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Estimating the phenotypic correlations between complex traits and diseases based on

their genome-wide association summary statistics has been a useful technique in genetic

epidemiology and statistical genetics inference. Two state-of-the-art strategies, Z-score

correlation across null-effect single nucleotide polymorphisms (SNPs) and LD score

regression intercept, were widely applied to estimate phenotypic correlations. Here, we

propose an improved Z-score correlation strategy based on SNPs with low minor allele

frequencies (MAFs), and show how this simple strategy can correct the bias generated by

the current methods. The lowMAF estimator improves phenotypic correlation estimation,

thus it is beneficial for methods and applications using phenotypic correlations inferred

from summary association statistics.

Keywords: phenotypic correlation, genome-wide association, low MAF estimator, LD score regression, genetic

correlation, minor allele frequency

1. INTRODUCTION

Phenotypic correlation is an essential parameter that helps understand observational correlations
between complex traits and the etiological perspectives underlying complex diseases.
Conventionally, estimation of the phenotypic correlation between a pair of phenotypes, by
definition, is straightforward in a sample where both phenotypes are measured. Depending on the
distribution of each phenotype, the estimated phenotypic correlation serves as a sufficient statistic
for many linear statistical models, such as ordinary linear and logistic regressions, allowing us to
assess parameters such as odds ratios of risk factors on disease outcomes.

Since a large number of genome-wide association studies (GWAS) were conducted, many
GWASed phenotypes had measurements in an overlapping set of individuals, where many were
from more than one participating cohort in GWAS meta-analysis. In practice, inference of the
phenotypic correlations across these phenotypes would be complicated if estimating using the
conventional way, which requires individual-level phenotypic data and subsequent meta-analysis.
Fortunately, the phenotypic correlations can be estimated based on established GWAS summary
statistics, especially when the proportion of sample overlap between two GWASed phenotypes is
large. Two state-of-the-art strategies were proposed:
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1. “Z-cut” estimator: The phenotypic correlation can be
estimated by the correlation between the two sets of GWAS
estimated effects or Z-scores, assuming the genetic effect per
SNP is tiny or even null (Stephens, 2013; Zhu et al., 2015;
Cichonska et al., 2016; Shen et al., 2017).

2. LDSC intercept. The phenotypic correlation can be estimated
by the intercept of a bivariate linkage disequilibrium score
regression (LDSC) (Bulik-Sullivan et al., 2015; Turley et al.,
2018; Zheng et al., 2018).

Both estimators have reasonable performance in practice,
however, bias exists for both strategies. Stephens (2013) reasoned
that the correlation between Z-scores for the two phenotypes
under the null is the same as the phenotypic correlation, thus
“a set of putative null SNPs” were selected by taking SNPs with
|z| < 2. The same idea was also adopted by later studies (Zhu
et al., 2015; Shen et al., 2017). The tool metaCCA (Cichonska
et al., 2016) neglected the null effect requirement, as the genetic
effect per variant is tiny, and computed the correlation between
Z-scores across as many SNPs as possible. However, the Z-cut
estimator can generate bias due to its constrain on the summary
statistics of the SNPs (Zheng et al., 2018). LDSC intercept
performs better and thus was adopted in statistical methods
that requires pre-calculated phenotypic correlations (Turley
et al., 2018; Zheng et al., 2018), but the intercept collects noise
generated by population substructure, which may also lead to
biased estimates of phenotypic correlations (Yengo et al., 2018).

Here, we revisit the correlation between GWAS summary
statistics of two phenotypes and propose an alternative approach
to select variants for the Z-score correlation estimation
strategy. We show that selecting SNPs with low minor
allele frequencies (MAFs) can lead to simple and consistent
estimation of phenotypic correlations based on multi-SNP Z-
score correlations. Via simulations, we show that the “low MAF”
estimator can overcome bias generated by the Z-cut estimator
and the LDSC intercept. With higher estimation efficiency, when
applied to UK Biobank GWAS results, the low MAF estimator
could discover 30% more significant phenotypic correlations
than using the LDSC intercept.

2. METHODS

We start by deriving a general mathematical form of the
correlation between the summary statistics of two phenotypes y1
and y2, centered at a zero mean. The sample sizes for y1 and y2
areN1 andN2, respectively, and the overlapping part of y1 and y2
has a length of N0. For a single genetic variant in an association
analysis, the model is yi = g iβi + ei (i = 1, 2), where g i is the
vector of genotypic values coded as 0, 1, and 2, and ei are the
residuals. Only βi and ei are random in the model. Assuming
Hardy–Weinberg equilibrium (HWE), for SNP j, the genotypic
values of g i has a sample mean of 2fj and a sample standard

deviation of
√

2fj(1− fj), where fj is the allele frequency of the
coding allele. g1 and g2 may differ due to different levels of sample
overlap between the two phenotypes. At the single SNP j (omitted

the subscripts j for simplicity),
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where N′

i = Ni − N0, rG is the underlying genetic correlation
at SNP j, and rE is the residual correlation. dist() denotes
a multivariate distribution with a given mean vector and a
variance–covariance matrix. In an association study, rG is un-
identifiable at a single SNP. The estimated genetic effects are
β̂i = g ′iyi/g

′
ig i, then
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Denote g as the overlapping part of g1 and g2, and let x and
z be the rest parts of g1 and g2, respectively. We have g ′ig i ≈
2f (1 − f )Ni (i = 1, 2) and g ′g ≈ 2f (1 − f )N0. So that, defining
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(4)
When σβi = 0 (i = 1, 2), i.e., for any variant with null genetic
effect, the above equation simplifies to

cor(β̂1, β̂2) = cor(z1, z2) =
N0√
N1N2

rE = N0√
N1N2

r(y1, y2) (5)

where r(y1, y2) is the phenotypic correlation based on completely
overlapped individual-level data. Thus, in order to estimate
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r(y1, y2), we can estimate cor(z1, z2) instead. Particularly, for
perfectly overlap samples, i.e., N0 = N1 = N2, we have
cor(z1, z2) = r(y1, y2), which is the phenotypic correlation
estimator derived by Zhu et al. (Zhu et al., 2015). Our theory
above in Equation (4) is an extension of Zhu et al.’s theory,
covering the substantial amount of genetic correlation across the
genome. Only when σβi or f is zero and the samples perfectly
overlap between the two traits, Equation (4) reduces to Zhu et al.’s
result. Equation (4) shows the reasoning behind the low MAF
estimator, i.e., in practice, one can hardly control σβi but f to be
close to zero, so that the correlation between Z-scores becomes
close to the phenotypic correlation, subject to a shrinkage factor
if the samples do not perfectly overlap.

The result suggests that the phenotypic correlation between
the two phenotypes y1 and y2, subject to a shrinkage factor
corresponding to sample overlap, can be estimated by the sample
correlation of the summary statistics across any sufficient number
of null variants. This leads to a commonly adopted strategy of
estimating the phenotypic correlation from summary association
statistics by taking a subset with, e.g., |zi| < 2 (i = 1, 2). However,
we will show that such thresholding may introduce bias into the
correlation estimate.

According to Equation (4), null genetic effect for the variant is
a sufficient but not necessary condition for cor(z1, z2) to reduce
to Equation (5). When f = 0, Equation (4) also becomes (5).
In practice, the phenotypic correlation can be estimated by the
correlation of the summary statistics across a sufficient number
of variants with very low MAFs, regardless of whether the genetic
effects are null. The thresholding on the MAF does not directly
introduce a threshold on βi or zi so that not prone to bias in the
phenotypic correlation estimation.

2.1. Simulation Settings
We conducted a series of simulations to compare the low MAF
estimators with the Z-cut estimators. Based on the real UK
Biobank genotypes, two phenotypes were simulated based on the
784,256 genotyped SNPs in the UK Biobank and the model:

yi = Xiβ i + ei (6)

where i = 1, 2 is the phenotype index, Xi is the matrix of
genotypic values, β i is the vector of genetic effects, and ei are
the residuals. Each column of Xi was standardized to have a
zero mean and unit variance. Two heritability values (h2) for
the phenotypes were considered: 0.3 and 0.6. The genetic effects
and residuals were drawn from a Gaussian distribution with
corresponding variance components: β i ∼ N(0, (h2/M)I), where
M represents the number of causal variants, and ei ∼ N(0, (1 −
h2)I). Each phenotype was simulated for 168,000 genomic British
individuals. Two different scenarios of the proportion of causal
SNPs were considered: 10% randomly selected SNPs and 100%.
Three scenarios of the true genetic correlation (correlation
between the β i vectors) were considered: 0, 0.5, and 1. Three
scenarios of sample overlap proportions were considered: 0 (no
overlap), 0.5 (half overlapped), and 1 (perfectly matched).

Nine different methods for phenotypic correlation estimation
were considered, including the true phenotypic correlation

estimator was based on the individual-level phenotype data
and the other eight that use the correlation between Z-
scores for the estimation. For the illustration purpose, an
estimator based on the Z-scores of 500 simulated SNPs with
random genotypes and zero genetic effects was considered
(referred to as “random” estimator here on). For the low
MAF and Z-cut estimators, without loss of generality, Z-scores
of the 12,966 SNPs on chromosome 22 were used for the
estimation. Four MAF cutoffs for the low MAF estimator, 0.5
(all SNPs), 0.05, 0.005, and 0.0005, were considered. Three
absolute value cutoffs for the Z-cut method, 0.5, 1, and 2,
were considered.

For each method, the number of SNPs used for estimation in
the simulation is given in Supplementary Table 3. Each scenario
of the simulation was repeated for 30 times. The estimates were
saved for evaluating the consistency of the phenotypic correlation
estimators and their corresponding standard errors. All the
above simulation analyses were performed using the R language
(version 3.6.3).

In order to compare the low MAF estimator with the LDSC-
intercept estimator, we conducted another simulation that used
the real UK Biobank genotypes for 336,000 genomic British
individuals across the 1,029,876 quality-controlled HapMap3
SNPs selected by the high-definition likelihood (HDL) software
(Ning et al., 2020). Similar to the above, we draw the genetic
effects across 10% of these SNPs from a normal distribution with
zero mean. The heritability, phenotypic, genetic, and residual
correlations all had a true value of 0.5. GWAS Z-scores of
70,042 SNPs with MAF < 5 × 10−4 were used for the low
MAF estimator. Two reference panels were evaluated for LDSC,
including the ldsc software inbuilt 1000 Genomes reference
and the UK Biobank reference based on the HDL software
reference data.

3. RESULTS

3.1. The Low MAF Estimator Corrects the
Bias of the Z-Cut Estimator
In Figure 1, we provide some representative simulation results
when the genetic correlation between the traits is 0.5. The
general conclusion is that the low MAF estimator with a low
enough MAF cutoff is able to overcome the bias of the Z-
cut estimator. The complete simulation results comparing the
low MAF and Z-cut estimators were summarized and given
in Supplementary Figures 1–8 and Supplementary Tables 1, 2.
Here, we summarize the key points as follows.

• When the samples do not overlap between the two traits, the
phenotypic correlation is by definition zero. When no genetic
correlation exists, all the methods that use the correlation
between Z-scores give consistent zero estimates for the
phenotypic correlation. However, bias in the estimation could
happen when the genetic correlation is non-zero, which agrees
with our theory in section 2. When there is a non-zero genetic
correlation spread across the genome, only those methods that
use the SNPs capturing little genetic variance would yield a
consistent estimate for the phenotypic correlation, e.g., the
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FIGURE 1 | Simulations comparing the Z-cut and low minor allele frequency (MAF) estimators for phenotypic correlation. The box plots show the simulation results

from 30 replicates, where in each replicate, two phenotypes with heritability of 0.3 were simulated based on 10% randomly selected causal single nucleotide

polymorphisms (SNPs) from the 784,256 genotyped SNPs in the UK Biobank. The true genetic correlation (rG) were set to 0.5 and the residual correlations were set

to 0.25 for each pair of traits. Two scenarios of sample overlap proportions are shown. In the top panels, each phenotype was simulated for 168,000 genomic British

individuals. The box plots compare the estimated phenotypic correlations using different estimators. The dash lines represent the true values. The bottom panels

compare the estimated standard errors (SE) across the replicates to the standard deviation (SD) of the phenotypic correlation estimates across the 30 replicates, and

each phenotype was simulated for 1,000 genomic British individuals. The dash lines at 1 represent that the estimated SE matches the empirical sampling SD. The

“random” method represents the estimator based on 500 simulated SNPs with random genotypes and zero genetic effects. The true phenotypic correlation (rP)

estimator was based on the individual-level phenotype data. The other estimators were based on the SNPs on chromosome 22 (numbers given in

Supplementary Table 3).

random estimator where the SNPs capture absolutely zero
genetic variance and the low MAF estimator with low enough
MAF cutoffs.

• In overlapping samples, when the genetic correlation is
zero, slight bias can be observed when using the Z-scores of
common SNPs for phenotypic correlation estimation. Such
bias can be corrected when a sufficiently low MAF cutoff is
applied to the low MAF estimator. In partially overlapping
scenarios, the observational phenotypic correlation in
individual-level data can be estimated by adjusting the
shrinkage factor N0/

√
N1N2.

• For the UK Biobank real genotype data, a 0.005 cutoff is
low enough to yield a consistent estimate of the phenotypic

correlation. Nevertheless, unless too few SNPs exist, using
SNPs with MAF < 5× 10−4 is recommended, as the standard
error of the estimator can be consistently obtained in a simple
way. The LD between low MAF SNPs is so small that we may
consider the SNP genotypes as independent. Therefore, when
simply obtaining the test statistic for the Pearson’s correlation
coefficient, the standard error for the Wald test can be back-
calculated from the nominal p-value. The simulation results
showed that the SEs of the low MAF method calculated in
this way are consistent with the empirical standard deviation
across the simulation repeats.

• Applying a low MAF cutoff on the pre-filtered SNPs based
on the Z-cut method could reduce the bias in some
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cases, but the bias cannot be completely overcome as
the Z-cut method itself is a biased sampling strategy of
the SNPs.

3.2. The Low MAF Estimator Corrects the
Bias of the LDSC Intercept Estimator
For the second simulation, we observed downward bias
in the LDSC intercept when the default 1000 Genomes
reference was applied (Figure 2). Such a bias was overcome
by the UK Biobank reference, nevertheless, the estimates
were slightly inflated possibly due to the population
substructure in the UKB genomic British individuals (Yengo
et al., 2018). These biases were all absent when applying
the low MAF estimator for the phenotypic correlation.
Furthermore, the low MAF estimator had a substantially
higher estimation efficiency than the LDSC intercept
(Supplementary Table 4).

FIGURE 2 | Simulations comparing the low minor allele frequency (MAF)

estimator and LD score regression (LDSC) intercept using the UK Biobank

genotype data. The box plots show the results from 100 replicates, where in

each replicate, two phenotypes with heritability of 0.5 were simulated for

336,000 genomic British individuals. The true phenotypic, genetic, and

residual correlations were all set to 0.5. The low MAF estimates were based on

70,042 single nucleotide polymorphisms (SNPs) with MAF < 5× 10−4. 1 kG

ref: LD scores calculated based on the 1000 Genomes reference panel; UKB

ref: LD scores calculated based on the UK Biobank reference panel.

3.3. Example Based on UK Biobank GWAS
Summary Statistics
As a real data example, we applied the different estimation
methods on the same 30 UK Biobank phenotypes used in Ning
et al.’s study in genetic correlation estimation (Ning et al., 2020),
where the GWAS summary statistics are publicly available (see
Data Availability Statement section). The low MAF estimates
were based on 70,042 SNPs with MAF < 5 × 10−4, and
the LD scores were calculated based on the 1000 Genomes
reference panel (default). At a 5% Bonferroni-corrected p-value
threshold for 435 pairs of traits, the lowMAF method discovered
223 significant phenotypic correlations, and LDSC intercept
discovered 171. Among these, 61 phenotypic correlations were
only significant in the low MAF method, vs. 9 only significant
using the LDSC intercept (Figure 3A). The point estimates of the
phenotypic correlations by the low MAF method and bivariate
LDSC intercept were nearly the same (Figure 3B). As expected,
when a Z-cut method is applied, the estimates became severely
biased toward zero (Figure 3C). For seven of these phenotypes
that we have individual-level data in ourUKBiobank project (No.
14302), including body mass index, basal metabolic rate, usual
walking pace, standing height, birth weight, coffee consumed,
and year ended full time education, we extracted the initial
measurement values. In order to be more consistent with the
GWAS quality control procedure, we took away the effects of sex
and age on these phenotypes by taking the residuals from linear
regressions. The residuals were subsequently inverse-Gaussian
transformed. After computing the individual-level observational
phenotypic correlations and adjusted for the shrinkage factor
N0/

√
N1N2, the estimates were close to the low MAF estimates

for these 21 pairs of traits (Figure 3D).

4. DISCUSSION

We have proposed the low MAF estimator of phenotypic
correlations based on GWAS summary statistics, as an
improvement of the Z-score correlation strategy based on all
SNPs or SNPs that pass a particular Z-score cutoff. The estimator
overcomes the bias generated when thresholding on summary
association statistics and even that generated in the bivariate
LDSC intercept. We suggest the use of the low MAF phenotypic
correlation estimator in future practice. The more consistent
and efficient estimation can improve our understanding of
connections across human complex traits and diseases.

Although the low MAF method also introduces a filter on the
tested SNPs, it is a threshold-free technique for the genetic effect
parameter. Thus, the low MAF estimator does not constrain the
estimated genetic effects of selected SNPs, equivalent to sampling
a set of null effect SNPs from the genome. This explains why
“putative null effect” SNPs with, e.g., |z| < 2 generate bias,
whereas the low MAF estimator does not. Even if all the SNPs
are null, some of them will generate z-score with |z| > 2 due to
randomness. Removing them would lead to bias.

As the low MAF estimator is equivalent to sampling
a set of null effect SNPs from the genome, the resulted
phenotypic correlation estimates are close to those estimated
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FIGURE 3 | Phenotypic correlation estimates across 30 UK Biobank traits. (A) Estimates using the low minor allele frequency (MAF) estimator (lower triangle) and LD

score regression (LDSC) intercept (upper triangle) are compared. The low MAF estimates were based on 70,042 single nucleotide polymorphisms (SNPs) with MAF

(Continued)
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FIGURE 3 | < 5× 10−4. The default 1000 Genomes reference panel was used in LDSC. Bonferroni-corrected significant correlations with P < 0.05/435 are marked

with asterisks or dots, where those correlations that are only significant using one of the two methods are marked with asterisks and squares. (B) Scatterplot

comparing the LDSC intercept and low MAF estimates. (C) Scatterplot comparing the LDSC intercept and the Z-cut (|Z| < 1) estimates. (D) Scatterplot comparing

the individual-level observational data and low MAF estimates; for the seven traits, we have data for, i.e., body mass index, basal metabolic rate, usual walking pace,

standing height, birth weight, coffee consumed, and year ended full time education.

using individual-level phenotypic data. In the real UKB genotype
data simulation, we showed that the LDSC intercept could
not produce consistent estimates of the phenotypic correlation
due to population substructure. Such a complication in LDSC
was overcome by the low MAF estimator; although the GWAS
summary statistics were used, the estimator approximates
observed phenotypic correlation and is irrelevant to genetic data
structure. For example, the genotypic data are treated as nuisance
in the low MAF estimator.

As a comparative reference, we considered the “random”
estimator using the Z-scores of 500 completely “irrelavant”
SNPs. These SNPs were simply randomly generated, with
random genotypes and zero genetic effects. These “bad” SNPs
in GWAS appeared to be perfect for estimating the phenotypic
correlation. The reason is simple according to our theory: they
explain no phenotypic variance, so correlating their Z-scores
for two traits becomes equivalent to correlating the phenotypic
values themselves. This also explains why using the low MAF
SNPs almost does the same: the low MAF SNPs explain little
phenotypic variance. As LD between low MAF SNPs is rather
low, using the low MAF SNPs is also helpful for getting the
standard errors of the phenotypic correlation estimates. In the
real data, low MAF SNPs are usually prone to genotyping errors
or imputation failures if imputed. For the phenotypic correlation
estimation purpose, even such errors are good, as they add more
noise to the genotype data so that the SNP genotypes are even
closer to noise.

Different sample overlap scenarios can be adjusted to obtain a
consistent estimate of the observational phenotypic correlation.
As long as N0, N1, and N2 are known, the shrinkage factor
N0/

√
N1N2 can be adjusted in the low MAF estimator. It

should be noted that the adjustment becomes bad when N0

is too small. In the extreme case, when N0 = 0, i.e., in
non-overlapping samples, there is no information we can learn
about the phenotypic correlation from the two sets of GWAS
summary statistics.

For binary phenotypes, an advantage of summary-statistics-
based estimators, such as the low MAF estimator, is that
it estimates the underlying phenotypic correlations on the

liability scale. The liabilities follow an unobservable logistic
distribution therefore the estimates are not exactly the same as
the observed phenotypic correlations directly computed using
the 0–1 outcome data. The phenotypic correlation estimates
on the liability scale is mathematically easier to interpret and
can be transformed into odds ratios from logistic regressions.
Although for low MAF SNPs (rare variants) the GWAS test
statistics would be generally inflated when the case–control data
are unbalanced (Ma et al., 2013), the correlation between the Z-
scores of two traits across the genome is still a valid estimator
for the phenotypic correlation, which is not affected by low allele
frequencies (Supplementary Figure 9).
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