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The Nat/HT exchangers (NHXs) are a class of transporters involved in ion balance
during plant growth and abiotic stress. We performed systematic bioinformatic
identification and expression-characteristic analysis of CaNHX genes in pepper to
provide a theoretical basis for pepper breeding and practical production. At the whole-
genome level, the members of the CaNHX gene family of cultivated and wild pepper
were systematically identified using bioinformatics methods. Sequence alignment and
phylogenetic tree construction were performed using MEGA X software, and the gene
functional domain, conserved motif, and gene structure were analyzed and visualized.
At the same time, the co-expression network of CaNHX genes was analyzed, and
salt-stress analysis and fluorescence quantitative verification of the Zunla-1 cultivar
under stress conditions were performed. A total of 9 CaNHX genes were identified,
which have typical functional domains of the Na*t/H* exchanger gene. The physical
and chemical properties of the protein showed that the protein was hydrophilic, with
a size of 503-1146 amino acids. Analysis of the gene structure showed that ChrO8
was the most localized chromosome, with 8-24 exons. Cis-acting element analysis
showed that it mainly contains cis-acting elements such as light response, salicylic
acid response, defense, and stress response. Transcriptom and co-expression network
analysis showed that under stress, the co-expressed genes of CaNHX genes in roots
and leaves were more obvious than those in the control group, including ABA, IAA, and
salt. The transcriptome and co-expression were verified by gRT-PCR. In this study, the
CalNHX genes were identified at the genome level of pepper, which provides a theoretical
foundation for improving the stress resistance, production, development, and utilization
of pepper in genetic breeding.
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INTRODUCTION

Pepper (Capsicum annuum L.), also known variously as
capsicum, chili pepper, chile, and chili, is an annual or perennial
plant belonging to the Solanaceae family. It is one of the
most important vegetable crops in the world (Qin et al.,, 2015).
Capsicum species were first introduced into China during the
Ming Dynasty and today, China has the largest planting area and
fresh yield in the world (FAO).! It is an important cash crop with
many varieties, and is considered also of ornamental value, with
considerable genetic diversity for research purposes and breeding
(Zhang et al., 2016). Many varieties—including Zunla-1, Yunnan
Xiaomi Spicy, and Hainan Bell Pepper—are widely planted in
China, and their market share is increasing every year.

Peppers contain many substances of nutritional value
including vitamin C and vitamin A. The fruits are not only used
for food seasoning, but also in the production of food pigments,
medicine, and industrial chemicals (Kantar et al., 2016). In
medicine, it is widely used for multiple functions, including
antibiosis and the prevention and treatment of disease (Saleh
et al., 2018). Three pepper genomes (Zunla-1, Chiltepin, and
CM334) have been completely sequenced, and with continuing
re-sequencing, transcriptome sequencing, and metabolomics
based on the whole genome, an increasing amount of genetic
data of various pepper varieties has been mined (Kim et al,
2014; Qin et al.,, 2014). A key component of peppers is their
capsaicin. Peppers produced in northwest China contain higher
capsaicin and heme levels, due to the dry climate, low rainfall,
high solar radiation, and wide temperature difference between
day and night (Liu et al.,, 2012). This study examines how the
nutritional content and capsaicin levels in peppers change when
Capsicum is stressed by its growing environment. Under drought
conditions, the capsaicin content in pepper can be reduced; under
certain salt conditions, a significantly higher concentration of salt
can promote the yield of capsaicin compared with control and
low-salt pepper growth, and photosynthetic efficiency does not
necessarily increase with salt (Sarah et al., 2012; Khan et al., 2014).

Plant growth and development depend strongly on
environmental factors, such as cold and heat, drought, soil
salinity and alkalinity, and other abiotic stresses. When plants
are under stress, including some major cash crops, the external
environment directly affects plant production. Salt stress is one of
the most serious abiotic stresses affecting plant productivity and
causes significant crop loss worldwide (Zhang et al., 2018). When
plants are in a saline-alkaline soil environment, their ion balance
and water balance change significantly. A change in membrane
permeability destroys the normal operation of transporters,
causing plants to absorb additional sodium ions from the
environment, affecting the absorption of other ions and causing
nutritional imbalance. Nat/H™ antiporters play a key role in
plant development and tolerance to salt stress (Akram et al.,
2020). In response to the external influence on plants, the ions
and water in plants are balanced through their own ion channels.
In general, the cytoplasmic pH value is above neutral (pH
7.2-7.6), which is controlled by an array of regulating molecules

Uhttp://www.fao.org/

such as Nat/K" transporters, cation/proton exchangers like
Ca?*/H*, sodium-proton antiporters (NHX), proton/nutrient
transporters, and H*-translocating enzymes (Ben¢ina et al.,
2009). Studies indicate that NHX antiporters are involved in
regulating the ion balance in plants under salt stress. Their
primary physiological functions are the regulation of cytoplasmic
pH and expulsion of HT generated during metabolism, in
exchange for transporting Nat or K ions into the cytoplasm
and vacuoles of plants and animals (Pedersen et al., 2006). This
indicates that studying the salt-tolerance mechanism of plants
can improve the growth of plants under salt and alkali stress.
Human HsNHE was the first eukaryotic sodium-hydrogen
exchanger gene to be identified and cloned, and functions
in transport, Nat/HT exchange, and pH regulation (Sardet
et al., 1989). The first NHX gene identified in plants was the
AtNHX1 gene from Arabidopsis thaliana, and the expression
of this gene can regulate NaCl in A. thaliana and is a salt-
tolerance determiner (Gaxiola et al., 1999; Yokoi et al., 2002;
Rodriguez-Rosales et al., 2009). Eight NHX genes were identified
in A. thaliana, among which AtNHXI and AtNHX2 were most
common in the buds and roots of seedlings, while AtNHX5
mRNA was expressed in lower abundance in both buds and
roots. AtNHX3 was detected in roots, while AtNHX4 and
AtNHX6 mRNA were only detected by RT-PCR (Yokoi et al,
2002). To date, NHX genes of several plant species have been
identified, such as Vitis vinifera (6 VWNHX genes) (Ayadi et al.,
2020), Medicago truncatula (MtNHX1- MtNHX8) (Sandhu et al,,
2018), Populus trichocarpa (PtNHX1- PtNHXS8) (Tian et al,
2017), Populus euphratica (PeNHX1- PeNHX6) (Ye et al., 2009),
Gossypium hirsutum (GhNHXI1- GhNHX23) (Fu et al,, 2020),
Morus alba (MaNHX1- MaNHX7) (Cao et al., 2016), and Beta
vulgaris (BvNHX1- BvNHX5) (Wu et al, 2019). This study
performed different bioinformatic analyses of CaNHX genes in
cultivated and wild peppers, and the CaNHX gene family of
pepper was identified at the genome level, providing a theoretical
basis for analyzing the function of the gene under salt stress.

MATERIALS AND METHODS
Material and RNA Extraction

In this study, the whole genome data of pepper (C. annuum
L. Zunla-1 is hereinafter referred to as pepper) and C. annuum
var. glabriusculum Chiltepin were taken as the research object.?
Zunla-1 pepper material was planted in the greenhouse of
the Department of modern agriculture, Zunyi vocational and
technical college (Zunyi, Guizhou, 107°045 ’E, 27°710’ N). The
pepper was treated with 100 Mmol NaCl for 3, 6, 12, 24, and
72 h. The root material of pepper was stored in liquid nitrogen,
and 3 samples were taken at each time point as biological
replicates. RNA was extracted from the collected samples using
the TianGene RNA Extraction Kit (DP432, Beijing, China).
We then added root material with a weight of 50-100 ng
for aseptic freezing grinding; 450 pL for oscillation mixing.
This was transferred to the CS filter column and centrifuged

Zhttp://peppersequence.genomics.cn
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for 3 min (12,000 rpm). The supernatant was transferred
from the collection tube with a pipette gun to the Rnase-free
centrifuge tube. Then, the supernatant was added and 0.5 times
of anhydrous ethanol was mixed into the centrifuge tube and
then transferred to the adsorption column CR3 for centrifugation
for 30 s (12,000 rpm). A drop of 80 pl DNase I was added to
the center of the collecting tube and left at room temperature
for 15 min. 250 pL of protein-removing solution RW1 was
added to the adsorption column CR3, and left to stand at
room temperature for 2 min, before being centrifuged for 30
s (12,000 rpm) (this procedure was repeated once). We then
took an enzyme-free centrifuge tube and placed the adsorption
column in a new centrifuge tube for several minutes (until the
rinsing solution RW was dried). 50 pL Rnase-free ddH,O was
then vertically added to the adsorption column, and the obtained
RNA was stored at -80°C for later use.

Identification of the CaNHX Gene in

Pepper

C. annuum cv. CM334, C. chinense P1159236, C. annuum
cv. ECW, C. annuum SF and C. baccatum PBC81 genomes
come from PGP (Pepper Genome Platform).” Cuneo, Corno
di Carmagnola, Quadrato di Carmagnola, and Tumaticot
genomes comes from RisEPP (Resequencing Piedmontese
Pepper Ecotypes).* According to the characteristics of the NHX
gene family in Pfam’® data, there is an obvious conservative
structure of the NHX gene family (PF00999) (El-Gebali et al.,
2018). The genome-wide protein sequence of capsicum was
searched by HMMER V3.3 software and verified with the
Hmmer web server,® and the sequences with the incomplete
conservative structure were removed. meanwhile, the AtNHX
gene of A. thaliana was used for blast comparison, and the
E-value was maintained at 1le=2° for comparison. Selecting the
intersection of HMMER identification and BLAST alignment, 9
candidate genes of CaNHX were finally identified for subsequent
analysis (Potter et al., 2018). The physicochemical properties
of the pepper CaNHX protein were analyzed using the online
tool ExPASy’ (Artimo et al., 2012). Prediction of Plant-mPLoc
by subcellular localization of the CaNHX gene in pepper was
performed using online tools® (Chou and Shen, 2010).

Analysis of Phylogeny and

Characteristics of the CaNHX Genes
Family

MEGA X was used to perform multiple sequence alignment
analysis on the obtained 9 pepper NHX protein sequences
obtained, and the phylogenetic tree (neighbor-joining,
bootstrap = 1,000) was constructed, and other parameters
were left at default settings (Kumar et al., 2018). The online

Shttp://pepper.snu.ac.kr/
“https://www.pepper-genomics.unito.it/
Shttp://pfam.xfam.org/
Chttps://www.ebi.ac.uk/Tools/hmmer/
"https://web.expasy.org/protparam/
Shttp://www.csbio.sjtu.edu.cn/bioinf/plant-multi/

tool Itol’ was used for the presentation and form of the pepper
NHX phylogenetic tree (Letunic and Bork, 2019). The batch
CD-search' tool in NCBI was used to visually analyze the NHX
gene structure of the NHX gene. The online tool GSDS" was
used for the visualization of pepper NHX gene structure (Hu
etal,, 2014). The online sequence analysis tool MEME Suite'* was
used for motif analysis, with the motif number set at 10 (Bailey
et al., 2009). Collinearity analysis of pepper was performed by
BLAST for whole-genome protein levels, and the MCScanX tool
was used for collinearity analysis (Wang et al., 2012). TBtools
were used for the visualization of gene structure, motifs, and
collinearity results (Chen et al., 2020).

Ka/Ks and Promoter Analysis of the

CaNHX Genes Family

Using BLAST to build a pepper comparison database, and the
KaKs Calculator tool to calculate the synonymous substitution
rate and nonsensical substitution rate of pepper CaNHX genes,
the K,/K; ratio of genes was obtained, and evolutionary pressure
was analyzed (Wang et al, 2010). The upstream 2,000 bp
sequences of NHX genes were compared and extracted using
the Bedtools genome analysis tool.” The upstream 2,000 bp
sequence was predicted and analyzed using the online tool
PlantCARE." Visualization was performed with TBtools, the
main action components were discussed (Lescot et al., 2002;
Quinlan and Hall, 2010).

Expression Model and Coexpression
Analysis

Transcription factors (TFs) in the C. annuum genome were
identified using the online iTAK Plant Transcription factor and
Protein Kinase Identifier and Classifier (Zheng et al., 2016). The
expression data' obtained from pepper informatic hub were
analyzed using temporal and spatial expression patterns and co-
expression network associations. The root and leaf tissues of
the CM334 pepper cultivar were used for transcriptome and
metabolomic analysis, with a total of 574 transcriptome data
points. The co-expression results were visualized using Cytoscape
3.7.2 (Liu et al., 2017; Otasek et al., 2019).

cDNA Synthesis and Quantitative

RT-PCR Analysis

The First Strand of RNA was synthesized using the Revertaid
First Strand cDNA Synthesis Kit (K1622) from Thermo Field
(RevertAid First Strand cDNA Synthesis Kit). The fluorescent
quantitative primer Actin (GenBank: DQ832719) and Ubiquitin
(GenBank: AY496112) were designed by Primer3plus software
as the housekeeping gene (Supplementary Table 1). The

“http://itol.embl.de/

https://www.ncbi.nlm.nih.gov/cdd/
http://gsds.gao-lab.org/

http://meme-suite.org/
Bhttps://github.com/arq5x/bedtools2
Yhttp://bioinformatics.psb.ugent.be/webtools/plantcare/html/
Yhttp://pepperhub.hzau.edu.cn/
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fluorescence quantitative instrument for 15 samples was 96 Real-
time qTOWER3.0 (Analytikjena, Germany), The fluorescence
quantitative reaction system consisted of 10 wL SYBR Primix
Ex Taq TM II (ZomBio, Beijing, China), and the upstream and
downstream primers of each gene were 1 pL. And ddH2O to 20
pL. The PCR reaction procedure was 95°C for 30 s;95°C for 15
$;60°C for 30 s; and 72°C for 1 min, for 40 cycles. The quantitative
RT-PCR results were analyzed using the 2722 ¢t method (Livak
and Schmittgen, 2001). GraphPad Prism v8 was used to visualize
the fluorescence quantitative results.

RESULTS

Identification and Physicochemical
Properties of CaNHX Gene Family

According to the characteristics of the NHX gene family in
the Pfam database, it contains Na_H_Exchanger (PF00999)
functional domain. First, a total of 42 NHX genes were identified
in pepper by the Hmmsearch identification method. Then, 8
AtNHX genes of A. thaliana were compared with the pepper
genome by the BLASTP method. Combined with the two
identification methods, the incomplete genes were removed by
using the Hmmer online website. Nine NHX genes were obtained
for subsequent analysis. These 9 CaNHX genes sequences were
used for subsequent analysis and named CaNHX1-CaNHX9 in
turn (Supplementary Table 2 and Table 1). The physical and
chemical properties of the protein showed that the size was
360-1181 aa, the molecular weight was 398.06-129.91 kDa, the
isoelectric value was 5.44-8.79, GRAVY was less than 1, and it
was a hydrophilic protein. After subcellular localization of pepper
CaNHX gene, it was found that the subcellular localization of
CaNHX2 and CaNHX4 was in the Cell membrane, and the other
7 subcellular localization were all in Vacuole.

Phylogeny Analysis of CaNHX Genes
With Different Species

The 9 CaNHX genes in C. annuum identified were compared
with 8 AfNHXs in A. thaliana, 12 GmNHXs in Glycine max, 8
PtNHXs in P. trichocarpa, 8 VVNHXs in V. vinifera, 7 OsNHXs in
O. sativa, 7 ZmNHXs in Zea mays (Figure 1 and Supplementary
Table 3). According to the phylogenetic tree, NHX genes were
divided into three subgroups, among which subgroup I contained

the most genes. Subgroup I and Subgroup III contain four genes,
respectively, while subgroup II contains only one gene.

Gene Structure and Conserved
Sequence of CaNHX Genes

The NHX gene subfamily classification, gene structure, and
motif analysis maps show the characteristics of A. thaliana and
pepper gene families (Figure 2). Using TBtools to analyze the
gene structure of 17 NHX genes family members in pepper and
A. thaliana, the results showed that the exon number of the
CaNHX gene family was mainly distributed between 8 and 24,
while that of AtNHX gene family members in A. thaliana was
between 12 and 23, among which the exon number of Class I
subgroup was stable between 12 and 14, while the exon number
of Class III was the largest. The NHX protein sequences of
C. annuum and A. thaliana were analyzed by MEME web tool.
According to the distribution of motif of CaNHX genes family
members, the motif number is consistent with the phylogenetic
tree. For example, in the Class I subfamily, there are 5 motif
sequences, which are motif f1, motif2, motif5, motif6, and motif7.
It is consistent with the phylogenetic tree classification of the
Class I subgroup. The motif of the CaNHX gene in the Class II
subfamily all contained motif8 and motif9, of which CaNHX8
was the one with the least motif number. In the Class III
subfamily, the motif number of CaNHX1, CaNHX3, CaNHXG6,
and CaNHX7 remained at 7-8, of which motif8 and motif9
did not exist in the Class III subfamily. Motif7 is a typical
amiloride-binding site (LFFIYLPPI), which is a motif contained
in the genes of salt-tolerant plants and transgenic NHX plants,
and contains the motif in CaNHX2, CaNHX3, CaNHX4, and
CaNHXS5 (Figures 2, 3).

Chromosome Localization, Collinearity
Analysis, and Ka/Ks Analysis

Through identification, 9 were identified in cultivated pepper
(Zunla-1) and 6 were identified in wild pepper (Chiltepin)
(Supplementary Tables 5, 6). According to the gene sequence,
9 CaNHX gene sequences were mapped to 5 chromosomes,
among which one was a simulated chromosome (not assembled
to chromosome), 3 CaNHX genes were mapped to Chr08,
but 2 genes were not mapped to the chromosome, and the
other chromosomes Chr01, Chr05, Chr06, and Chr10 were all

TABLE 1 | Family information and subcellular localization of CaNHX gene in pepper.

Gene_id Gene_name Chr aa Kd pl GRAVY Sub. localization
Capana01g003109 CaNHX1 Chr01 511 56256.55 6.56 0.474 Vacuole
Capana05g000031 CaNHX2 Chr05 947 104045.39 5.44 0.242 Cell membrane.
Capana0d6g003039 CaNHX3 Chr06 527 58411.65 8.79 0.524 Vacuole
Capana08g000122 CaNHX4 Chr08 1181 129915.14 6.26 0.090 Cell membrane
Capana08g000123 CaNHX5 Chr08 624 67507.96 7.62 0.619 Vacuole
Capana08g001332 CaNHX6 Chr08 482 53412.57 6.45 0.590 Vacuole
Capanal0g000166 CaNHX7 Chr10 512 57296.70 8.59 0.452 Vacuole
Capana00g000346 CaNHX8 Chr00 459 51409.16 6.36 0.000 Vacuole
Capana00g004012 CaNHX9 Chr00 360 39805.86 6.63 0.720 Vacuole
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FIGURE 3 | Sequence alignment of CaNHX Gene in pepper.

one CaNHX gene (Figure 4). To study the whole genome wild-type Chr00 on Zunla-1 chromosome Chr10. Among them,
duplication (WGD) event, 42 cultivars were identified (Contains ~CaNHX1, CaNHX5, and CaNHX8 have no collinearity block
the confirmed 9 CaNHX genes) by Hmmsearch in cultivated relationship, while CaNHX2, CaNHX3, and CaNHX9 also have
pepper and 37 cultivars identified by hmmsearch in wild pepper  collinearity, but their chromosomal positions do not change.
were analyzed together (Supplementary Table 3). There are more  The results indicated that the cultivated pepper Zunla-1 and
collinearity relationships among the 9 pepper genes identified, the wild pepper were from the same ancestor, and there was a
among which CaNHX4 and CaNHX6 are on Chr08 of Zunla-  certain gene replication event. At the same time, we performed
1, while the collinearity block of this gene is on wild type collinearity analysis on the genome of pepper varieties with
Chr01. There is a collinearity block between CaNHX7 and Zunla-land other pepper genomes, including Chiltepin, Corno,
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FIGURE 4 | Chromosome location and collinearity analysis of CaNHX genes in pepper.

Cuneo, Quadrato, tumaticot, CM334, ECW, PBC81, and SF
(Figure 5). The collinearity analysis between Zunla-1 and Corno,
Cuneo, Quadrato, and Tumaticot showed that the chromosomal
position relationship of Corno, Cuneo, Quadrato, and Tumaticot
was the same. The results showed that the four pepper varieties
were derived from the same ancestor and had less variation
during the species evolution. However, the position relationship
between the four pepper varieties and Zunla-1 changed greatly,
which indicated that they had a far evolutionary relationship
with more variation. Zunla-1 showed significant variation with
Chiltepin, CM334, ECW, PBC81, and SF, and the changes of gene
position were obvious, indicating that Zunla-1 was far related
to the other five varieties of pepper. Three pairs of homologous
loci were obtained by analyzing the Ka/Ks ratio of the CaNHX
gene, and their Ka/Ks were less than one, indicating that the gene

was mainly purified during the evolution of the CaNHX gene in
pepper (Table 2).

Promoter Analysis of C. annuum CaNHX

Genes
By analyzing the upstream 2,000 bp sequence of the CaNHX

genes, the cis-acting elements of the gene were predicted.
In addition to a large number of basic elements—CAAT-
box and TATA-box—there are also G-Box, GAG-motif, chs-
CMA1la, TCT-motif, GATA-motif, GT1-motif, and AE-box in
the CaNHX gene family, and TCA-elements in the salicylic
acid reaction. Also present were cis-acting elements, TC-rich
repeats, meristem expression elements, CAT-box, MYB binding
site elements, MBS, MeJA response elements, GCTCA-motif,
auxin response elements, TGA-elements, etc. (Figure 6 and
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Supplementary Table 7). The analysis showed that CaNHXs may
be regulated by such things as light and salicylic acid, and
may participate in defense mechanisms through these cis-acting
elements, thus playing a role in protecting plant growth.

Co-expression Network of CaNHX Gene

Under Stress Treatment

According to established methods, the co-expression network
related to the CaNHX gene was extracted. Under stress, 10 groups
of data were obtained: ABA, TAA, GA3, SA, JA, sodium chloride,
mannitol, hydrogen peroxide, heat stress, cold stress, plus control
groups. The co-expressed gene of the CaNHX gene was extracted
by script, and the co-expressed gene related to the NHX gene
under stress was obtained (Figure 7 and Supplementary Table 8).
According to the co-expression network, in the control group,
the genes co-expressed with the NHX gene contained fewer
co-expression network genes than the other 10 groups, among
which ABA, TAA, GA3, and mannitol were the most abundant.
The number of co-expression genes was the highest under heat

TABLE 2 | Nucleotide substitution rate of Pepper CaNHX gene.

Collateral Non-synonymous Synonymous Selective
homologous gene substitution rate substitution rate  pressure ratio
site (Ka) (Ks) (Ka/Ks)
CaNHX1-CaNHX6 0.201701088 2.493573377 0.080888371
CaNHX2-CaNHX8 0.026980027 0.041710828 0.646835085
CaNHX4-CaNHX5 0.155507334 0.327196446 0.475272076

stress and cold stress, but other co-expression genes were also
present under NaCl stress. Under salt stress, a total of 4 CaNHX
genes were co-expressed with transcription factors, among which
CaNHX9 co-expressed the most with 11 transcription factors,
followed by CaNHX4 with 7 transcription factors, and CaNHX1
with only 1 NAC co-expressed with CaNHX1 was the least.

Expression Pattern of Pepper NHX
Genes Under Hormone and Abiotic

Stress

The expression profile of the CaNHX gene in pepper was
analyzed using an online database (Figure 8). The results showed
that the expression of CaNHX3, CaNHX4, and CaNHX35 in roots
was upregulated compared with that in leaves during IR (IAA
root stress) and GR (GA3 root stress), while the expression
of CaNHX2, CaNHX6, CaNHX7, CaNHX8, and CaNHX9 was
lower in leaves. Under hormone stress, CaNHXI expression
was upregulated. Under abiotic stress, CaNHX1 and CaNHX9
genes were upregulated in HR (heat root stress), while CaNHX2,
CaNHX3, and CaNHX4 were upregulated in RR (H,O root
stress), FR (cold root stress), and MR (mannitol root stress),
whereas CaNHX5 was upregulated in FL (cold leaf stress),
CaNHX6 was upregulated in HL (heat leaf stress), CaNHX7 was
upregulated in RL (H,O leaf stress), CaNHX7 was upregulated in
RL and CaNHX8 in FL. At the same time, expression analysis of
the CaNHX gene family under salt stress showed that CaNHX1,
CaNHX3, CaNHX4, CaNHX5, and CaNHX9 were upregulated
in roots, and their expression tended to be consistent over time.
CaNHX6, CaNHX7, and CaNHX8 were upregulated in NL (NaCl
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leaf stress), while the root expression of CaNHX2 was higher in
the blank control than in the leaves.

Quantitative RT-PCR Analysis

The pepper at the 6-leaf growth stage was subjected to 100
Mmol salt stress, and the samples at different times (3, 6, 12,
24, and 72 h) were taken for fluorescence quantitative analysis
(Figure 9). Results show that, under salt stress, when processing

CaNHX1, CaNHX2, CaNHX6, CaNHX9 showed a trend of
increased expression, the five time node, CaNHX1, CaNHX?9 two
genes in a state of relative balance, express no obvious floating.
The expression of CaNHX2 and CaNHX6 began to be down-
regulated over time after initial stress treatment and then began to
be up-regulated after 24 h. The expression of CaNHX3, CaNHX4,
CaNHX5, and CaNHX8 genes was less obvious than others.
CaNHX1 with CaNHX9 fluorescence quantitative results agree
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FIGURE 8 | Expression pattern of CaNHX gene in pepper under different stress in root and leaf. (A) Hormonal stress. (B) Abiotic stress. (C) Salt stress.
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with the transcriptome data, in response to salt stress were a
higher expressed state, CaNHX2, CaNHX6, CaNHX7, CaNHX8
increase is not obvious in the transcriptome, which no expression
in fluorescence quantitative CaNHX7 gene, do not make the
same amount in the transcriptome. In conclusion, two genes,
CaNHX1 and CaNHXY, were stably expressed in pepper under
salt stress, which was consistent with transcriptome results. It
was speculated that pepper could adjust its own ion balance by
up-regulating the expression of CaNHX1 and CaNHX?9 genes in
the process of salt stress, so that pepper could adapt itself to the
changes in the environment.

DISCUSSION

NHX Gene Family in Pepper

We identified 9 CaNHX genes in the pepper genome (zunla-1),
6 in C. annuum chiltepin, 9 in C. chinense. P1159236, and 9 in
C. annnuum. Cv.CM334.There were 9 identified in C. nnuum.
Cv. ECW, 10 identified in C. accatum. PBC81, 8 identified in
C. nnuum. SE, 8 identified in Corno, 8 identified in Cuneo,
9 identified in Quadrato, and 8 identified in Tumaticot. The
CaNHX gene was found to contain up to 9 genes in different
varieties of pepper. So far, NHX genes have been identified in
many species, with the most identified in Gossypium hirsutum
and G. barbadense (23 GhNHX and 24 GbNHX, respectively)
(Fu et al., 2020).

However, in subcellular localization, NHX genes can be
classified into three subgroups according to their subcellular
localization according to previous reports which were divided
into three categories, namely Vac-Class, Endo-class, and PM-
class, among which VAC-class is located in Vacuole, Endo-class
in Endoretinal Reticulum, and PM-class in Plasma membrane
(Wu et al,, 2019). Other NHX gene species based on subcellular
localization also include A. thaliana, P. trichocarpa, G. hirsutum,
V. vinifera, Triticum aestivum, Oryza sativa, Sorghum bicolor,
Cucurbita maxima, Solanum lycopersicum, Panicum virgatum,
Eutrema halophilum,Spinacia oleracea, and Hordeum vulgare.
According to the classification of grapes by Ayadi et al. (2020) the

VWNHX genes of grapes are divided into two categories, namely
Group I Vacuolar (VwWNHXI-VvNHX5) and Group II Endosomal
(VWNHX6). However, CaNHX genes in pepper are not classified
according to their subcellular location. CaNHX2 and CaNHX4
are located in the Cell membrane, while the other subcellular
locations of CaNHX gene family members are located in Vacuole.
There is no PM-Class and Endo-class in pepper, which is quite
different from previous studies.

The CaNHX gene in Zunla-1 can be divided into three
subfamilies, namely Class I, Class II, and Class III. In the
identified NHX gene families, NHX contains a complete
functional domain. These CaNHX genes can be divided into
3 categories, which are the same as A. thaliana, beet, and
other plants reported by predecessors (Wu et al, 2019). In
addition to CaNHX7, CaNHX8, and CaNHX9, the other six
genes also have the typical amilorid-binding site of the NHX
gene (FFI/LY/FLLPPI), but this structure does not exist in the
Class II subgroup. At the same time, the intermediate residues
LF/AV/TY, LF in Class I, LA in Class II, and IY in Class III, PgNHX
gene also had the same motif and residues in pomegranate. Not
only pepper but also A. thaliana had an NHX gene without
an amiloride-binding site (Counillon et al., 1993; Dong et al,,
2021). In the wheat TaNHX gene, it was found that under salt
stress, the expression of TaNHX2 and TaNHX3 genes were higher
in leaves and roots, and the expression of TaNHXI was higher
only in roots. All three TaNHX genes contained an amiloride-
binding site (LFFIYLLPPI) (Brini et al., 2005; Yu et al., 2007;
Lu et al,, 2014). It is speculated that the NHX gene containing
an amiloride-binding site is more suitable for the growth of
salinization conditions.

Plants are affected by the external environment during their
growth, such as abiotic stress, drought, high temperature, salt,
and alkali, etc. Transcription is particularly important in the
response of plants to environmental changes. There are many
cis-acting elements in the pepper CaNHX genes family, such as
hormones and stress elements. Studies show that stress-related
elements (such as high temperature, low temperature, drought,
injury, and defense) and hormone-related elements (such as
Auxin, Ethylene, GA, SA, MeJA, and ABA) are identified in the
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promoter of PtNHXs, and there are also cis-acting elements such
as ABA and ABRE in sugar beet, which indicate that they can
pass through during plant growth (Tian et al., 2017; Wu et al,,
2019). In the transcriptional data of pepper, it was found that the
co-expression networks of pepper under biotic and abiotic stress
had higher gene network abundance than those under untreated
conditions. In the co-expression network, CaNHX1, CaNHX3,
CaNHX4, and CaNHX9 were found to be co-expressed with
transcription factors, among which CaNHX3 was co-expressed
with transcription factor WRKY, indicating that the cis-acting
element of CaNHX3 was G-box, which has been found in studies.
The G-box is an element associated with WRKY transcription
factors under stress conditions. CaNHX3 was upregulated in
several periods.

Expression Profiles of NHX Genes in

Pepper

Up to now, the function of the CaNHX gene in pepper has not
been analyzed, and no report on the CaNHX gene in pepper
has been reported. With the transformation of salt-tolerant
transgenic plants, the NHX gene will provide more benefits
for agricultural development in soil salinization. Transgenic
technology has become one of the important ways to obtain salt-
tolerant plants and verify gene function (Dhankher and Foyer,
2018). NHX can improve the salt tolerance of transgenic plants,
and the overexpression of AtNHX5 in rice can improve the
salt tolerance and drought tolerance of transgenic rice, and the
survival rate is higher (Li et al., 2011). SONHXLP can improve
the salt tolerance of tomatoe, and the Na™ level in tomato is
lower, and the Ca** level is higher, compared with wild-type
plants. SONHXLP maintained ion homeostasis in tomato and
alleviated NaCl stress (Kumari et al., 2017). When plants are
subjected to salt stress, due to the lack of NHX expression
to maintain homeostasis, the premature apoptosis of plants is
caused, and the growth of plants is inhibited, thus affecting the
yield of plants. Cao et al. (2011) through the overexpression
of TuNHX2, improve the survival time of transgenic plants,
showing salt tolerance. The number of flowering was more
than that of the control group (Cao et al,, 2011). In recent
years, with the further exploration of the function of NHX, it
has been found that NHX is resistant to cadmium, and the
overexpression of GmNHXI enhances the antioxidant capacity
of plants and reduces the absorption of cadmium (Yang et al.,
2017). It was also found that silencing genes in plants had a
great influence on plant growth and development. Rodriguez-
Rosales et al. (2008) found that tomato seedling growth, fruit,
and seed yield had significant inhibitory effects by silencing
tomato LeNHX2. Overexpression of LeNHX2 can enhance salt
tolerance in plants (Rodriguez-Rosales et al., 2008; Baghour
et al., 2019). In conclusion, overexpression of the NHX gene
can improve ion homeostasis, osmotic regulation, reduce cell
membrane damage, improve photosynthetic capacity, and play
a role in plant protection and yield increase. The CaNHX gene
in pepper has never been published and identified before. This
study can provide theoretical support for research on the salt
tolerance of pepper.

We found that the expression of CaNHXs was mainly
concentrated in roots under hormone stress, while under
abiotic stress, there were up-regulated expressions of CaNHX2,
CaNHX3, and CaNHX4 genes in roots. In the cis-acting elements
of the CaNHX gene family, it was found that CaNHX was
expressed under various hormones and stress. However, under
salt stress, most of the CaNHX genes were up-regulated, which
indicated that CaNHX genes in Pepper could condition its ion
balance by expressing NHX. The function of plant vacuole NHX
antiporter has been identified and expressed in an exogenous
system to enhance the salt tolerance of plants. Akram et al.
(2020) found that the NHX gene was up-regulated under salt
stress, and Yokoi et al. (2002) found that AtNHXI had higher
transcript abundance during salt stress (Yarra, 2019). The results
indicated that the expression of NHX genes responded to salt
stress during plant growth, which played a very important role
in plant growth.

Transcriptome analysis found that the CaNHX gene had
multiple expression patterns under single or multiple stress
conditions. Meanwhile, the fluorescence quantitative verification
in this study showed that the results were consistent with
the transcriptome results, in which CaNHXI and CaNHX9
were up-regulated under salt stress. These results indicated
that the CaNHX gene provided a guarantee for the normal
growth of pepper and the balance of ion channels of plant
stress resistance.

CONCLUSION

In the pepper genome, 42 CaNHX genes were identified by a
Hidden Markov Model database search (hmmsearch). Of these,
9 genes with complete functional domains were identified by
BLASTP. We constructed a phylogenetic tree and found that
the 9 CaNHX genes were divided into three categories: Class
I, Class II, and Class III. The exon number of the Class I
subgroup was relatively stable, and the genes were distributed on
six chromosomes; these were for hydrophilic proteins. There was
a motif amilorid-binding site of the NHX gene (FFI/LY/FLLPPI)
associated with salt tolerance in the pepper CaNHX gene. There
are many elements in the CaNHX gene, such as hormone stress,
salt stress, and so on, and it was found that the CaNHX gene
is associated with many genes in the co-expression process,
and salt stress conditions are also associated with many genes.
Transcriptome analysis showed that the CaNHX gene was up-
regulated under various abiotic stresses, which was verified in
combination with fluorescence quantification in this study and
found to be consistent with transcriptome results. In this study,
the whole gene of Pepper was identified at the genome level,
which provided a theoretical basis for the genetic breeding of
pepper under stress.
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