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Exploring drug–target interactions by biomedical experiments requires a lot of human,
financial, and material resources. To save time and cost to meet the needs of
the present generation, machine learning methods have been introduced into the
prediction of drug–target interactions. The large amount of available drug and target
data in existing databases, the evolving and innovative computer technologies, and
the inherent characteristics of various types of machine learning have made machine
learning techniques the mainstream method for drug–target interaction prediction
research. In this review, details of the specific applications of machine learning in drug–
target interaction prediction are summarized, the characteristics of each algorithm are
analyzed, and the issues that need to be further addressed and explored for future
research are discussed. The aim of this review is to provide a sound basis for the
construction of high-performance models.
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INTRODUCTION

Tens of thousands of known diseases threatening human health, and new ones are being added
every year. They include emerging diseases (e.g., the currently prevalent COVID-19) and diseases
that have plagued the public for many years and have no cure so far (e.g., Parkinson’s disease and
Alzheimer’s disease) (Xu et al., 2018a, 2019). Rapidly and accurately discovering drugs that can
effectively treat diseases is very important for the development of society. Long cycle and high cost
are common phenomena in current drug development, but these fail to guarantee a high success
rate. Many steps are required from drug development to final marketing, including drug discovery,
preclinical and clinical trials, and marketing approval (Srivastava et al., 2019; Li Z. et al., 2020).
The overall success rate of drug discovery and preclinical studies, which are part of the laboratory
development phase, is approximately 0.05–0.1%, and less than 1% of the candidate compounds are
likely to have the expected effect and proceed to the clinical trial phase. Investigating drug–target
interactions is an important step in the drug discovery process and can improve the success rate
of new drug discovery (Chen et al., 2019; Huang et al., 2020; Zeng et al., 2020b). These not only
signal the need to expend significant resources to find and test candidate compounds one by one
during the drug development phase to confirm that they meet expectations, but also demonstrate
the importance of drug–target interaction prediction in the overall drug development process.
Supplementally, an obvious drawback of biomedical experiment is that it does not allow for rapidly
finding and solving problems, which can be detrimental to the treatment of emerging and highly
infectious diseases. Therefore, machine learning methods have been introduced into the prediction
of drug–target interactions.
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Machine learning, a computer technology for data analysis
designed to build predictive models using datasets, has become
an important means of modern biological research (Xu et al.,
2018b; Yang et al., 2018; Liu et al., 2019, 2020; Tang et al.,
2020; Zeng et al., 2020a). It has become a mainstream technique
for analyzing and solving problems involved in drug–target
interaction prediction studies (Cai et al., 2018; Stephenson et al.,
2019; Zeng et al., 2019; Fu et al., 2020; Wang J. et al., 2020).

THREE FACTORS

The existing data background, powerful toolkits, and current
status and requirements have promoted machine learning to
become the mainstream method of drug–target interaction
prediction.

(1) Existing databases. With the emergence of sequencing
technology, high-throughput technology and computer-aided
drug design method, a large number of proteins have been
sequenced and many compounds have been synthesized. On
the basis of existing related works and accumulated experience,
relevant data has been organized and various databases have
been constructed. Most of the data in these databases are
publicly available and free to download, which provides a good
data foundation for solving drug–target interaction prediction
problems by machine learning. Researchers can collect datasets
from databases that cover different information according to
their needs (Zheng et al., 2019, 2020). Some representative
databases are briefly described here.

UniProt database1: UniProt is supported by many institutions,
and is the most informative and comprehensive protein database
(Consortium, 2015). It consists of five sub-databases: Swiss-Prot,
TrEMBL, UniRef, UniParc, and Proteomes. Each sub-database
has its own unique function. For example, Swiss-Prot is a high-
quality, manually annotated, non-redundant database, in which
protein annotations are derived mainly from the literature or
E-value verification calculation analysis results. Proteomes is a
database that provides proteomic information for species with
fully sequenced genomes.

PubChem database2: PubChem is an open chemistry
database that collects information including chemical structures,
identifiers, physicochemical properties, and biological activities
of chemical molecules (Kim et al., 2016, 2021). It is the world’s
largest database with free access to chemical information, and
currently covers 109 million compounds. PubChem has become
an important chemical information resource for scientists,
students, and the public.

DrugBank database3: As a bioinformatics and
cheminformatics resource, DrugBank combines detailed
drug data (i.e., chemical, pharmacological, and pharmaceutical)
with comprehensive target information (i.e., sequence, structure,
and pathway) (Wishart et al., 2018). The latest DrugBank release
(version 5.1.8.) contains 14,443 drug molecules and 5,244 non-
redundant protein sequences associated with these drugs. The

1https://www.uniprot.org/
2https://pubchem.ncbi.nlm.nih.gov/
3https://go.drugbank.com/

database describes not only clinical information on drugs, namely
drug side effects and drug–drug interactions, but also contains
molecular-level data, such as chemical structures of drugs and
proteins targeted by drugs (Wishart et al., 2008). One significant
function of DrugBank is that it supports comprehensive and
complex searches, so it is used widely by the pharmaceutical
industry, medicinal chemists, pharmacists, physicians, students,
and the general public.

KEGG database4: KEGG was established in 1995 by the
Kanehisa Laboratories at the Bioinformatics Center, Kyoto
University, Japan, and is now one of the most commonly
used international bioinformatics databases (Kanehisa and Goto,
2000). KEGG is a database used to understand the high-level
functions and practicability of biological systems from molecular-
level information (Li H. et al., 2020; Wang et al., 2021a)
(especially large-scale molecular datasets generated by genome
sequencing and other high-throughput techniques), of which
the data information can be roughly classified into four major
categories: system information, genetic information, chemical
information, and medical information.

BindingDB database5: BindingDB is a publicly available, web-
accessible database for measuring binding affinity, focusing on
the interactions between proteins considered to be drug targets
and drug-like small molecules (Liu et al., 2007). BindingDB
currently contains 2,114,159 binding data between 8,202 protein
targets and 928,022 small molecules.

(2) Powerful toolkits and web servers. Bioinformatics and
cheminformatics are emerging interdisciplinary fields that use
computers to solve biological and chemical problems. Many
toolkits and web servers have been developed (Zuo et al., 2017;
Zou et al., 2019; Lin et al., 2020; Pang and Liu, 2020; Shao
et al., 2021), which can help to solve problems in drug–target
interaction prediction.

STITCH6: STITCH not only includes experimentally validated
drug–target interaction data, but also integrates predicted drug–
target relationships (Kuhn et al., 2007). This website can clearly
depict the protein–protein interactions, protein–compound
interactions, and the strength of the interactions.

SwissTargetPrediction7: SwissTargetPrediction can estimate
the most likely macromolecule to be targeted by a biologically
active small molecule and count the percentage of each target type
targeted by the small molecule (Gfeller et al., 2014).

RDkit8: RDkit is a powerful python toolkit for chemical
information, which has functions such as acquiring molecule
information from multiple formats, obtaining information about
atoms, bonds, and rings in molecules, generating molecular
descriptors and molecular fingerprints of compounds, and
calculating similarities of compound structures (Landrum, 2013).

OpenChem9: OpenChem is a pytorch-based deep learning
toolkit for computational chemistry and drug design,

4https://www.genome.jp/kegg/
5https://www.bindingdb.org/bind/index.jsp
6http://stitch.embl.de/
7http://www.swisstargetprediction.ch/
8https://www.rdkit.org/
9https://mariewelt.github.io/OpenChem/html/index.html
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which contains Feature2Label, Smiles2Label, Graph2Label,
SiameseModel, GenerativeRNN, and MolecularRNN
(Korshunova et al., 2021). Users can train predictive models for
classification, regression, and multi-task problems, and develop
generative models for generating novel molecules with optimized
properties. Its goal is to make deep learning an easy-to-use tool
for researchers in computational chemistry and drug design.

iFeature10: iFeature is a python toolkit that can compute
various structural and physicochemical property descriptors
from protein and peptide sequences. iFeature can compute and
extract comprehensive spectra for 18 major sequence coding
schemes, including 53 different types of feature descriptors. In
addition, iFeature integrates 12 different types of commonly
used feature clustering, selection, and dimensionality reduction
algorithms (Chen et al., 2018).

Pse-in-one11: Pse-in-one is a python toolkit that generates
all possible pseudo-components of DNA, RNA, and protein
sequences. It covers a total of 28 different patterns, 14 for DNA
sequences, 6 for RNA sequences, and 8 for protein sequences (Liu
et al., 2015, 2017). This toolkit is widely and increasingly used by
researchers to tackle various problems in computational biology,
and a more specific and detailed version BioSeq-Analysis (Liu,
2019) has recently been released.

(3) Current status and requirements. With the development
of high-throughput technologies, many compounds and proteins
have been mined. The human genome contains more than
20,000 genes, and approximately 80% of them can encode
one or more proteins. Only a small number of proteins
have been identified as pharmacologically active and are
targets for currently approved drugs. The pharmacological
functions of most proteins remain to be demonstrated. This
is also true for most compounds. For example, there are
currently 111 million compounds in the PubChem database,
but proteins that could interact with many of these compounds
are unknown. In addition, it is obvious that the traditional
approach of wet experiments is not feasible for some emerging,
highly infectious and destructive new pathogens, such as the
SARS, H7N9, Ebola, Mers, and COVID-19 viruses (Cheng
et al., 2021). Considering the huge amounts of available
data and large numbers of diseases that cause serious social
health risks, using computational chemistry-related theories
and computer simulation methods to computationally predict
drug–target interaction can effectively improve efficiency.
Machine learning-based methods have become effective ways
to compensate for the shortcomings of traditional biochemical
experimental methods.

APPLICATIONS

The current drug–target interaction prediction procedures are
shown in Figure 1. Existing studies on drug–target interaction
prediction have shown that using different calculation or
optimization methods in the steps of data set acquisition, feature

10https://ifeature.erc.monash.edu/
11http://bioinformatics.hitsz.edu.cn/Pse-in-One/

extraction and processing, and task algorithm selection can build
models with good performance.

(1) Dataset acquisition. Redundant data, unbalanced
categories, and unrepresentative samples can lead to long
experimental cycles, as well as inaccurate and biased experimental
results. Different data acquisition methods have been used to
avoid or reduce the impact of these problems on model
construction. For example, Wang et al. (2010) collected negative
examples by random selection to solve the data imbalance
problem. Wang et al. (2018) also used random selection to
extract negative examples, and this operation was performed
five times to reduce the impact of the unverified negative
samples. Pdti-EssB (Mahmud et al., 2020) used random under-
sampling and under-sampling clustering to address the data
imbalance problem.

Currently, most target molecules are proteins, of which four
protein families [kinases, G protein-coupled receptors (GPCRs),
ion channels, and nuclear receptors] account for 44% of the
target molecules, and 70% of the currently developed drugs are
targeted to these four protein families. Datasets established by
Yamanishi et al. (2008), which contain the interactions between
these four proteins and drugs,have been widely used (Öztürk
et al., 2018; Mahmud et al., 2020). The relevant data can
be downloaded from http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/
drugtarget/. Most of the computational approaches based on
these datasets have focused on binary classification, that is, they
only explore whether a drug can interact with a particular protein.
To further accelerate process and reduce cost, drug–target affinity
has been explored in some studies. Drug–target affinity is a key
property that determines the strength of the interaction between
the small molecule drug and the target. The commonly used
datasets for predicting drug–target affinity are the Kinase (Davis
et al., 2011) and KIBA (Tang et al., 2014) datasets.

(2) Feature extraction and processing. Accurate and
comprehensive descriptions of the biological or chemical
functional information of drugs and targets in numerical
form play an important role in the construction of high-
performance models. Feature extraction of drugs and targets
can be performed from different perspectives (Cheng, 2019;
Zhao T. et al., 2020). For example, iGPCR-Drug (Xiao et al.,
2013) obtains drug features by discrete Fourier transform
of drug molecular fingerprints and extracts GPCR features
according to pseudo amino acid compositions. DrugE-Rank
(Yuan et al., 2016) represents drug features according to general
descriptors and extracts target features according to amino acid
composition, transformation, and distribution. TargetGDrug
(Hu J. et al., 2016) extracts drug features by applying wavelet
transform to drug molecular fingerprints and extracts GPCR
features according to evolutionary information. Ru et al. (2020)
extracted protein features using the distance-based top-n-gram
algorithm and obtained drug features according to general
descriptors. Chemical databases store information in a textual
representation and the simplified molecular input line entry
specification (SMILES) format is a common standard used in
many cheminformatics software. Each SMILES string encodes
structural information that can be used to predict complex
chemical properties, and a large number of machine learning
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FIGURE 1 | Steps for predicting drug-target interactions. The two- and three-dimensional structure diagrams of the drug are from PubChem.

models can extract molecular features of compounds according
to SMILES strings. Recently, convolutional neural networks
(CNNs) and recurrent neural networks have been used for
molecular feature extraction. Hirohara et al. (2018) transformed
SMILES strings into two-dimensional matrices and used CNNs
to extract molecular features. Goh et al. (2017) applied natural
language processing to SMILES feature extraction and used
recurrent neural networks for molecular strings.

The presence of invalid or redundant features not only
reduces the accuracy of the experiment result but also lengthens
the experimental period. Low-dimensional and comprehensive
information feature sets are expected. Therefore, a variety of
methods for processing features have been applied to related
rearch (Zou et al., 2016a,b; Guo et al., 2020; Zhang G. et al.,
2020; Zhao X. et al., 2020). For example, to reduce the noise
between features, Li et al. (2017) used principal component
analysis (PCA) to reduce the dimensionality of drugs and targets
features. Tabei et al. (2012) combined 881 substructures of drugs
and 876 Pfam domain structures of targets by tensor product
to form feature vectors of drug–target pairs. MFDR (Hu P.-W.
et al., 2016) used autoencoders as the building blocks of a deep
network to reconstruct drug and protein features into a low-
dimensional new representation. DeepConv-DT (Lee et al., 2019)
used CNNs on raw protein sequences to capture local amino acid

residue information by convolving amino acid subsequences of
various lengths.

(3) Selection of task algorithms. Several task algorithms
have been used for drug–target interaction prediction, such as
classification algorithms, learning to rank algorithms, and deep
learning algorithms (Cheng et al., 2019; Lv et al., 2019; Tao et al.,
2020; Zhang Y. et al., 2020).

Most of the existing studies treat drug–target interaction
prediction as binary tasks, and different classification algorithms
have been applied. For example, Bleakley and Yamanishi (2009)
proposed a bipartite local model (BLM) based on a support vector
machine (SVM) kernel to predict drug–target relationships. LRF-
DTI (Shi et al., 2019) is a drug–target interaction prediction
method using Lasso for feature extraction and random forest for
classification. Yamanishi et al. (2010) used a distance learning
algorithm as a classifier. Pred-binding (Shar et al., 2016) extracted
molecular structure and protein sequence features, and used
support vector machines and random forests to classify whether
drugs and targets can be docked.

Drug–target interaction prediction can be regarded as a
ranking task. Exploring the strength of drug–target interactions
can shorten the drug development process and save expenses.
Zhang et al. (2015) applied six learning to rank algorithms
(Prank, RankNet, RankBoost, SVMRank, AdaRank, and ListNet)
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to virtual screening of drugs,their study showed that learning
to rank is an effective computational strategy, especially
because of its novel use in cross-target virtual screening and
heterogeneous data integration. DrugE-Rank (Yuan et al., 2016)
used protein amino acid composition, transformation and
distribution information, compound descriptor information, and
output information of six classifiers as features to be input into
the learning to ranking algorithm to improve the performance of
drug-target interaction prediction.

Neural networks have also been used to solve related problems
in the prediction of drug–target interactions. Prado-Prado et al.
(2011) used the entropy information of drug–protein complexes
and neural networks to predict drug–target affinity values.
DeepDTA (Öztürk et al., 2018) proposed a deep-learning based
model that used only sequence information of both targets and
drugs, One novel approach used in this work is the modeling
of protein sequences and compound 1D representations with
CNNs. GraphDTA (Nguyen et al., 2019) focused on the fact
that molecules are by nature formed by chemical bonding of
atoms, and used graph convolutional network to learn drug-
target binding affinity.

DISCUSSION

Under the background of the existing chemical and biological
computing theory, big data and rapid development of computer
technology, the use of machine learning for drug-target
interaction prediction does have many benefits, but there are still
some problems that need to be further explored.

(1) Data heterogeneity. Most of the existing studies are based
on publicly available data in databases that collect data with
different focuses, and each database has its own criteria for
judging the data. Drugs, targets, and related data from different
databases often have different terminological descriptions and
different organization structures, such inconsistencies make data
integration difficult.

(2) Effective representation of biological and chemical
features. Feature engineering is a key concern in building
machine learning models. There are often technical difficulties
in how to effectively extract key features and how to deal with
data with high dimensionality. Existing studies have shown that
the features of proteins and drugs can be extracted from a
variety of angles, and the combination of information from
these angles can achieve complementary effects. Most drug–
target interaction prediction studies only extract relatively one-
sided information, and do not comprehensively consider the
information from multiple perspectives. In addition, most studies
have focused on extracting drug molecule and protein features
separately, ignoring the potentially valid association that may
exist between drug and target. Moreover, the direct concatenation
of biologically unrelated features may lead to a decrease in
prediction accuracy.

(3) Characteristics of task algorithms. The classification,
ranking, or deep learning methods used in drug–target
interaction prediction all have their own characteristics. Different
computational approaches can be used to solve different

problems in drug–target interaction prediction, however, these
algorithms also have shortcomings. Classification is the simplest
and most understandable task. However, there is an obvious
and long-standing defect in this task that it is necessary to
collect negative samples. Most existing classification studies
take experimentally validated drug–target pairs with known
interactions as positive samples, and unvalidated or unknown
drug–target pairs as negative examples. Among these negative
examples, there may be positive samples that have not been
accurately validated, the performance of a model that is based on
such a dataset will be biased.

On the basis of the existence of one-to-many or many-to-
many relationships between queries and documents, learning
to rank can be used in multi-target drug discovery. Early drug
development followed the “one drug, one target” principle,
with the aim of finding high-affinity, high-selective drugs
for a specific receptor associated with a particular disease.
However, the number of complex diseases is increasing and
the proteins associated with these diseases are not limited
to one, therefore drug combinations are used to achieve the
optimal therapeutic effect. Clinical pharmacology studies have
shown that drug combinations greatly increase the incidence
of adverse drug reactions, but because of the lack of multi-
target drugs, such risks have to be taken. Multi-target drugs are
undoubtedly an important area for future research. Therefore,
using the characteristics of learning to rank to tackle the
multi-target problem of drugs deserves to be explored further.
Learning to rank was originally applied for information retrieval.
Its output is a relative score of correlation between queries
and documents (Cheng, 2020; Ru et al., 2021). This is not
sufficient for studies that require accurate prediction of drug–
target affinities.

The use of neural networks for predicting accurate drug–target
affinity values has shown great potential in this research area.
Neural networks can fuse drug and target features, which have
changed the current situation of simple concatenation or tensor
products of drug and target features. Deep learning contains
more neural network structures with multiple implicit layers
compared with traditional machine learning, which allows deep
learning to handle large datasets and identify complex patterns
from the learning process. But for the same reason, neural
networks require much more execution time than classification
or ranking algorithms. It will lead to overfitting when the drug
and target feature dimensions are high.

Although existing machine learning methods have opened a
new area in drug–target interaction prediction, they have not
achieved satisfactory results so far. Therefore, there is still a
need to develop new theoretical and computational methods for
drug–target interaction prediction.

CONCLUSION

Drug–target interaction prediction can help to screen out
unsuitable compounds and is an important step in the
development of new drugs. In this review, we describe the
importance of drug–target interaction prediction, analyze in
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detail the three main reasons why machine learning has become
a mainstream technique, summarize the specific applications of
machine learning methods in each step of building machine
learning models, analyze the shortcomings of existing research
methods, and discuss several aspects that can be further explored
(Wei et al., 2014, 2017a,b, 2018, 2019; Ding et al., 2017, 2019,
2020a,b; Jin Q. et al., 2019; Jin S. et al., 2019; Li J. et al., 2020;
Su et al., 2020; Wang H. et al., 2020; Zeng et al., 2020c,d; Zhai
et al., 2020; Wang et al., 2021b). This review provides meaningful
perspectives for future drug–target interaction prediction studies,
especially the application of learning to rank to deal with multi-
target drug problems.
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