biological
roles that remain to be established. Additionally, because gene
expression is generally normalized based only on reads that align
to the exome, the inclusion of these loci in future annotations
could improve estimates of gene expression in transcriptomic-
based studies.

DISCUSSION

Although long-read sequencing has been extensively
implemented for the study of transcription dynamics, resulting
datasets have generally either been limited by sample size
or sequencing depth. To address this limitation, here we
demonstrate that by coupling ONT sequencing with large-
scale multiplexing, we were able to profile the full-length
transcriptomes of 32 adult bovine tissues from a single ONT
flow cell. Of the nearly 100,000 predicted transcripts, over
60% were novel isoforms of reference genes, indicating that
the complexity of the bovine transcriptome is comparable
to what has been described in humans. Moreover, this high
percentage of novel isoforms is consistent with other studies
that have used long-read sequencing to improve annotations
in pigs (80% of identified transcripts were novel), rabbits
(66%), and cattle (60%) (Chen et al., 2017; Beiki et al., 2019;
Rosen et al., 2020). Compared to previous efforts to annotate
full-length bovine transcripts (Rosen et al., 2020), this study
leveraged a single ONT flow cell to interrogate more tissues
(32 versus 23) from multiple individuals (four replicates
versus one) at a greater sequencing depth (25 million versus
553,798 reads). In terms of cost, speed, and throughput,
these comparisons highlight the power of this method for
transcriptome annotation.

Overall, our transcript predictions substantially increased
the ratio of isoform variants per reference bovine gene from
1.59 to 3.57 (74,312 transcripts at 20,811 reference Ensembl
loci), which is consistent with the ratio observed in humans
(3.78 transcripts per reference Ensembl locus) (Supplementary
Figure 18). Although not all of the 5′ ends of predicted transcripts

directly overlapped Ensembl, RefSeq, or RAMPAGE TSS, the
corresponding transcripts (Supplementary Data 4) were not
disregarded. Just as this study cannot provide a comprehensive
catalog of full-length bovine transcripts, analysis of RAMPAGE
data may have missed credible TSS. Further efforts to annotate
regulatory elements in bovine tissues (i.e., by profiling chromatin
accessibility and histone modifications) should help to further
refine the 5′ ends of transcript models; however, these data are
not yet available for all tissues.

Notably, this study only profiled samples from a single
breed – Hereford – which was specifically chosen because it
is also the basis for the current bovine genome assembly.
Consequently, these data cannot account for the substantial
phenotypic and genetic variation observed between different
breeds and subspecies of cattle (Weigel et al., 2017). For
instance, taurine breeds are known to have higher fertility than
indicine breeds, whereas indicine breeds demonstrate higher
resistance to disease and parasites and thrive in hotter climates.
Although a recent study reported identification of haplotype-
specific transcripts by PacBio sequencing, the dataset was limited
to seven tissues from a Bos Taurus hybrid fetus (Low et al., 2020).
Moving forward, it will be of considerable scientific and economic
interest to continue investigating breed-specific transcriptomes,
with the goal of better understanding the biological mechanisms
that underpin phenotypic differences between animals.

Although this study interrogated over 30 adult tissues, the
resulting annotation is still far from exhaustive. Transcription
was only detected at about 60% of reference loci; the remainder
may not have been expressed in the sampled tissues, or may
have been expressed at such a low level that expression was not
detected due to lower sequencing depth per sample. On average,
we found each tissue expressed about 10,000 loci, although some
tissues – specifically brain and testis – demonstrated substantially
more complex transcriptomes. On the other hand, nearly 30%
of all reads attributed to abomasum samples originated from
LYZ2 (Supplementary Data 7), part of the lysozyme c family
of digestive proteins that play an important role in ruminant
digestion (Irwin, 2015). Such highly abundant transcripts can be
problematic for transcriptomic studies, as they make it harder
to detect rare transcripts with potential biological significance.
This problem is intensified for long-read sequencing methods,
which generally have lower throughput; however, it is possible
to specifically target such transcripts by hybridization, for
example by the CRISPR-Cas9 based method DASH (depletion
of abundant sequences by hybridization) (Gu et al., 2016) which
was recently employed to deplete hemoglobin transcripts prior to
ONT sequencing of polar bear blood (Byrne et al., 2019). To gain
a more complete picture of transcription in bovine abomasum
or blood – the latter of which was not profiled in this study – it
will likely be necessary to deplete abundant transcripts, such as
lysozyme and hemoglobin, in order to detect rarer isoforms.

Another potential limitation of our approach is that it was
based on cDNA, the generation of which is inherently limited by
the capacity of reverse transcriptase to amplify long transcripts.
As a result, it was difficult to capture full-length transcripts
for some of the longest genes, such as titin (TTN), which also
tended to produce fragmented Iso-seq reads (Rosen et al., 2020).
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In addition to fragment length limitations, PCR amplification
can also introduce substantial GC-content bias into libraries
(Mamanova et al., 2010), altering transcript abundance and
library complexity. Furthermore, by using oligo-dT primers for
cDNA generation, as opposed to random primers, our transcript
predictions are likely biased against RNAs that are generally
not polyadenylated (e.g., non-coding RNAs). Single-molecule
sequencing platforms, such as the MinION (Garalde et al.,
2018), avoid these PCR biases altogether by reading native
RNA nucleotides directly as they pass through a nanoscale
sensor. Moreover, direct RNA sequencing can identify post-
transcriptional events like ribonucleotide modifications, which
are increasingly recognized as key regulators of several biological
processes (Jantsch et al., 2018).

Nevertheless, native RNA long-read sequencing is somewhat
limited by throughput and transcript truncation. A single
MinION flow cell produces only about half a million aligned
reads (Soneson et al., 2019), as compared to the 30 million aligned
reads generated by this study from a single PromethION flow
cell. In addition, a significant portion of native RNA reads are
truncated during Nanopore direct RNA sequencing, especially
the last 10–15 nucleotides at the 5′ end (Soneson et al., 2019;
Workman et al., 2019). In theory, this issue could be resolved
by filtering out ONT reads that do not begin within defined
promoters, which were recently experimentally determined in
cattle (Goszczynski et al., 2020), but this approach would
undoubtedly reduce the quantitative nature of the data.

These limitations notwithstanding, as long-read sequencing
technologies continue to improve, both native RNA and single-
cell ONT strategies are likely to become increasingly accurate,
informative and practical, providing unprecedented insight
into transcriptome complexity and cell-to-cell heterogeneity
(Lebrigand et al., 2020). In fact, recent efforts to computationally
correct sequencing errors in ONT data are capable of reducing
the error rate from 14% (Workman et al., 2019) to about
1% (Sahlin et al., 2020), such that it should be possible for
future studies to use ONT sequencing for reference-free de novo
transcriptome analysis.

As it stands, we have demonstrated the potential for
multiplexing paired with ONT sequencing as a powerful
and accessible technique for isoform identification and
expression profiling. Nevertheless, to comprehensively capture
the transcriptomic complexity of the bovine genome, future
studies will need to continue to characterize transcript isoforms
in a broader range of tissues and cell types, representing
different developmental stages, disease states, and physiological
conditions. The ability to identify full-length transcripts from
nearly one hundred samples using a single ONT flow cell makes
the task of exhaustively annotating a mammalian transcriptome
significantly more feasible.
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