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Multi-omics molecules regulate complex biological processes (CBPs), which reflect

the activities of various molecules in living organisms. Meanwhile, the applications to

represent disease subtypes and cell types have created an urgent need for sample

grouping and associated CBP-inferring tools. In this paper, we present CBP-JMF, a

practical tool primarily for discovering CBPs, which underlie sample groups as disease

subtypes in applications. Differently from existing methods, CBP-JMF is based on a

joint non-negative matrix tri-factorization framework and is implemented in Python. As

a pragmatic application, we apply CBP-JMF to identify CBPs for four subtypes of breast

cancer. The result shows significant overlapping between genes extracted from CBPs

and known subtype pathways. We verify the effectiveness of our tool in detecting CBPs

that interpret subtypes of disease.

Keywords: non-negative matrix factorization, complex biological processes, multi-dimensional genomic data,

disease, subtype

INTRODUCTION

Complex biological processes (CBPs) are the coordinated effect of multiple molecules, which result
in some functional pathways and the vital processes occurring in living organisms. In addition, the
vast amounts of multi-omics data, such as genomics, epigenomics, transcriptomics, proteomics,
and metabolomics, can be integrated to understand systems biology accurately (Suravajhala et al.,
2016). Hasin et al. (2017) pointed out that a deeper and better understanding of important
biological processes and modules can be obtained through multi-omics studies. However, practical
tools are still missing to integrate diverse multi-omics data at different biological levels and reveal
the CBPs and other problems like the causes of diseases.

Non-negative matrix factorization (NMF) (Lee and Seung, 1999) is a powerful tool for
dimension reduction and feature extraction. It has been increasingly applied to diverse fields,
including bioinformatics (e.g., high-dimensional genomic data analysis). For example, Brunet
et al. (2004) applied NMF and consensus clustering to the gene expression data of leukemia to
discover metagenes and molecular patterns. Xi et al. (2018) detected driver genes from pan-cancer
data based on another matrix decomposition framework called matrix tri-factorization. Up to
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now, several variants of NMF have been proposed, including
tri-factorization NMF (Ding et al., 2006), graph-regularized
NMF (Cai et al., 2011), joint NMF (Zhang et al., 2012),
iNMF (Yang and Michailidis, 2016), etc. (more details are
in Supplementary Note 1 of the Supplementary Materials). In
2012, jNMF (Zhang et al., 2012) was proposed to identify multi-
omics modules by integrating cancer’s DNA methylation data,
gene expression data, and miRNA expression data. Chen and
Zhang (2018) applied joint matrix tri-factorization to discover
two-level modular organization frommatched genes and miRNA
expression data, gene expression data, and drug response data.

Omics data across the same samples contain signal values
from expression counts, methylation levels, and protein
concentrations, which control biological systems, resulting in
so-called multi-dimensional genomic (MG) data. The natural
representation of these diverse MG data is a series of matrices
with measured values in rows and individual samples in
columns. Recently, there are integrative analysis tools based on
NMF technique that reveal low-dimensional structure patterns.
The low-dimensional structure patterns reflect CBPs and sample
groups while preserving as much information as possible from
high-dimensional MG data (Stein-O’Brien et al., 2018).

In general, most particular matrix factorization techniques
are being developed to enhance their applicability to specific
biological problems. Meanwhile, the applications to represent
disease subtypes (Biton et al., 2014) and cell types (Fan et al.,
2016) have created an urgent need for sample grouping and
associated CBP-inferring tools. Moreover, cancer and other
complex diseases are heterogeneous, i.e., there are various
subgroups for a cancer or a complex disease. The study of
the heterogeneity of cancer and complex diseases will help us
understand the disease further and provide better opportunities
to disease treatment (Xi et al., 2020). To address this issue, we
extend traditional jNMF and develop CBP-JMF, an improved
joint matrix tri-factorization framework for characterizing CBPs
that represent sample groups, and implement a Python package.
This package takes labeled samples as the prior information
and integrates MG data (e.g., copy number variation, gene
expression, microRNA expression, and/or molecule interaction
network) to identify the underlying CBPs which characterize
the specific functional properties of each group. CBP-JMF can
be used to mark unlabeled samples with groups of known
labels. For ease of use, CBP-JMF can recommend reasonable
parameter settings for users. CBPs found by CBP-JMF are
connected network markers, and they are distinguished between
sample groups. These markers usually have specific biological
functions and play important roles in phenotypes. As an example,
CBPs for subtypes of breast cancer are obtained by CBP-
JMF, but they may not have been collected in any reference
database yet.

The rest of this paper is organized as follows. Section
“Framework of CBP-JMF” deals with the problem formulation of
CBP-JMF and the implementation of it. Then, Section “Results”
exemplifies our approach by applying CBP-JMF to identify CBPs
for different subtypes of breast cancers and compares the results
of classifying unlabeled samples with CBP-JMF and its several
variants. Finally, Section “Discussion” discusses our results and

lists our expectations of our method and the limitations of it.
Section “Conclusions” highlights our method.

FRAMEWORK OF CBP-JMF

Problem Definition
Given a non-negative matrix X ∈ Rm×n, it can be factorized
into three non-negative matrix factors based on matrix tri-
factorization: X ≈ USV, where U ∈ Rm×k, S ∈ Rk×k, and
V ∈ Rk×n. Factored matrix S cannot only absorb scale difference
between U and V but also indicates relationships between the
identified kmodules.

In CBP-JMF, given a MG dataset composed of P omics, it can
be presented bymultiple matricesX(1),X(2), ...,X(P), as illustrated
in Figure 1. For each matrix, the rows indicate molecules like
genes, and the columns indicate samples; the values in it are

related to the meaning of omics. If X(p) (p ∈ [1, P]) is a

matrix of gene expression data, X
(p)
ij represents the expression

value of the gene in the i-th row on the j-th sample. Basically,

each non-negative matrix X(p) ∈ Rm×n, p = 1, 2, ..., P is
factorized into three non-negative matrix factors based onmatrix

tri-factorization: X(p) ≈ U(p)S(p)V, where molecular coefficient
matrix (MCM) U(p) ∈ Rm×k and sample basis matrix (SBM) V ∈
Rk×n are the pattern indicator matrices of k CBPs and k sample

groups, respectively. Scale absorbing matrix (SAM) S(p) ∈

Rk×k explores the relationships between them. Furthermore,
MCM describes the structure pattern between molecules (e.g.,
genes), SBM indicates the structure pattern between samples,
and SAM absorbs the difference of scales between MCM and
SBM (Figure 1). Each column of the MCM infers a latent
feature associated with a CBP, and the continuous values in
it represent the relative contribution of each molecule in the
CBP. Meanwhile, each row of the SBM describes the relative
contributions of the samples to a latent feature. The sample
groups can be detected by comparing the relative weights in each
row of the SBM.

Overall, X(1),X(2), ...,X(P) can be jointly factorized into
specific U(1),U(2), ...,U(P), S(1), S(2), ..., S(P), and a common
matrix V. X(1),X(2), ...,X(P) are across the same samples, and V

reveals consistent sample groups of multi-omics data. In CBP-
JMF, V can be divided into VL and VUL according to input
data, where L and UL mean “labeled” samples and “unlabeled”
samples, respectively.

Objective Function of CBP-JMF
Considering that different datasets may play different roles in
data integration, we adopted a method that can learn the weights
of different input data through a weighted joint tri-NMF:

min
P
∑

p=1
π(p)

∥

∥

∥
X(p) − U(p)S(p)V

∥

∥

∥

2

F
+ ω‖5‖2

s.t. π(p) > 0,
P
∑

p=1
π(p) = 1

(1)
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FIGURE 1 | Illustration of the framework and optimization objective function of complex biological processes–joint matrix tri-factorization.

where 5 =
(

π (1),π (2), ...,π (P)
)

. CBP-JMF differentiates the

importance of datasets by the weight constraint ‖5‖2, and π(p)

will get a weight to represent the contribution of data X(p) to

objective function after optimization. If X(p) contributes to the
optimization of cost function, then it will be given a higher

weight π(p), or if X(p) contains lots of noises which hinder
the optimization of objective function, it will be given a lower

weight π(p).
In addition, V can be divided into labeled VL and unlabeled

VUL parts according to the labeled samples and unlabeled
samples. In order to learn the correlation between labeled
samples, we use a graph Laplacian to represent the distance
of labeled sample in latent space (Guan et al., 2015). We use
Equations (2) and (3) to denote the distance between labeled
samples from the same class and different class in the learned
latent space, respectively,

NL
∑

i=1

NL
∑

j=1

Wa
ij

∥

∥

∥
vLi − vLj

∥

∥

∥

2

2
= tr

[

VLLa
(

VL
)T

]

(2)

NL
∑

i=1

NL
∑

j=1

W
p
ij

∥

∥

∥
vLi − vLj

∥

∥

∥

2

2
= tr

[

VLLp
(

VL
)T

]

(3)

where NL is the number of labeled samples in V, and Wa

(Waffinity) andWp (Wpenalty) are the weighted adjacency matrices
(see Supplementary Note 2 in SM) corresponding to intra-
group and inter-group samples respectively. La (Laffinity) and Lp

(Lpenalty) are the Laplacian matrix of Wa and Wp, respectively,

where La=Da −Wa, Lp=Dp −Wp, Da=
∑NL

j=1W
a
ij. In machine

learning, people try to make samples from the same class near
each other in the learned latent space and samples from different

class far from each other. This principle can be written as

min
(

tr
[

VLLa
(

VL
)T

]

− tr
[

VLLp
(

VL
)T

])

(4)

Combining weighted joint tri-NMF and the constraints of
correlation between labeled samples mentioned above, we give
the formulation of the optimization objective function of CBP-
JMF as follows (Figure 1):

min
{

U(p)
}P

p=1 ,
{

S(p)
}P

p=1 ,V

P
∑

p=1

π(p)
∥

∥

∥
X(p) − U(p)S(p)V

∥

∥

∥

2

F

+β

{

tr
[

VLLa
(

VL
)T

]

− tr
[

VLLp
(

VL
)T

]}

+ ω‖5‖2

s.t. ∀p,U
(p)
ij ≥ 0,Vij ≥ 0,π(p) ≥ 0,

P
∑

p=1

π(p) = 1 (5)

Parameters β and ω represent the importance of the graph
Laplacian regularization and weight constraint ‖5‖2. In total,

each X(p) is factorized into individual molecular matrix U(p)

and scale matrix S(p) and a common sample matrix V. We
allowed all matrices to share the same samplematrixV for finding
common factors in MG data. There is only a part of samples
labeled (subtype or subpopulation or subgroup is known as prior
information); we incorporate this prior information with graph
Laplacian.We can also learn the weights of different input data to
conclude the roles that different data matrices play in CBP-JMF.

Optimization and Update Rules of
CBP-JMF
To solve the problem of factorization X ≈ USV, we
firstly randomly initialize the solution of U, S, and V and
then apply iterative multiplicative updates as the optimization
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Algorithm 1 | The CBP-JMF algorithm.

Input:

P data matrices X(1),X(2), ...,X(P), parameters β ω

Output:

P basis matrices U(1),U(2), ...,U(P), P relation matrices S(1),S(2), ...,S(P), factor

matrices V, weight vector 5 =
(

π (1),π (2), ...,π (P)
)

1: Begin

2: InitializeU(1),U(2), ...,U(P), S(1),S(2), ...,S(P), V

3: Initialize
(

π (1),π (2), ...,π (P)
)

=
(

1
P
, 1
P
, ..., 1

P

)

4: loop

5: for p=1 to P do

6: Fix V, update U(p), S(p)

7: end for

8: Fix U(1),U(2), ...,U(P), update VL

9: Fix U(1),U(2), ...,U(P), update VUL

10: for p=1 to P do

11: Fix U,S,V, compute c(p) =
∥

∥X(p) −U(p)S(p)V
∥

∥

2

F

12: end for

13: Update 5

14: break loop if convergence

15: End

approach similar to EM algorithms (Dempster et al., 1977). The
optimization procedure of CBP-JMF is as follows.

To clarify the update rules of the
objective function of CBP-JMF, we define

O(U,V, S,5) =
∑P

p=1 π(p)
∥

∥

∥
X(p) − U(p)S(p)V

∥

∥

∥

2

F
+

β

{

tr
[

VLLa
(

VL
)T

]

− tr
[

VLLp
(

VL
)T

]}

+ω‖5‖2. Firstly, we fix

V and S and update U; then, we can get the Lagrange function

and let9 be the Lagrange multiplier for the constraintsU
(p)
ij > 0.

L
(

U(P)
)

= O
(

U(P)
)

+ tr
(

9TU(P)
)

(6)

The partial derivatives of L
(

U(P)
)

with U is:

∂L
(

U(P)
)

∂U(P)
= −2X(p)VT

(

S(p)
)T
+ 2U(P)S(p)VVT

(

S(p)
)T
+9 (7)

Based on the KKT conditions9ijUij = 0, we can get the following
update rules:

U(P)← U(P) ◦

X(P)VT
(

S(p)
)T

U(P)S(p)VVT
(

S(p)
)T

(8)

Similarly, we can get the update rules forW, VL, and VUL:

S(P) ← S(P) ◦

(

U(p)
)T

X(p)VT

(

U(p)
)T

U(P)S(p)VVT
(9)

VL ← VL ◦

P
∑

p=1
π(p)

(

(

S(p)
)T(

U(p)
)T

XL(p)
)

+ βVL
(

Dp + Sa
)

P
∑

p=1
π(p)

(

S(p)
)T(

U(p)
)T

U(p)S(p)VL + βVL
(

Da + Sp
)

(10)

VUL ← VUL ◦

P
∑

p=1
π(p)

(

(

S(p)
)T(

U(p)
)T

XUL(p)
)

P
∑

p=1
π(p)

(

S(p)
)T(

U(p)
)T

U(p)S(p)VUL

(11)

As for updating of π , whenU,V, and S are fixed, minimization of
O(π) is a convex optimization, and we use convex optimization
toolbox to update π .

CBPs Obtained From CBP-JMF
Values in each column ofU(p) represent the relative contribution
of each molecule in each module, and values in each row of V
represent the degree of each sample involved in each module.
According to the rules of matrix multiplication, the i-th column

of basis matrix U(p), p = 1, 2, ..., P corresponds to the i-th row
of coefficient matrix V, so there is a one-to-one correspondence
between subtype and multi-omics module discovered from the

columns ofU(p) matrix. Firstly, we need to know the relationship
between kmodules and subtypes by counting each subtype’s value

in each module from V(p) matrix (see Supplementary Note 3 in
Supplementary Material).

To select features associated with each module, CBP-JMF
calculates the z-scores of each molecule for each column vector
of U(p) as z = (x− x̄)/Sx , where x̄ = 1

n

∑

i
xi, S

2
x =

1
n−1

∑

i
(xi − x̄)2. Let u

(p)
j be the j-th column of U(p) and infer

a latent feature associated with j-th CBP. The continuous value

u
(p)
ij represents the relative contribution of molecule i in the j-

th CBP. u
(p)
ij can be regarded as xi, and the length of u

(p)
j can

be regarded as n in Equation (12). CBP-JMF calculates a z-score

for each value in u
(p)
j and obtains CBP’s members through a

given cutoff (z-score >2 in our tests). Then, they are mapped to a
built-in molecule interaction network (see “Section ‘Results”’) to
extract their connected components as the final CBP.

RESULTS

We applied CBP-JMF to BRCA with multi-omics data. The
reason we chose BRCA as example is that breast cancer is a
heterogeneous complex disease, and it is the most commonly
occurring cancer. BRCA is also a type of cancer that can be
divided into smaller groups based on certain characteristics of
the cancer cells. Distinct complex biological processes represent
different subtypes. Characterizing the processes can provide us
comprehensive insights into the mechanisms of how multiple
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FIGURE 2 | Complex biological processes of luminal B and basal-like subtype. We mapped the genes and miRNAs obtained from luminal B’s module and basal-like’s

module to an integrated gene regulation network. The network was obtained through integrating three databases including Reactom, Kyoto Encyclopedia of Genes

and Genomes, and Nci-PID Pathway Interaction Database. The interactions between genes and miRNAs were obtained from miRTarBase. The size of the node is

proportional to the size of the degree. The thickness of the edges indicates the strength of the regulatory relationship expressed by the Pearson correlation coefficient

between microRNA and gene.

TABLE 1 | Enrichment analysis of the extracted module gene across six datasets.

Dataset Online mendelian inheritance in man CGC Virhostome Kinome Drug target BRCA pathway

Total 51 43 947 516 61 102

Overlapped nodes 2 5 13 6 3 6

P-value 0.049 0.0003 0.007 0.008 0.010 0.012

FIGURE 3 | Part of complex biological processes luminal B and basal-like. The edges with checkmarks are the interactions that have been documented. (A) Luminal

B’s biological processes: luminal subtypes are driven by the estrogen/ER pathway. Among all nodes, ERBB2, ERBB3, and ESR1 are involved in the estrogen/ER

pathway. (B) Basal-like’s biological processes: basal-like subtype is driven by the deregulation of various signaling pathways (Notch, MAPK, FoxO signaling pathway,

and Wnt/beta-catenin). Among all nodes, MAPKAPK2, CDC25B, CCNB1, CCNB2, PAK1, and STMN1 are known to exist in multiple signaling pathways.
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TABLE 2 | Evidences of luminal B’s complex biological processes.

Interactions Literatures Descriptions

miR-34a->ERBB2 Wang et al., 2017 MiR-34a modulates ErbB2 in breast cancer

ERBB2->VAV2 Wang et al., 2006 ErbB2 colocalizes with Vav2 via activation of PI3K

VAV2->RAC3 Rosenberg et al., 2017 Vav2 promotes Rac3 activation at invadopodia

miR-200b->JUN Jin et al., 2017 MiR-200b upregulates JUN in breast cancer

JUN->CCND1 Cicatiello et al., 2004 CCND1 promoter activation by estrogens in human breast cancer cells

is mediated by the recruitment of a c-Jun/c-Fos/estrogen receptor

JUN->ESR1 Stossi et al., 2012 The activation of ESR1 gene locus in a process that was dependent

upon activation and recruitment of the c-Jun transcription factor

miR-26a->ESR1 Howard and Yang, 2018 MiR-26a modulates ESR1 in breast cancer

ESR1->VAV2 Grassilli et al., 2014 ESR1 upregulates VAV2 in breast cancer cell lines

TABLE 3 | Evidences of basal-like’s complex biological processes.

Interactions Literatures Descriptions

CCNB1(CCNB2)->PLK1->CDK1 Li et al., 2019 CCNB1 (CCNB2), PLK1, and CDK1 have interactions in chicken breast muscle

miR221->FOS Yao et al., 2016 miR221 modulates FOS

miR221->PAK1 Ergun et al., 2015 miR221 modulates PAK1 in breast cancer cell lines

PAK1->PLK1 Maroto et al., 2008 PAK1 regulates PLK1

MAPKAPK2->CDC25B MAPK signaling

pathway

MAPKAPK2 and CDC25B are involved in MAPK signaling pathway

CDC25B->CDK1 Timofeev et al., 2010 Timely assembly of CDK1 required CDC25B

levels of molecules interact with each other and the heterogeneity
of breast cancers.

Data
Firstly, we downloaded the Gene Expression (GE) data, miRNA
expression (ME) data, and copy number variation (CNV) data
across the same set of 738 breast cancer samples from UCSC
Xena (Goldman et al., 2018). Secondly, we obtained the sample
label information which is classified by PAM50 from The
Cancer Genome Atlas Network (Koboldt et al., 2012). Among
738 samples, there are 522 breast cancer samples with labels,
including 231 luminal A, 127 luminal B, 98 triple negative/basal-
like, 58 HER2-enriched, and eight normal-like. Thirdly, we
filtered out some samples, in which more than 90% of the
genes have an expression value of zero. For genes and miRNAs,
we filtered the genes and miRNAs with an expression value
of zero in more than 20% of the samples. Fourthly, we did
differential expression analysis for genes using edgeR package
(Robinson et al., 2009) in R with P-value < 0.01 and |log(fold
change)|> 0.5 to filter out genes which are not associated with
breast cancer. Fifthly, we imputed missing miRNA data using
knnimpute package in MATLAB. About the CNV data, the
GISTIC2 (Mermel et al., 2011) thresholded the estimated values
of CNV to −2, −1, 0, 1, and 2, which represent homozygous
deletion, single copy deletion, diploid normal copy, low-level
copy number amplification, or high-level number amplification.
Finally, we obtained the GE data X(1) ∈ R2913×725 and ME
data X(2) ∈ R516×725. Among 725 samples, 179 samples are
marked with subtype labels (80 luminal A, 38 luminal B, 39

basal-like, 22 HER2-enriched) and shared between GE, ME,
and CNV datasets. Furthermore, we calculated the Pearson
correlation of 179 labeled samples using CNV data to construct
Wa ∈ R179×179,Wp ∈ R179×179, and their Laplacian matrices

to form the graph Laplacian regularization tr
[

VLLa
(

VL
)T

]

−

tr
[

VLLp
(

VL
)T

]

.

Complex Biological Processes for Breast
Cancer Subtypes
In our example, we set parameters k = 4, β=10, and
ω=100, 000. Other parameters and more details can be found in
Supplementary Note 2 of Supplementary Material. As a result,
we obtained unique matrices U(1) ∈ R2913×4, U(2) ∈ R516×4,
S(1) ∈ R4×4, and S(2) ∈ R4×4 and a common matrix V ∈ R4×725.

To get heterogeneous CBPs (Supplementary Table 1),
directed regulatory pathways containing miRNAs and genes,
which correspond to each cancer subtype we put subtype-specific
multi-omics modules obtained from matrix U(p), p = 1, 2 onto
an integrated gene regulation network from Reactome (Croft
et al., 2014), Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa and Goto, 2000), and Nci-PID pathway (Schaefer
et al., 2009). Then, we add directed regulatory edges from
miRNA to the gene supported by miRTarBase (Chou et al., 2018).
Finally, we extracted the maximum connected component of
the regulation network and showed the discovered characteristic
CBPs underlying luminal B and basal-like subtypes in Figure 2.

To explore whether the genes in the CBPs of luminal B
and basal-like subtype have significant biological importance or
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not, we performed an enrichment analysis with all 124 genes
from Figure 2 across six datasets. The datasets are from OMIM
(Hamosh et al., 2005), CGC (Futreal et al., 2004), virhostome,
kinome (Manning et al., 2002), drug target (Wishart et al.,
2008), KEGG pathway of BRCA (Kanehisa and Goto, 2000).
Genes associated with breast cancer or breast tissue in the six
datasets are selected as the set of enrichment analysis. Genes
extracted through CBP-JMF have significant overlapping with
known datasets (Table 1). Furthermore, for each subtype’s CBP,
functional enrichment analysis (Supplementary Figure 4) shows
that four CBPs aremainly enriched in known biological processes
and pathways associated with breast cancer, such as cell cycle
and various signaling pathways (including p53 signaling pathway
and estrogen pathway). However, each CBP also has its specific
biological processes and path. This may explain differences
between subtypes. As a demonstration, we take the CBPs of
luminal B and basal-like as example. Based on the study of the
subtypes of BRCA, luminal B is mainly driven by the estrogen/ER
pathway (Zhang et al., 2014). In our discovered CBPs, we found
several CBPs containing genes like ERBB2, ERBB3, and ESR1 that
are related to the estrogen/ER pathway. Besides that, through
literature review, miRNAs in luminal B’s CBP can regulate the
estrogen/ER pathway, such as miR-34a, miR-125b, miR-200b,
and so on (Figure 3, Table 2). In addition, basal-like subtype is
mainly driven by the deregulation of various signaling pathways
including Notch, MAPK, and wnt/β-catenin signaling pathway
(King et al., 2012). In our discovered CBPs, we found genes
involved in the above-mentioned pathways, such asMAPKAPK2,
CDC25B, PLK1, and so on. Besides that, we also found that
miRNAs in CBPs of basal-like, such as miR-221 and miR-210,
may regulate the genes above in basal-like subtype (Figure 3,
Table 3). In summary, subtype-specific biological processes can
be identified by CBP-JMF, and CBP-JMF can help users discover
potential biological targets.

Meanwhile, to classify unlabeled samples into subtypes,
CBP-JMF returned predicted labels for unlabeled samples
(Supplementary Note 4 in Supplementary Material). Figure 4
shows the Kaplan–Meier (KM) survival analysis using survival
package (Therneau, 2015) on unlabeled samples based on their
clinical data in TCGA.We compared our results with other NMF
methods (Supplementary Note 4 of Supplementary Material)
and found that CBP-JMF achieves more accurate subtype
classification results. Unlabeled samples are classified by using
GE data and ME data. Figure 4 indicates that the survival
analysis for unlabeled samples has the most significant Cox
(Lin and Zelterman, 2002) p-value 0.031 and similar survival
curves like the labeled samples. This proves that the CBP-JMF
framework is useful for cancer subtyping, as the framework
incorporates integration of multi-omics data and samples’
prior information.

DISCUSSION

Understanding CBPs is vital to help us further understand
the development of disease and intervene in the disease.
NMF is an effective tool for dimension reduction and data

FIGURE 4 | Kaplan–Meier (K–M) survival analysis for patients which are

classified using different methods. (A) KM survival curve for labeled samples,

whose subtypes are known in advance. (B) KM survival analysis for unlabeled

samples, which are classified using complex biological processes–joint matrix

tri-factorization (CBP-JMF) on mRNA expression and miRNA expression data.

(C) KM survival analysis for unlabeled patients, which are classified using

CBP-JMF only on mRNA expression. (D) KM survival analysis for unlabeled

patients, which are classified on mRNA expression and miRNA expression

data without graph embedding regularization.

mining in high-throughput genomic data. In this paper,
we proposed CBP-JMF, an improved method of multi-view
data analysis. It is designed for heterogeneous biological
data based on NMF. Moreover, we created an easy-to-
use package in Python. CBP-JMF analyzes multi-dimensional
genomic data across the same samples integrally. Our method
can discover CBPs that underlie sample groups and classify
unlabeled samples through learning the relationship between
labeled samples.

We tested this framework on the gene expression data
and miRNA expression data of BRCA. CBP-JMF discovered
subtype-specific biological processes and classified unlabeled
samples into four subtypes. We did survival analysis and
function analysis, and the results showed that CBP-JMF has
great performance. Furthermore, CBP-JMF is a weighted joint
tri-NMF framework in essence. We expect that it can be
applied to vast fields including disease subtypes, cell types,
and population stratification. Meanwhile, we expect that CBP-
JMF can be used to identify hub genes or predict the
association between genes or non-coding mRNA and diseases
by integrating a variety of data. Though CBP-JMF is efficient
to uncover CBPs by integrating multi-omics data, CBP-
JMF must integrate different multi-omics data that have the
same samples. This weakness limits the use of more types
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of data and integrates more information to obtain more
significant results.

CONCLUSIONS

In this article, we develop CBP-JMF, a matrix tri-factorization
and weighted joint integration tool, for detecting CBPs, which
characterize prior disease subtypes and cell groups in Python.
We improve its usability by estimating the parameters, such
as determining the number of features through consensus
clustering. CBP-JMF always gives reference values of all
parameters. In applications, CBP-JMF characterizes the CBPs of
four subtypes of BRCA based on gene and miRNA expression
data from TCGA, and we find the significantly different
functional pathways that characterized luminal B and basal-
like subtypes.
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