
fgene-12-680699 June 8, 2021 Time: 16:43 # 1

ORIGINAL RESEARCH
published: 14 June 2021

doi: 10.3389/fgene.2021.680699

Edited by:
Alessandro Romanel,

University of Trento, Italy

Reviewed by:
Andrea Degasperi,

University of Cambridge,
United Kingdom
Nicola Casiraghi,

University of Trento, Italy

*Correspondence:
Shiwen Zhang

Zhangshiwen_3@163.com
Shenggang Yang

13888087371@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Genetics and Oncogenomics,
a section of the journal

Frontiers in Genetics

Received: 15 March 2021
Accepted: 26 April 2021

Published: 14 June 2021

Citation:
Ju Y, Wu X, Wang H, Li B, Long Q,

Zhang D, Chen H, Xiao N, Li F,
Zhang S and Yang S (2021) Genomic

Landscape of Head and Neck
Squamous Cell Carcinoma Across

Different Anatomic Sites in Chinese
Population. Front. Genet. 12:680699.

doi: 10.3389/fgene.2021.680699

Genomic Landscape of Head and
Neck Squamous Cell Carcinoma
Across Different Anatomic Sites in
Chinese Population
Yunhe Ju1†, Xingrao Wu1†, Huizhen Wang2†, Bin Li2†, Qing Long1, Dadong Zhang2,
Hao Chen2, Nianqing Xiao2, Fugen Li2, Shiwen Zhang3* and Shenggang Yang1*

1 Department of Radiotherapy, The Third Affiliated Hospital of Kunming Medical University, Kunming, China, 2 3D Medicines
Inc., Shanghai, China, 3 Department of Head and Neck Surgery, The Third Affiliated Hospital of Kunming Medical University,
Kunming, China

Background: The characteristics of head and neck squamous cell carcinoma (HNSCC)
across different anatomic sites in the Chinese population have not been studied. To
determine the genomic abnormalities underlying HNSCC across different anatomic
sites, the alterations of selected cancer-related genes were evaluated.

Methods: Genomic DNA samples obtained from formalin-fixed, paraffin-embedded
tissues were analyzed using targeted sequencing in a panel of 383 cancer-related genes
to determine the genomic alterations.

Results: A total of 317 formalin-fixed, paraffin-embedded HNSCC specimens were
collected, and a total of 2,156 protein-coding mutations, including 1,864 single
nucleotide variants and 292 insertions and deletions, were identified across more than
six different anatomic sites. Mutation loads were distinct across the anatomic sites.
Larynx carcinoma was found with the highest mutation loads, whereas nasopharynx
carcinoma showed the lowest mutation loads. A total of 1,110 gains and 775 losses
were identified in the 317 specimens. Patients who had at least one clinically actionable
alteration (levels 1–4 in OncoKB) were identified. One patient had an actionable
alteration with level 1 evidence in OncoKB, TEX10-NTRK2 fusion, who may benefit from
larotrectinib or entrectinib treatment.

Conclusion: The genomic profiling of HNSCC using targeted sequencing can identify
rational therapeutic candidate genes suitable for the treatment of the HNSCCs.

Keywords: HNSCC, targeted sequencing, genomic alteration, mutational landscape, Chinese population

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC), the main type of malignancy in the head and
neck, arises from the mucosal surfaces of the mouth, salivary glands, pharynx, larynx, nasal cavity,
and paranasal sinuses, accounting for more than 90% of head and neck malignancies, and is the
sixth most common malignant tumors in the world (Bray et al., 2018). The incidence of HNSCCs is
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relatively low in China: according to GLOBOCAN 2012, the
estimated age-standardized incidence rate in China is 2.7 per
100,000 compared with the world rate of 8.0 per 100,000 (Li et al.,
2015). However, the total case number is largely due to the large
population base. There were reportedly ∼75,000 new cases in
2015, of which 37,000 died from HNSCC (Chen et al., 2016).

Phenotypic, etiological, biological, and clinical heterogeneities
are characteristics of HNSCC. Alcohol and tobacco consumption,
human papillomavirus, particularly human papillomavirus type
16 infection, and Epstein–Barr virus infection are the risk factors
for different types of HNSCCs derived from various anatomic
sites (Niedobitek, 2000; Hashibe et al., 2006; Boffetta et al.,
2008; Gandini et al., 2008; Chaturvedi et al., 2011; Young
and Dawson, 2014; Yoshizaki et al., 2018). HNSCCs are well
recognized as a particularly challenging class of tumors to treat.
Despite surgery, radiation, and chemotherapy, such treatments
for HNSCC can result in cosmetic deformity and functional
impairment of vital functions, and >50% of HNSCC patients
die from this disease (Bray et al., 2018) with a 5-year survival
rate of only approximately 50% (Leemans et al., 2011). Despite
the approval of cetuximab (Vermorken et al., 2007, 2008), a
monoclonal antibody against epidermal growth factor receptor,
the survival rates of HNSCC have improved very little over
the past 40 years (Stransky et al., 2011; Du et al., 2019). Low
survival outcomes in combination with significant toxicity of
current treatment strategies emphasize the necessity for novel
therapeutic modalities.

Similar to all solid tumors, HNSCC is thought to be
initiated and progress through a series of genetic alterations.
Comprehensive molecular profiling leads to the development of
“personalized” or “precision” medicine. By promoting molecular
diagnosis and targeted therapies, treatment of certain HNSCCs
may soon be fundamentally transformed. Several studies have
characterized alterations in a single anatomic site of head and
neck in the Chinese population, including oral squamous cell
carcinoma (Song et al., 2014; Izumchenko et al., 2015; Ma et al.,
2018), nasopharyngeal carcinoma (NPC) (Zhang et al., 2017; Tu
et al., 2018), and laryngeal squamous cell carcinoma (Zhang et al.,
2014; Tao et al., 2018). These studies characterized the genomic
alterations in these carcinomas. However, few studies describe
and compare the characteristics of HNSCCs across different
anatomic sites in the Chinese population.

To gain a comprehensive view of the genetic alterations
underlying HNSCCs across different anatomic sites, we
performed targeted deep sequencing on 317 samples from
several anatomic sites in Chinese HNSCC patients. The genomic
alterations of these HNSCCs were analyzed and compared.

METHODS

Clinical Cancer Specimens
The HNSCC samples gathered for this study were approved
by the Ethics Committee of the Third Affiliated Hospital
of Kunming Medical University (No. QT201918; Kunming,
Yunnan, China). Two pathologists reviewed a total of 317
formalin-fixed, paraffin-embedded (FFPE) tissues to make sure

cancer cell contents were ≥20% before DNA extraction. The
HNSCC samples were collected from September 2017 to March
2020 and sequenced in the Research and Development Institute
of Precision Medicine, 3D Medicine Inc. (Shanghai, China). All
patients provided written informed consent for their samples to
be examined and their clinical data to be utilized.

Targeted Sequencing
For each clinical FFPE HNSCC specimen, genomic DNA was
extracted using QIAamp DNA FFPE Tissue Kit (Qiagen) and
then quantified by PicoGreen fluorescence assay (Invitrogen).
Fifty to 200 ng of DNAs were fragmented to around ∼200 bp
by sonication (Covaris) and constructed into sequencing libraries
with KAPA Hyper Prep Kit (Kapa Biosystems) according to
the protocol. Target regions covering 383 cancer-related genes
were captured with baits for each library. The captured libraries
were then amplified with polymerase chain reaction, followed by
purification with 1.8 × SPRI, quantification by Qubit 3.0 (Life
Technologies). Finally, libraries were sequenced on an Illumina
Nextseq 500 platform.

DNA Alterations Analysis
Sequencing Data Processing
Raw sequencing reads were mapped to the human reference
genome (hg19) using BWA-MEM v0.7.12 (Li and Durbin,
2010) with default settings. Mapped reads were then sorted
and converted to BAM format using Picard (version 2.0.1)1,
followed by the PCR duplicate removal process. For each BAM
file, sequencing metric collections were summarized using an
in-house script.

Base Substitution and Small INDEL Calling
A Bayesian methodology-based self-developed algorithm
validated previously (Su et al., 2017) was used for base
substitutions and small INDEL calling. A series of filtering
models were applied to remove artifactual mutations in the
calling algorithm, including corrections for background error,
strand bias, base quality, mapping quality, and short tandem
repeat regions. Somatic variant calls were then chosen with
annotated mutations based on the following criteria: (1) for a
given site, reads supported the alternative allele ≥ 8 and variant
allele frequency ≥ 0.1; (2) only exonic or splicing sites were
selected; (3) sites with strand bias ≥ 0.9 were removed; (4)
INDELs longer than 40 bp were removed; and (5) sites with allele
frequency larger than 0.015 in either of 1000 Genome Project or
ESP6500 database were removed.

Copy Number Alteration Calling
A self-developed algorithm (in publishing) was used for the
detection of copy number alterations. Briefly, we firstly built a
mixed panel-of-normal (PON) using several normal samples.
For each sample, including tumor and mixed PON, sequencing
coverage depth was calculated by a fixed bin size across the
targeted regions and normalized for GC content. A log2 ratio
profile was obtained by dividing the normalized depth of each

1https://broadinstitute.github.io/picard/
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tumor sample by the mixed PON for all bins. A circular
binary segmentation procedure was performed on the log2 ratio
values to obtain copy number segments. To estimated tumor
ploidy and purity, we used the B-allele frequency information
of ∼5,000 selected single-nucleotide polymorphism loci from
the human genome. We calculated the absolute copy number
for each segment based on the log2 ratio values, tumor ploidy,
and tumor purity.

DNA Rearrangement Analysis
Genomic rearrangements were identified using a self-developed
algorithm (in publishing). Briefly, the tag information was
extracted from BAM files from BWA-MEM for the clipped
reads. Then, reads mapped to separate chromosomes or at a
distance of more than 2 kb were selected for the detection of
genomic rearrangements. The rearrangement results contained
translocation, inversion, long deletion, etc.

Identification of Microsatellite Instability
To detect microsatellite instability (MSI) for each sample, 100 MS
loci (repeat region from the human genome) were added into
our targeted panel, and probes were specially designed for these
loci. For each microsatellite locus, the distribution differences
of repeat lengths were compared between tumor and paired
normal samples. Each locus was classified as an MSI-high (MSI-
H) or MSI-stable site, whether the differences were statistically
significant or not. A sample was classified as MSI-H if there were
not less than 75 MSI-H loci in the sample, otherwise MSI-stable.

Statistical Analysis
Wilcoxon rank-sum test was used to compare the tumor
mutation load of HNSCCs across different anatomic sites. The
comparison of alteration frequencies across anatomic sites was
conducted using a proportion test with continuity correction.
The differences in alteration frequency between this study and
The Cancer Genome Atlas (TCGA) dataset were established
using a proportion test with continuity correction. All of the
statistical analyses were performed with R.

RESULTS

Clinical Specimens and Targeted
Sequencing of Head and Neck
Squamous Cell Carcinoma
In this study, a total of 317 HNSCC patients (Supplementary
Table 1) were enrolled. FFPE samples and matched normal
controls (peripheral white blood) were collected and subjected
to targeted sequencing in a panel of 383 cancer-related genes
(Supplementary Table 2) using Illumina Nextseq 500. The
mean coverage of the sequencing depth was 542 × across the
capture regions for all samples, whereas it was 730 × and
343 × for the examined tumor samples and the matched
normal controls, respectively. According to the anatomic sites,
the present cohort consisted of patients with paranasal sinus
carcinoma (n = 4), NPC (n = 83), larynx carcinoma (LC, n = 60),

oral cavity carcinoma (OCC, n = 111), hypopharynx carcinoma
(HPC, n = 36), oropharynx carcinoma (n = 7), and 16 with
unknown anatomic sites.

Characterizing the Somatic
Single-Nucleotide Variants and INDELs
The most common mutations in HNSCC were C > T transitions
(42.2%), followed was C > A transversions (22.4%), and the
distribution of mutation spectrum in our cohort was similar to
that in TCGA HNSCC cohort (Cancer Genome Atlas Network
(CGAN), 2015) (proportion test P = 0.95; Supplementary
Figure 1). A total of 2,156 candidate somatic mutations
[including 1,864 single-nucleotide variants (SNVs) and 292
INDELs involved in 273 genes] were identified in 317 samples
with a median of five mutations (range 0–84). A mean of 5.5
non-synonymous mutations (including both SNVs and INDELs)
per tumor was identified, resulting in a mean mutation rate
of 4.2 mutations/Mb. This mutation rate was comparable with
a previously published oral squamous cell carcinoma study
(4.5 mutations/Mb) using a panel of 409 cancer-related genes
(Nakagaki et al., 2017) and was more than twice as high as the
rate seen in other HNSCC studies (Stransky et al., 2011; India
Project Team of the International Cancer Genome Consortium
(IPTICGC)., 2013; Vogelstein et al., 2013; Nakagaki et al., 2017).
The results suggest that the cancer-related gene panel can
successfully detect somatic mutations in FFPE samples. Of the
top 23 highly mutated genes (mutated in ≥ 12 tumors), TP53
was the most frequently mutated gene (63.1%), followed by FAT1
(16.1%), KMT2D (13.9%), CDKN2A (12.9%), LRP1B (12.3%),
NOTCH1 (11.0%), and CHD4 (10.4%) (Figure 1A). The mutation
frequencies of recurrent genes were highly consistent with those
in the TCGA dataset (Cancer Genome Atlas Network (CGAN),
2015) (R2 = 0.93; Supplementary Figure 2). However, four
genes were significantly different. PIK3CA [6.9 vs. 18.4%; false
discovery rate (FDR) = 1.7e-04, proportion test] and CDKN2A
(12.9 vs. 21.9%; FDR = 0.011, proportion test) were observed
with lower mutation frequency in the current Chinese cohort,
whereas CHD4 (10.4 vs. 2.9%; FDR = 2.0e-04, proportion test)
and BAP1 (4.1 vs. 0.6%; FDR = 0.0079, proportion test) were
found with a higher mutation frequency in the current Chinese
cohort. The mutational frequencies of recurrently mutated genes
were also consistent between the NPC subgroup in the current
Chinese cohort and NPC cohort from National University
Hospital Singapore (Lin et al., 2014), and no significant statistical
differences were found across the compared top mutated genes
between the two datasets (Supplementary Figure 3).

The overall mutational loads across different anatomic sites
of HNSCC were distinct. Due to the limited sample numbers,
oropharynx carcinoma (n = 7) and paranasal sinus carcinoma
(n = 4) were excluded from this analysis. LC had the highest
mutation rate with a mean of 8.3 non-synonymous mutations
per tumor, whereas NPC showed the lowest mutation rat with
a mean of 3.6 non-synonymous mutations (Figure 1B and
Supplementary Table 3). The mutational loads of OCC (an
average of 4.5 non-synonymous mutations per tumor) were lower
than LC and HPC (7.3 non-synonymous mutations per tumor)
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FIGURE 1 | Mutation landscape of Chinese HNSCCs across different anatomic sites. (A) Waterfall plot of top 23 frequently mutated genes. Each row indicates a
gene, and each column represents a patient. Patients are sorted by anatomic site. Bars on left show number of samples mutated for genes, whereas bars on top
represent number of mutation for samples. Different mutation types are represented by different colors. (B) Mutation load by anatomic sites. X-axis indicates
anatomic sites, and y-axis indicates number of mutations, including SNVs and INDELs. Each point represents one patient. (C) Mutation frequency of recurrent genes
by anatomic sites. Anatomic sites are shown in different colors. *p < 0.05, **p < 0.01, ***p < 0.001.

but higher than NPC. The lowest somatic mutational loads of
NPC are consistent with previous studies (Lin et al., 2014; Zheng
et al., 2016; Li et al., 2017).

The mutational frequencies of highly mutated genes were
also different across different anatomic sites. TP53 had the
highest discrepancy across HPC, LC, NPC, and OCC, with
mutation frequencies of 86.1, 90.0, 24.1, and 70.3% (FDR = 1.2e-
16, proportion test) (Figure 1C). The mutational frequency of
KMT2D was higher in LC (33.3%) than in HPC (13.9%), NPC
(9.6%), and OCC (7.2%) (FDR = 2.9e-04, proportion test). Most
genes presented with a lower mutation frequency in NPC than
in the other anatomic sites except CYLD and BAP1, which were
highly mutated in NPC (Figure 1C). The mutation frequency
of CYLD in NPC patients was 10.8% (10 mutations in nine
samples, 9/83), whereas that in the other three anatomic sites
was only 1.9% (4/207). Most CYLD mutation types in NPC were
truncating mutations that were caused by mutation at splice site
(1 of 10, 1/10), frameshift insertion (1 of 10, 1/10), and a non-
sense mutation (6 of 10, 1/10) (Supplementary Figure 4). BAP1

was mutated in 9.6% (8/83) of NPC patients, whereas it was
mutated in only 2.4% cases (5/207) in the other three anatomic
sites. Interestingly, CYLD was mutually exclusive with TP53 and
BAP1 in NPC patients (Supplementary Figure 5).

Characterizing of Somatic Copy Number
Variations
Copy number variations (CNVs) duplicated or deleted in the
segments of the genome were also analyzed. A number of
candidate genes were identified as recurrent somatic CNVs
(Figure 2A). In total, 1,885 CNVs [1,110 (58.9%) gains and 775
(41.1%) losses] were identified in all 317 samples, resulting in
a median of three CNVs per tumor (range 0–60). CCND1 was
the most frequently altered gene mainly with copy number gain,
occurring in 25.6% (81/317) samples, including 80 copy number
gains and 1 copy number loss, followed by FGF4 (25.6%), FGF3
(24.9%), and FGF19 (24.3%). Other frequently altered genes with
copy number gain were PIK3CA (11.7%), MYC (9.1%), and
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CDKN1B (8.2%). The most commonly altered gene, mainly with
copy number loss was CDKN2A, occurring in 24.3% (77/317)
of cases, including 3 gains and 74 losses, followed by CDKN2B
(19.6%), including 2 gains and 60 losses (Figure 2A).

Interestingly, the CNV frequencies of recurrent genes across
different anatomic sites were also different. Generally, most of
the genes in HPC had the highest CNV frequencies (Figure 2B).
PIK3CA had the highest discrepancy across HPC, LC, NPC,
and OCC, with CNV frequencies of 38.9, 31.7, 1.2, and 1.8%
(FDR = 1.6e-11, proportion test), respectively.

Identification of Fusions
In total, there were 14 fusions in 14 patients detected in this
study, among which 64.3% (9/14) of fusions were not found
in the COSMIC database (Supplementary Table 4). Of note,
one patient had TEX10-NTRK2 fusion, which can benefit from
larotrectinib and entrectinib (Cocco et al., 2018). This fusion was

annotated as a join of exon 9 of TEX10 to exon 15 of NTRK2
(Figure 3A), and the tyrosine kinase domain of NTRK2 was
retained (Figure 3B). Thus, this fusion can produce a functional
fusion transcript. We also found two patients with an FGFR3-
TACC3 fusion that could be a target for cancer therapy [29].

Deregulated Cancer-Related Pathways
in the Chinese Head and Neck
Squamous Cell Carcinoma Cohort
To further understand the function of the identified gene
alterations in this Chinese cohort, SNVs/INDELs and CNVs
were combined together to perform the pathway analysis, and a
limited number of cancer-related pathways targeted by frequent
genome alterations were frequently deregulated in HNSCC
(Figure 4). Most of the HPC and LC samples had at least
one gene alteration belonging to the receptor tyrosine kinase

FIGURE 2 | CNV landscape of Chinese HNSCCs across different anatomic sites. (A) Waterfall plot of top 22 frequent CNV genes. Each row indicates a gene, and
each column represents a patient. Patients are sorted by anatomic site. Bars on left show number of samples with CNV in genes, whereas bars on top represent
number of CNV for samples. Copy number gain and loss are represented in red and blue. (B) CNV frequency of recurrent genes by anatomic sites. Anatomic sites
are shown in different colors. *p < 0.05, ***p < 0.001.
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FIGURE 3 | Schematic plot of fusion of TEX10-NTRK2. (A) Representation of fusion TEX10-NTRK2. Top: chromosome and cytoband where breakpoint located on
for each partner gene. Middle: fusion form (TEX10 exon 1–9 joined NTRK2 exon 15–20). Bottom: reads spanning breakpoint using IGV. (B) Retained protein domains
of each partner gene.

(RTK)/RAS/phosphatidylinositol-3-OH kinase (PI3K) pathway.
The alteration frequency of the RTK/RAS/PI3K pathway in this
Chinese cohort was much higher than that in the TCGA HNSCC
dataset (Cancer Genome Atlas Network (CGAN), 2015). Among
the RTKs, FGFR1 alterations were the most frequent, followed
by EGFR and ERBB2 alterations. For the downstream of the
RTK/RAS/PI3K pathway, PIK3CA had the highest alteration
frequency. Interestingly, the alteration frequencies of PIK3CA
varied greatly across different anatomic sites. More than half of
the HPC samples had PIK3CA alterations, whereas only 2% NPC
and 7% OCC samples altered in this gene. For the downstream
cell cycle pathway, a total of 97% HPC, 97% LC, 61% NPC,
and 82% OCC samples were altered. Among components of
the cell cycle pathway, TP53 alterations dominated, followed by
CDKN2A. CCND1 and MYC were the two most frequently altered
oncogenes of this pathway. Further alterations of NOTCH1
and FAT1 linked functionally to β-catenin (CTNNB1) are also
detected. As tumor-suppressor genes, the inactivation of FAT1
and NOTCH1 may converge to inhibit the Wnt/β-catenin
signaling pathway, which is implicated in the deregulation of cell
polarity and differentiation. Compared with the patients from
the other anatomic sites, a higher alteration frequency in the
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) signaling pathway was found for NPC patients, although
the alteration frequencies in the other pathways were lower for

them. CYLD alterations dominated in this pathway, followed by
NFKBIA (Figure 4).

Identification and Characterization of the
Actionable Alterations
To identify and characterize the actionable alterations in
this Chinese cohort, different kinds of genetic alterations
types, including SNVs/INDELs, CNVs, fusions, and MSI
(Supplementary Table 5) status, were combined and annotated
using the OncoKB knowledge database (Chakravarty et al., 2017).
OncoKB is a database containing information about the effects
and treatment implications of specific cancer gene alterations,
which is curated from guidelines from the Food and Drug
Administration, National Comprehensive Cancer Network, or
American Society of Clinical Oncology, ClinicalTrials.gov, and
the scientific literature. According to the annotation results
(Supplementary Table 6), 85.5% (271/317) of patients had at
least one oncogenic mutation, and 44.5% (141/317) had at least
one actionable alteration. The evidence levels of most actionable
alterations were levels 3 and 4. We summarized all actionable
alterations to 37 kinds of alterations based on gene symbol and
variant type (Supplementary Table 7). CDKN2A deletion was the
most frequent actionable alteration affecting 15.1% of total cases,
followed by CDKN2A SNVs/INDEs covering 11.4% of all cases.
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FIGURE 4 | Deregulated cancer-related pathways in Chinese HNSCCs. Pathway alterations include SNVs, INDELs, and CNVs. Each number in box indicates
percentage (%) of altered samples of given gene or pathway. Frequency of different anatomic sites is shown separately within subpanels. Activated and inactivated
pathways or genes are based on predicted effects of alterations and/or pathway functions.

There were 5% of patients with actionable alterations on PIK3CA
SNVs/INDEs of level 3B. Of note, there were three patients
with level 1 alteration, including one patient with TEX10-NTRK2
fusion and two patients with MSI-H.

DISCUSSION

In this study, we delineated the genome alteration landscape
of HNSCC in a Chinese cohort across different anatomic sites.
Overall, the mutation loads and CNV frequency in NPC were
lower than those in the other anatomic sites (Figures 1A, 2A),
consistent with other studies (Lin et al., 2014; Zheng et al., 2016;
Li et al., 2017). Thus, we confirmed the molecular characteristics
of the Chinese population. Among the recurrently mutated genes,
TP53 was the most highly mutated gene across different anatomic
sites. The mutation frequency of TP53 in NPC was much lower
than that in the other sites, indicating that the mechanisms

of tumor tumorigenesis may be different between NPC and
other HNSCC sites.

HPC and LC were found with higher CNV alteration
frequency compared with NPC and OCC (Figure 2A). PIK3CA
had the highest CNV discrepancy across the four anatomic sites
(Figure 2B). PIK3CA is a well-known oncogene that can play
an important role in cancer development. PIK3CA gains also
recurrently occurred in TCGA HNSCC dataset (Cancer Genome
Atlas Network (CGAN), 2015). However, PIK3CA gain was much
lower in OCC in the current cohort than in TCGA OCC (1.8
vs. 15.1%; P = 3.4e-04, proportion test). The co-amplification of
FGF3, FGF4, FGF19, and CCND1 in HNSCC patients was most
likely due to co-localization of the loci in the same chromosomal
region (11q13) (Parish et al., 2015).

Most genes and pathways analyzed in NPC were relatively
altered in a lower frequency; however, CYLD and NF-κB signaling
pathways in NPC had a higher mutation frequency than the
other sites (Figure 4). A previous study detected enrichment of
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genomic abnormalities of multiple negative regulators of the NF-
κB pathway, including CYLD, TRAF3, NFKBIA, and NLRC5 (Li
et al., 2017). In this study, such observation confirmed that genes
altered in the NF-κB signaling pathway had a higher mutation
frequency in NPC than in the other sites. Activation of NF-κB is
associated with a poorer prognosis in NPC (Zhang et al., 2011;
Sun et al., 2012), supporting the rationale for exploiting NF-
κB inhibition as a potential treatment strategy for NPC. Several
studies have demonstrated that targeting the NF-κB pathway is
a promising treatment strategy in a variety of cancers (Sunwoo
et al., 2001; Lun et al., 2005; Zhang et al., 2015). Thus, it is
rational to apply the NF-κB activation status to stratify NPC
patients who may be more likely to benefit from treatment with
NF-κB inhibitors. CYLD is a tumor suppressor gene encoding a
cytoplasmic protein that functions as a deubiquitinating enzyme
that deubiquitinates TRAF2/5/6, which is an agonist of the
NF-κB signaling pathway (Sun, 2010). A previous study also
reported that CYLD could regulate p53 DNA damage response
by removing K48-linked ubiquitin chains from p53 (Fernandez-
Majada et al., 2016). Interestingly, the mutation of CYLD
and TP53 was absolutely mutually exclusive in NPC patients,
indicating different roles of CYLD and TP53 in NPC oncogenesis.

Most HNSCC samples harbor potentially actionable
mutations. Using genomic profiling, we discovered the
potentially actionable mutation (either directly targeted or a
pathway component of a directly targeted gene by an approved or
investigational drug), which could be targeted with either an off-
label or an investigational therapeutic available in a clinical trial.
Nearly half of the HNSCC patients were identified with clinically
actionable alterations in this cohort. Therefore, these patients
may benefit from Food and Drug Administration-approved
drugs or clinical trials. TEX10-NTRK2 fusion was identified in
an LC patient, and the patient may benefit from larotrectinib or
entrectinib with level 1 evidence, and two MSI-H patients may
benefit from Keytruda. Although the majority of alterations were
used as biomarkers in clinical trials, patients with these alterations
may also benefit from clinical trials.

The limitations of this study are worth mentioning. First,
the observed differences across different anatomic sites need
verification. Second, the genes significantly different between this
Chinese cohort and TCGA dataset also need verification.

In conclusion, we performed targeted sequencing in 317
Chinese HNSCC patients. The molecular characteristics and
differences were analyzed and compared across different
anatomic sites. Actionable mutations were identified, and

patients who may benefit from the actionable alterations from
clinical treatment were also identified.
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