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Neuroblastoma (NBL) originating from the sympathetic nervous system is the most
prevalent solid tumor in infancy. Although there is sufficient variability in prognosis
among different age pyramids, age-related gene expression profiles and biomarkers
remain poorly explored. The present study aimed to construct a signature based on
differentially expressed genes (DEGs) between two age groups in NBL. Univariate Cox
regression, multivariate Cox regression, and LASSO analyses were used to identify the
optimal prognostic factors. The prediction ability of the model was assessed using the
receiver operating characteristic (ROC) curve and C-index. Functional enrichment analysis
was performed using the Kyoto Encyclopedia of Genes and Genomes and gene ontology
databases. A total of 1,160 DEGs were identified between the two groups, and 204 DEGs
impacted the survival of NBL. Functional enrichment analysis revealed that the DEGs were
involved in retinol metabolism, cholesterol metabolism, and glycolysis/gluconeogenesis
pathways. Five RNAs, namely F8A3, PDF, ANKRD24, FAXDC2, and TMEM160 were
recruited into the signature. They were correlated with COG risk classification, INSS stage,
and histology. MYCN amplification was linked to FAXDC2, TMEM160, PDF, and F8A3. The
expression levels of ANKRD24, PDF, and TMEM160 were lower in the hyperdiploid
groups. Only FAXDC2 levels were different in the different MKI grades. The ROC curve
showed that the five-RNA–based signatures effectively predicted the OS of NBL (3-years
AUC � 0.791, 5-years AUC � 0.816) in the TARGET cohort. The predictive capability was
also validated by the GSE49711 cohort (3-years AUC � 0.851, 5-years AUC � 0.848). The
C-index in the TARGET and GSE49711 cohorts was 0.749 and 0.809, respectively. The
potential mechanisms of the five RNAs were also explored via gene set enrichment
analysis, and candidate drugs targeting the five genes, including dabrafenib, vemurafenib,
and bafetinib, were screened. In conclusion, we constructed a five-RNA–based signature
to predict the survival of NBL and screened candidate agents against NBL.

Keywords: Neuroblastoma, age, Signature, prognosis, drugs

Edited by:
Gaurav Pandey,

Icahn School of Medicine at Mount
Sinai, United States

Reviewed by:
Salima Akter,

Kyung Hee University, South Korea
Amos Hong Pheng Loh,

KK Women’s and Children’s Hospital,
Singapore

*Correspondence:
YouJun Wang

wyjerke@outlook.com

Specialty section:
This article was submitted to

Cancer Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

Received: 30 April 2021
Accepted: 24 September 2021

Published: 20 October 2021

Citation:
Zhang P, Ma K, Ke X, Liu L, Li Y, Liu Y
and Wang Y (2021) Development and

Validation of a Five-RNA–Based
Signature and Identification of

Candidate Drugs for Neuroblastoma.
Front. Genet. 12:685646.

doi: 10.3389/fgene.2021.685646

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 6856461

ORIGINAL RESEARCH
published: 20 October 2021

doi: 10.3389/fgene.2021.685646

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.685646&domain=pdf&date_stamp=2021-10-20
https://www.frontiersin.org/articles/10.3389/fgene.2021.685646/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.685646/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.685646/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.685646/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.685646/full
http://creativecommons.org/licenses/by/4.0/
mailto:wyjerke@outlook.com
https://doi.org/10.3389/fgene.2021.685646
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.685646


INTRODUCTION

Neuroblastoma (NBL), a malignant embryonal tumor, is the most
prevalent solid tumor of infancy and accounts for approximately
15% of childhood cancer deaths (Davidoff, 2012; Gatta et al.,
2014). The clinical presentation and progression of NBL are
heterogeneous. Clinical manifestations of NBL often depend
on the anatomic location and the predilection site in the
abdomen (approximately 65%), which manifests as abdominal
distention and constipation (Swift et al., 2018). The outcomes of
NBL are diverse from spontaneous regression to relentless
progression or from resistance to chemoradiotherapy, stem cell
transplantation, and immunotherapy (Maris et al., 2007; Brodeur
and Bagatell, 2014; Illhardt et al., 2018). Furthermore, despite
complex and intensive treatments, the outcome of NBL remains
poor, with a 5-years survival rate of less than 50% (Pinto et al.,
2015). Therefore, identifying actionable biomarkers in NBL to
assist early diagnosis, risk classification, and treatment is
essential.

Age is one of the most prominent clinical prognostic
indicators of NBL. A study with more than 110.000 NBL
patients showed that patients aged >18 months at diagnosis
had a low survival rate (Moroz et al., 2011). A similar result
was reported by Schmidt et al., in 2005 (Schmidt et al., 2005).
Moreover, age is a critical factor in the Shimada classification
system (Shimada et al., 2001). Despite the essential role of age
in NBL the underlying biology remains unclear. Accumulated
evidence has demonstrated that many abnormalities at the
transcriptome level, including DLK, BIRC5, CDKN2D, and
SMARCD3 play a role in tumorigenesis, progression,
migration, and relapse of NBL (Coco et al., 2009; Tsubota
and Kadomatsu, 2018). Analysis of gene expression patterns
between age groups has enabled a better understanding of the
biology of NBL. According to a previous study, biomarkers
identified from gene expression profiles exhibited more
effective prediction capability than individual clinical
factors (He et al., 2020). Therefore, it is necessary to
develop precise computational models based on age-related
genes in NBL.

This study analyzed the differentially expressed genes (DEGs)
between two age groups and their associated pathways. In
addition, we attempted to construct an RNA-based signature
to predict the survival of NBL patients in the TARGET cohort
using the DEGs.

METHODS AND MATERIALS

Data Source
We downloaded the gene expression profiles and the
corresponding clinical information of 153 NBL patients from
the TARGET database (www.ocg.cancer.gov/programs/target).
The inclusion criteria were based on the data of complete
survival rate of patients and the age patients. Another cohort
of 489 NBL patients (GSE49711) was obtained from the GEO
database (www.ncbi.nlm.nih.gov/geo/) and was used for external
validation. Genomics and drug sensitivity data were extracted

from the CellMinerCDB database (www.discover.nci.nih.gov/
cellminer/home.do).

Analysis of DEGs
Patients were divided into two subgroups (<18 months and >18
months), and the DEGs between the two groups were analyzed.
DEGs with |log2 fold change (FC)| > 1 and false discovery rate
(FDR) < 0.05 were identified by the R package “edgR”. These
DEGs were then visualized in the volcano plot; the top 30
upregulated and downregulated genes are shown in the
heatmap.

Risk Score Calculation
The univariate Cox regression analysis followed by LASSO
regression analysis was done to screen and optimize the
prognostic RNAs. Multivariate Cox regression analysis was
conducted to calculate the regression coefficients for each
gene. The risk score of each sample was calculated according
to the following formula: risk score � β1 *X1+ β2 * X2+ . . .+βnXn
(β, regression coefficient; X, prognostic factors). Patients were
classified into high-risk and low-risk groups according to the
threshold value of the median risk score.

Kyoto Encyclopedia of Genes and Genomes
and Gene Ontology Enrichment Analyses
DEGs between the two age groups were subjected to Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis and the Gene Ontology (GO) function analysis. Both

FIGURE 1 | The flow chart of constructing a five-RNA based signature.
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p- and p-adjusted values (<0.05) were deemed to be statistically
significant.

Gene Set Enrichment Analysis
Gene Set Enrichment Analysis (GSEA) was performed using the
GSEA software version 4.1.0. Gene set collections including
“c2.cp.kegg.v7.2.symbols.gmt” and “c5.go.bp.v7.2.symbols.gmt”
were selected to identify the biological terms of the five genes.
Terms with |NES| >1, NOM p-value < 0.05, and FDR <0.25 were
considered significant.

Statistical Analysis
The Kruskal-Wallis rank-sum test or Wilcoxon rank-sum test
measured the relationship between clinical characteristics and
RNAs. Prognostic analysis was conducted using univariate and
multivariate Cox regression analysess. The Kaplan-Meier (K-M)
survival analysis was performed to investigate the correlations
between prognostic factors and OS, and differences between
groups were tested using the log-rank test. We constructed
receiver operating characteristic (ROC) curves and determined
the areas under the ROC curve (AUCs). Model discrimination
was weighed using the AUCs and C-index. The correlations

between genes and drug sensitivity were measured using the
Pearson correlation analysis. Data were tested at 5% level of
significance (p < 0.05). R software (version 3.6.3) with the
following packages: “glmnet,” “limma,” “edgeR,” “ggplot2,”
and “survivalROC.” was used to analyze the data.

RESULTS

Identification of DEGs
We downloaded the transcriptome profiles and corresponding
clinical data of 153 NBL patients from the TARGET database. A
total of 498 NBL patients from the GSE49711 dataset were used
for external validation. The flow chart of the study design is
shown in Figure 1. A total of153 NBL patients from the TARGET
cohort were divided into two groups of <18 months (n � 29)
and >18 months-old NBL patients (n � 124). A total of 1,160
DEGs (678 upregulated and 482 downregulated genes) with |log
FC| >1 and FDR <0.05 were identified in the TARGET cohort.
These DEGs are shown in the volcano plot, and the most
upregulated and downregulated genes are in the heatmap
(Figures 2A,B).

FIGURE 2 | Identification of differently expressed genes (DEGs) in different age groups. Volcano plot of the DEGs in the TARGET (A). Heatmap of the DEGs in the
TARGET (B). GO (C) and KEGG enrichment analysis (D) for 204 DEGs in the TARGET cohort, terms with p- and q-value < 0.05 were considered significant.
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Furthermore, univariate Cox regression analysis revealed that
204 out of 1,160 DEGs impacted the survival of NBL patients in
the TARGET cohort. KEGG and GO analyses were performed to
demonstrate the potential mechanisms of the 204 DEGs.
Figure 2C shows that the genes were enhanced in various
terms, including complement and coagulation cascades,
chemical carcinogenesis, retinol metabolism, and drug
metabolism-cytochrome P450.

Screening Genes for Signature
Construction
In total, 204 genes were compressed via LASSO regression
analysis. Figures 3C–I show that when using 10-fold cross-
validation, the optimal model was obtained when the lambda
was 10, involving 10 genes (TMUB1, CNR1, TMEM160,
FAXDC2, SDF2L1, CTU1, PDF, ULBP1, F8A3, and
ANKRD24) (Figures 3A,B). K-M survival analysis showed
that patients with higher levels of ANKRD24, CTU1, F8A3,
PDF, SDF2L1, TMEM160, and TMUB1 (Figures 3C–I) had a
lower survival rate compared to those with lower levels.

Conversely, patients with elevated expression of CNR1,
FAXDC2, and ULBP1 exhibited prolonged survival
(Figures 3G–L).

Correlations Between Ten RNAs and
Clinicopathologic Characteristics
We investigated the relationship between clinical characteristics
and the screened 10 RNAs in the TARGET cohort
(Supplementary Tables S1–6). Kruskal-Wallis rank-sum test
or Wilcoxon rank-sum test showed that the 10 RNAs were
differentially expressed in different COG risk classifications,
INSS stages, and histology groups (p < 0.05; Figures 4A–C).
The levels of CNR1 (p � 0.001) and FAXDC2 (p < 0.001) were
lower in MYCN amplification status, whereas the levels of
ULBP1 (p � 0.002), TMEM160 (p � 0.029), CTU1 (p � 0.005),
PDF (p � 0.002), and F8A3 (p � 0.007) were higher
(Figure 6D). The expression of ANKRD24 (p � 0.001),
CTU1 (p � 0.015), PDF (p � 0.032), and TMEM160 (p �
0.010) was lower in the hyperdiploid groups except for CNR1
(p � 0.004) (Figure 4E). CNR1 (p < 0.001) and FAXDC2 (p <

FIGURE 3 | Screening genes to constructing model of predicting the overall survival of NBL and Kaplan–Meier (K-M) survival analysis. (A). Shrinking path diagram of
gene entrances into the model. (B). λ selection in the LASSO model used 10-fold cross-validation and λ � 0.132 were selected. The K-M analysis of ANKRD24 (C),
CTU1 (D), F8A3 (E), PDF (F), SDF2L1 (G), TMEM160 (H), TMUB1 (I), CNR1 (G), FAXDC2 (K), and ULBP1 (L).
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0.001) displayed different levels in different MKI grades
(Figure 4F).

Development and Validation of the
Five-RNA-Based Signature
Multivariate Cox regression analysis showed that F8A3 [HR:
0.808 (95% CI: 0.744–0.872), p � 0.001], PDF [HR: 1.879
(95% CI: 1.647–2.110), p � 0.007], ANKRD24 [HR: 1.311
(95% CI: 1.209–1.413), p � 0.008], FAXDC2 [HR: 0.822 (95%
CI: 0.726–0.919), p � 0.042], and TMEM160 [HR: 1.507 (95% CI:
1.302–1.712), p � 0.046] were independent prognostic factors of
NBL (Table 1). Five RNAs (F8A3, PDF, ANKRD24, FAXDC2,
and TMEM160) (p < 0.05) were included to construct the
prediction model based on the Multivariate Cox regression
results. The risk score of each patient was calculated according
to the formula: Risk score � (0.628 * the expression of TMEM160)
+ (0.292 * the expression of ANKRD24) + (0.713 * the expression

of PDF) + (−0.200 * the expression of F8A3) + (−0.253 * the
expression of FAXDC2). Patients were divided into high-risk
and low-risk groups based on the median risk score. K-M
analysis showed that patients in the low-risk group had
significantly longer survival than those in the high-risk
group (p < 0.001) (Figures 5A,B). The heatmap
demonstrated that TMEM160, F8A3, PDF, and ANKRD24
exhibited the highest expression in the high-risk group,
whereas FAXDC2 had low expression. Consecutively,
mortality was higher in the high-risk group than in the
low-risk group (Figure 5C). Similar results were obtained in
the GSE49711 cohort, parallel to the TARGET cohort
(Figure 5D).

Results of the univariate Cox regression analysis
demonstrated that the risk score [HR: 1.370 (95% CI
1.250–1.453), p < 0.001], histology [HR: 2.713 (95% CI
1.688–4.362), p < 0.001], INSS stage [HR: 0.581 (95% CI
0.343–0.985), p � 0.044], and ploidy [HR: 0.573 (95% CI
0.365–0.899), p � 0.015] were correlated with OS of NBL
patients (Figure 6A). Multivariate Cox regression analysis
revealed that risk score [HR: 1.337 (95% CI 1.225–1.460),
p < 0.001], histology [HR: 2.578 (95% CI 1.240–5.359), p �
0.011], and MKI [HR: 0.757 (95% CI 0.579–0.990), p � 0.042]
were associated with NBL patient survival (Figure 6B).
Collectively, the risk score and histology served as
independent prognostic factors for NBL. Subsequently, we
used the ROC curve and C-index to evaluate the accuracy
of our model for predicting the survival of NBL patients. The
C-index in the TARGET and GSE49711 cohorts were 0.749
and 0.809, respectively. The ROC analysis showed that our
signature performed well in predicting the OS of NBL patients
(3-years AUC � 0.791, 5-years AUC � 0.816) in the TARGET
cohort (Figures 6C,D). The predictive capability was further

FIGURE 4 | The relationship between the ten RNAs and clinical characteristics. The correlations of the expression of ten genes with the COG classification (A), INSS
stage (B), histology group (C), MYCN amplification (D), ploidy status (E), and MKI (F). *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 1 | Multivariate Cox regression analysis of ten genes.

Gene Coef HR 95% CI p

CNR1 −0.138 0.871 0.791–0.951 0.084
TMEM160 0.410 1.507 1.302–1.712 0.046
TMUB1 0.422 1.525 1.220–1.830 0.167
SDF2L1 0.120 1.127 0.949–1.306 0.502
ANKRD24 0.271 1.311 1.209–1.413 0.008
CTU1 0.175 1.191 0.934–1.447 0.496
ULBP1 −0.018 0.982 0.965–0.999 0.287
PDF 0.631 1.879 1.647–2.110 0.007
F8A3 −0.213 0.808 0.744–0.872 0.001
FAXDC2 −0.196 0.822 0.726–0.919 0.042

HR, Hazard ratio; 95% CI, 95% Confidence interval.
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validated by the GSE49711 cohort (3-years AUC � 0.851, 5-
years AUC � 0.848) (Figures 6E,F).

Gene Set Enrichment Analysis
NBL patients were categorized into two groups based on the
median cut-off value of the risk score in the TARGET cohort.
GSEA analysis was subsequently performed to investigate the
potential downstream signaling pathways relevant to the five
RNAs. Gene sets with |NES| >1, NOM p-value < 0.05, and
FDR <0.25 were displayed. For “c2.cp.kegg.v7.2.symbols.gmt”
collection terms, including base excision repair, DNA
replication, homologous recombination, mismatch repair, and
pyrimidine metabolism, were enriched in the high-risk group

(Figure 7A). However, no gene sets were enriched in the low-
risk group.

The collection of “c5.go.bp.v7.2.symbols.gmt” (Figure 7B)
genes in the high-risk group was primarily enriched in cell
cycle–related and pyrimidine nucleoside triphosphate–related
pathways. On the contrary, genes were primarily enriched in
mitochondrial fission, vesicle-mediated transport, and
filopodium assembly in the low-risk group.

Screening for Candidate Drugs
Drug sensitivity and gene expression data of the cell lines were
obtained from the CellMiner database. Pearson correlation
analysis showed that dabrafenib (R � 0.559, p < 0.001),

FIGURE 5 |Construction of the five-RNA-based risk signature of neuroblastoma patients. Kaplan-Meier analysis for overall survival (OS) of neuroblastoma patients
based on the risk stratification in the TARGET cohort (A) and GSE49711 cohort (B). (C) The five-RNA-based risk score distribution, the living status of neuroblastoma
patients, and heatmap of the five gene expression profiles in the TARGET cohort. (D) The five-RNA-based risk score distribution, the living status of neuroblastoma
patients, and heatmap of the five gene expression profiles in the GSE49711 cohort.
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ibrutinib (R � 0.537, p < 0.001), and dasatinib (R � 0.512, p <
0.001) were correlated with FAXDC2 (Figure 8). In addition,
chelerythrine (R � 0.455, p < 0.001) was linked to PDF.

DISCUSSION

NBL is the most common and rare solid tumor with clinical
heterogeneity among children. In the United States,
approximately 700 children are diagnosed with NBL per year
(Li et al., 2008). Although advances in treatment have improved
the survival of NBL patients, the prognosis of high-risk NBL
remains low (Cohn et al., 2009). Insight into the biology of NBL
initiation and progression may help improve the survival of NBL
patients. Previous studies have shown that MYCN amplification,
copy number alterations, and rearrangements of oncology genes
are putative causes contributing to NBL (Fetahu and Taschner-
Mandl, 2021). A large-scale study demonstrated that patients
aged >18 months at diagnosis had a low survival rate (Moroz
et al., 2011). Diverse classifications, including the International
Neuroblastoma Risk Group classification (Cohn et al., 2009),
and COG risk classification (London et al., 2005), included
age as a significant risk factor. These studies suggest that age is
a crucial factor in NBL, and understanding the gene
expression profile related to age is needed. In this study, we
analyzed DEGs between the two age groups. We constructed
and validated a five-RNA–based signature to predict the OS of
NBL patients.

The DEGs between the two age groups were analyzed based on
the 18 months threshold value. Functional enrichment analysis
demonstrated that these DEGs may participate in metabolism-
related signaling pathways, including retinol metabolism,
cholesterol metabolism, tyrosine metabolism, and glycolysis/
gluconeogenesis pathways. Previous studies have shown that
metabolism could regulate the progression and development of
NBL (Fultang et al., 2019; Song et al., 2020). These enriched
metabolism-related pathways might imply that metabolism is
partially responsible for the heterogeneous outcomes of NBL.
Signatures composed of mRNAs, lncRNAs, and miRNAs have
been widely developed as valuable tools for predicting cancer
prognosis (Chibon, 2013; Kwa et al., 2017). The expression of
miRNAs in NBL was extensively downregulated, and 27 miRNAs
divided patients into high-and low-risk groups (Lin et al., 2010).
An MYCN signature integrated with MYCN activity and
chromosomal aberrations exhibited more effective prediction
power than MYCN amplification status (Fultang et al., 2019;
Song et al., 2020), indicating the suitability and superiority of the
risk model construction based on the transcriptome. Using the
univariate Cox regression analysis, LASSO regression analysis,
and multivariate Cox regression analysis, we selected five RNAs
to construct the RNA-based signature for predicting the survival
of NBL. Wang et al. identified five genes derived from m6A
regulators (METT14, WTAP, HNRNPC, YTHDF1, and
IGF2BP2) to construct a risk prediction model that had
predictive accuracy (Wang et al., 2020). The effectiveness of
our model in predicting 5-years OS (AUCs � 0.879) was less

FIGURE 6 | Estimate the predictive ability of the five-RNA-based risk signature. Univariate Cox regression analysis of risk score and clinical factors (A). Multivariate
Cox regression analysis of risk score and clinical factors (B). The receiver operating characteristic (ROC) curve for 3-years (C) and 5-years survival (D) for overall survival
(OS) in the TARGET cohort. The ROC curve for 3-years (E) and 5-years survival (F) for OS in the GSE49710 cohort.
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than that of the signature composed of five m6A regulators
(AUCs � 0.916) in the GSE49711 cohort. In contrast, the 5-
years AUC of our signature (AUCs � 0.816) was higher than that
of the m6A-based signature (AUC � 0.739) in the TARGET
cohort. Immune-related signatures have been explored, and a five
immune-related-gene-based signature (RS5_G) predicted
outcomes and groupings (Zhong et al., 2021). We noted that
the predictive capability of the five age-related signatures
(C-index � 0.809) was close to that of RS5_G (C-index �
0.869) in the GSE49711 cohort. Overall, the five-RNA–based
signature displayed equivalent efficiency in assessing the OS of
NBL as compared to the published risk models.

Using LASSO screening, 10 RNAs were selected, namely
TMUB1, CNR1, TMEM160, FAXDC2, SDF2L1, CTU1, PDF,
ULBP1, F8A3, and ANKRD24. These genes contribute to the
progression of cancer and are associated with patient outcomes.
For example, CNR1, which is expressed primarily in the central
nervous system, was reported to regulate the activation of the p38
MAPK pathway, which promoted the progression of HPV-
positive head and neck squamous cells (Liu et al., 2020).
ULBP molecules are vital ligands of the activating receptor
NKG2D on the surface of NK cells. Downregulated ULBP
molecules help NBL cells evade the control of the host
immune system (Raffaghello et al., 2004). FAXDC2 (C5orf4) is

FIGURE 7 | Gene set enrichment analysis. Gene sets enriched in the high-risk score group (A, C). Gene sets enriched in the low-risk score group (B, D). Nom
p-value < 0.05 was deemed significant.
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downregulated in acute myeloid leukemia and is associated with
the development of megakaryocytes (Jin et al., 2016). The small
ubiquitin-like protein encoded by the TMUB1 gene retains p53 in
the cytoplasm but decreases nuclear localization, promoting p53-
dependent mitochondrial apoptosis (Castelli et al., 2020; Della-
Fazia et al., 2020). The expression profiles of SDF2L1, PPP1R12A,
and PRKG1 were associated with the clinical outcomes of high-
grade serous ovarian cancer. SDF2L1 is an independent
prognostic indicator in breast cancer, and the reduced level of
SDF2L1 is related to poor clinical outcomes (Jiang et al., 2009).
Two signatures of RNA-binding proteins enrolled the CTU1 gene
as a vital indicator to predict the survival of prostate cancer and
bladder urothelial carcinoma (Guo et al., 2020; Hua et al., 2020).
However, the effects of these 10 genes in NBL have not been
explored. Carcinoma genome-wide methylation screening
revealed that methylation of CNR1 was correlated with MYCN
amplification, and patients with low mRNA expression levels of
CNR1 had a poor prognosis (Decock et al., 2012). In this study,
we noted that CNR1 expression was lower in the MYCN-
amplified group, and lower levels of CNR1 were significantly
associated with unfavorable outcomes concurring with findings
from other studies. Furthermore, differences in PDF, TMEM160,
FAXDC2, and F8A3 were observed between the MYCN-
amplified and non-amplified groups. MYCN amplification was
observed in approximately 20–30% of high-risk NBL patients and

is one of the oncogenes in NBL (Brodeur et al., 1977; Pugh et al.,
2013; Zhu et al., 2013). Whole-genome analysis suggested that
MYCN alterations were more frequently diagnosed in younger
patients (Brady et al., 2020), which may explain the correlations
of these 10 genes with MYCN status.

In this study, GSEA revealed that DNA replication and
homologous recombination are potential NBL initiation and
progression pathways. A study on Chinese children observed a
strong correlation between genetic variants of the FEN1 gene and
neuroblastoma risk (Zhuo et al., 2020) Genomic alterations in
DNA damage response–related genes are frequently observed in
high-risk NBL (Southgate et al., 2020). Genomic alterations
correlate with homologous recombination repair and exist in
approximately 50% of 237 NBL patients (Takagi et al., 2017). In
addition to the pathways associated with these five RNAs,
enhanced ribosome biogenesis activity, directly induced by
MYC transcription factors, indicated a poor prognosis of NBL
(Hald et al., 2019). Ribosomal RACK1 regulates the expression of
cell cycle genes independent of mTOR (Romano et al., 2019).
Using the CellMinerCDB database dabrafenib, vemurafenib, and
bafetinib, which target RAS-MAPK pathways, were related to the
expression of FAXDC2. More frequent mutations in RAS-MAPK
pathway-related genes could be detected when NBL relapsed
(Valencia-Sama et al., 2020). In vivo and in vitro dabrafenib
was used to treat NBL patients with BRAF V600 mutation

FIGURE 8 | Candidate drugs targeting the five RNAs. The top 12 drugs targeting the five genes ranked by correlation tested by Pearson correlation analysis.
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(Kieran et al., 2019) and SHP2 inhibitors combined with
vemurafenib could treat relapsed neuroblastoma (Valencia-
Sama et al., 2020). However, the effect of bafetinib on NBL
treatment has not been examined. In addition to the RAS-
MAPK pathway, vemurafenib hampers DNA damage repair in
melanoma cells (Kimeswenger et al., 2019). Bioinformatic
analysis revealed that dabrafenib partially regulates the MUC
family’s function, which participates in cell cycle and DNA
damage pathways (Jiang et al., 2019). Pathways targeted by
candidate drugs are consistent with the signaling pathways
identified by GSEA analysis. This study provides possibilities
for novel agents for the treatment of NBL.

However, there were some limitations of the present study.
First, this study was based on bioinformatic analysis. Thus, a
series of in vivo and in vitro experiments are needed to reveal the
biological function of the genes. Second, bias may have existed
due to sample selection and grouping. For example, stage 1 and
stage 2 NBL patients in the TARGET cohort were excluded
because of lack of age records. Thus, variation in the numbers
of participants in the two age groups may affect the accuracy of
the statistical analysis. Additionally, the efficacy of gene
signatures identified from pan-NB populations needs
further assessment in different MYCN status subgroups
because the MYCN status might confound prognostic
signatures (Hallett et al., 2016). Therefore, large-scale and
multicenter studies are required to confirm the performance
of our study.

In conclusion, we analyzed DEGs between two age groups and
constructed a well-performed five-RNA-based signature.
Furthermore, we screened candidate drugs targeting five RNAs.
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