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Motivation: Genome-wide association studies (GWAS) have achieved remarkable success
in identifying SNP-trait associations in the last decade. However, it is challenging to identify the
mechanisms that connect the genetic variants with complex traits as the majority of GWAS
associations are in non-coding regions. Methods that integrate genomic and transcriptomic
data allow us to investigate how genetic variants may affect a trait through their effect on gene
expression. These include CoMM and CoMM-S2, likelihood-ratio-based methods that
integrate GWAS and eQTL studies to assess expression-trait association. However, their
reliance on individual-level eQTL data render them inapplicable when only summary-level
eQTL results, such as those from large-scale eQTL analyses, are available.

Result:We develop an efficient probabilistic model, CoMM-S4, to explore the expression-
trait association using summary-level eQTL and GWAS datasets. Compared with CoMM-
S2, which uses individual-level eQTL data, CoMM-S4 requires only summary-level eQTL
data. To test expression-trait association, an efficient variational Bayesian EM algorithm
and a likelihood ratio test were constructed. We applied CoMM-S4 to both simulated and
real data. The simulation results demonstrate that CoMM-S4 can perform as well as
CoMM-S2 and S-PrediXcan, and analyses using GWAS summary statistics from Biobank
Japan and eQTL summary statistics from eQTLGen and GTEx suggest novel susceptibility
loci for cardiovascular diseases and osteoporosis.

Availability and implementation: The developed R package is available at https://
github.com/gordonliu810822/CoMM.

Keywords: summary statistics, genome-wide association studies, variational bayesian, parameter expanded
expectation-maximization (PX-EM) algorithm, transcriptome-wide association studies

1 INTRODUCTION

Genome-wide association studies (GWAS) have identified a large number of genetic risk variants
associated with complex traits, with over 250,000 single nucleotide polymorphism (SNP)-trait
associations tagged as significant in the NHGRI-EBI GWAS Catalog (Buniello et al., 2018). However,
the specific biological mechanisms through which the identified genetic variants affect these traits
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have yet to be elucidated. Genetic variants may influence complex
traits by altering gene expression and, consequently, protein
abundance. These genetic variants may be within the
regulatory sequences or secondary motifs of the target gene
(cis regulation), or may affect genes at larger genomic
distances by modifying upstream regulators which interact
with the cis-regulatory sequences (Williams et al., 2007).

Transcriptome-wide association studies (TWAS) aim to
provide insights into the specific mechanisms through which
variants affect traits. In TWAS, the gene expression of GWAS
samples is predicted with the aid of an eQTL dataset; the
predicted expression is then analysed for any association with
the trait of interest. Unlike approaches that examine gene
expression and genetic variants in a pairwise manner, TWAS
consider the combinatory effects of all genetic variants within a
pre-defined window of the target gene, hence it is especially
effective at detecting novel susceptibility loci when multiple
variants influence expression. TWAS have proved useful as a
stepping stone to generate new insights to a range of complex
traits, including schizophrenia (Gusev et al., 2018), glioma
(Strunz et al., 2020), prostate cancer (Mancuso et al., 2018),
and age-related macular degeneration (Atkins et al., 2019).

Existing TWAS methods can be categorised into two groups,
depending on whether they use individual-level or summary-level
GWAS data. PrediXcan (Gamazon et al., 2015) and CoMM (Yang
et al., 2018) use individual-level GWAS data, while S-PrediXcan
(Barbeira et al., 2018) and CoMM-S2 (Yang et al., 2020) use
summary-level GWAS data in conjunction with a matching
reference panel to estimate linkage disequilibrium. Both
CoMM and CoMM-S2 account for the imputation uncertainty
in the prediction step and thus are more powerful in identifying
expression-trait associations than other methods. However, these
methods are limited by the availability of individual-level
transcriptome data, and they neglect the ready accessibility of
summary-level eQTL datasets. Datasets of eQTL summary
statistics are maintained by various consortia including the
eQTLGen Consortium (Võsa et al., 2018) and the GTEx
Consortium (The GTEx Consortium, 2020). The ability to
integrate summary-level eQTL data and summary-level GWAS
data would broaden the scope of studies to which TWAS can be
applied.

Here we introduce a powerful strategy that integrates eQTL
summary statistics (SNP-expression correlation), GWAS
summary statistics (SNP-phenotype correlation), and linkage
disequilibrium information from reference panels (SNP-SNP
correlation) to assess the association between the cis
component of expression and trait. We extend CoMM-S2, a
likelihood-based method which uses individual-level eQTL
data to assess expression-trait association, and propose a
probabilistic model, Collaborative Mixed Models using
Summary Statistics from eQTL and GWAS (CoMM-S4).
Compared with CoMM-S2, a major advantage of CoMM-S4 is
its ability to use summary-level eQTL data and integrate them
with GWAS summary statistics. In CoMM-S4, a joint likelihood is
constructed using summary statistics from GWAS and eQTL
studies, as well as SNP correlation information from reference
panels representative of the GWAS and eQTL populations. We

develop an efficient algorithm based on variational Bayes
expectation-maximization and parameter expansion (PX-
VBEM). To examine the expression-trait association, a
likelihood ratio test is constructed.

The performance of CoMM-S4 is assessed in simulated data,
and is also applied to traits from the NFBC1966 cohort (Sabatti
et al., 2009) and Biobank Japan (Ishigaki et al., 2020). The TWAS
analysis using GWAS summary statistics from NFBC1966 and
eQTL summary statistics from eQTLGen suggest novel
susceptibility loci for lipid traits, glucose levels, insulin levels
and C-reactive protein, when compared against known
susceptibility loci in the GWAS Catalog (Buniello et al., 2018).
Moreover, the TWAS analysis using GWAS summary statistics
from Biobank Japan and eQTL summary statistics from
eQTLGen and GTEx reiterate the importance of MHC
molecules, interferon-gamma signalling and apoptosis for
several autoimmune and infection-related traits (rheumatoid
arthritis, Graves’ disease, chronic hepatitis B and chronic
hepatitis C), and suggest novel susceptibility loci for
cardiovascular traits (congestive heart failure, ischemic stroke,
peripheral artery disease) and osteoporosis.

2 MATERIALS AND METHODS

2.1 Notation
We denote the individual-level eQTL dataset for n1 samples by
{Y,W1}, whereY is the gene expressionmatrix for g genes andW1

is the genotype matrix for m SNP positions. For the j-th gene, let
yj denote the gene expression vector, and W1j ∈ Rn1×mj denote
the centered genotype matrix for the mj SNPs within a pre-
defined distance from the gene. In addition, we denote the
individual-level GWAS dataset for n2 samples by {z, W2},
where z is the phenotype vector and W2 is the genotype
matrix. Similarly, for the j-th gene, W2j ∈ Rn2×mj denotes the
centered genotype matrix for the mj SNPs within a pre-defined
distance from the gene.

We have the summary statistics, in the form of z-scores, from
the analysis of genetic variant-gene expression pairs in the eQTL
dataset. We also have the summary statistics from single-variate
analysis in the GWAS dataset. We denote the eQTL z-scores for
the j-th gene by γ̂1j ∈ Rmj , and the GWAS z-scores by γ̂2j ∈ Rmj

(j � 1, . . . , g). To model linkage disequilibrium (LD) in the eQTL
and GWAS datasets, we require the SNP correlation matrices
R̂1j ∈ Rmj×mj and R̂2j ∈ Rmj×mj (j � 1, . . . , g) estimated using
reference panels that correspond to the eQTL and GWAS
populations respectively.

2.2 Model
The relationship between the j-th gene expression yj and genotype
W1j is modelled as

yj � W1jβ1j + e1, (1)

where β1j � [β1j,1, . . . , β1j,mj
]T is an mj-vector of effect sizes, and

e1 ∼ N (0, σ2e1I) is an n1-vector of independent noise. Similarly,
the relationship between trait z and genotype W2j is modelled as
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z � W2jβ2j + e2, (2)

where β2j � [β2j,1, . . . , β2j,mj
]T is an mj-vector of effect sizes, and

e2 ∼ N (0, σ2e2I) is an n2-vector of independent noise. We further
model the GWAS effect size as β2j � αjβ1j, where αj can be
interpreted as the effect of gene expression on phenotype under
the assumption of no horizontal pleiotropy. To perform a
likelihood ratio test for the null hypothesis αj � 0, we first
derive the form of the log-likelihood and develop an efficient
algorithm to estimate its parameters.

Let γ̂1j � [ĉ1j,1, . . . , ĉ1j,mj
]T and γ̂2j � [ĉ2j,1, . . . , ĉ2j,mj

]T
denote the z-scores for the eQTL and GWAS data,
respectively. Let ŝ1j � [ŝ1j,1, . . . , ŝ1j,mj]T and ŝ2j �
[ŝ2j,1, . . . , ŝ2j,mj]T denote the standard errors of the effect
size estimators, β̂1j and β̂2j, in the eQTL and GWAS analyses
respectively. Using the approximated likelihood in regression
with summary statistics (RSS) (Zhu and Stephens, 2017), the
distribution for β̂ij can be written as β̂ij|βij, R̂ij,
Ŝij ∼ N (ŜijR̂ijŜ

−1
ij βij, ŜijR̂ijŜij), where Ŝij � diag(ŝij) (i � 1, 2).

Details regarding this approximated distribution can also be
found in related literature (Hormozdiari et al., 2014; Huang
et al., 2021). In practice, we may observe only the z-scores for
the summary statistics. In this case, the distribution of the eQTL
z-scores γ̂1j � Ŝ

−1
1j β̂1j can be written as

γ̂1j|γj, R̂1j ∼ N (R̂1jγj, R̂1j), (3)

where γj � Ŝ
−1
1j β1j. Similarly, the distribution of the GWAS

z-scores γ̂2j can be approximated by

γ̂2j|γj, R̂2j ∼ N (αjcjR̂2jγj, R̂2j), (4)

where cj ≈
σ̂yj
σ̂z

��
n2
n1

√
when the summary statistics are generated

using simple linear regression, σ̂yj is the sample standard
deviation for the expression of gene j, and σ̂z is the sample
standard deviation of the trait (details in Supplementary
Material). Furthermore, a Gaussian prior is used for γj,

γj ∼ N (0, σ2
cj
Imj), (5)

and the complete-data likelihood can be written as

Pr(γ̂1j, γ̂2j, γj|R̂1j, R̂2j; θ) � ∏2
i�1

pr(γ̂ij|γj, R̂ij)pr(γj), (6)

where θ � {σ2cj , αj′} is the collection of parameters and αj′ � αjcj.
We are primarily interested in the effect αj of gene expression

on trait. Notably, testing the hypothesis of whether αj � 0 is
equivalent to testing whether αj′ � 0, as cj is a positive constant.
The accuracy of the above distributional approximations depend
on the sample sizes of the eQTL and GWAS datasets, as well as
the number of SNPs/genes associated with the gene expression/
phenotype. The larger the sample size and the higher the degree of
polygenecity, the greater the estimation accuracy.

2.3 Parameter Expansion-Variational Bayes
Expectation-Maximization Algorithm
An efficient algorithm is needed to estimate the parameters of the
model. Although the EM algorithm is widely used and has a

highly stable performance, it requires inverting the matrix R̂1j

and R̂2j in each iteration. To speed up the computational process,
we use Variational Bayes Expectation-Maximization (VBEM),
augmented with parameter expansion (PX) (Liu et al., 1998). The
parameter-expanded model is

γ̂1j|γj, R̂1j ∼ N (τR̂1jγj, R̂1j), (7)

where the τ ∈ R is the expanded parameter. The model
parameters are θ � {σ2cj , αj, τ}, and the expanded model reduces

to the original one when τ � 1. In VBEM, the marginal log-
likelihood can be decomposed into the evidence lower bound
(ELBO) and the Kullback-Liebler (KL) divergence between the
variational and true posterior distribution of the latent variable γj:

log Pr(γ̂1j, γ̂2j|R̂1j, R̂2j; θ) � L(q) +KL(q‖p), (8)

where

L(q) � ∫
γj

q(γj)log
Pr(γ̂1j, γ̂2j, γj|R̂1j, R̂2j; θ)

q(γj)
dγj

KL(q‖p) � ∫
γj

q(γj)log
q(γj)

p(γj|γ̂1j, γ̂2j, R̂1j, R̂2j; θ)
dγj.

(9)

We adopt the mean-field form of the variational posterior
distribution

q(γj) � ∏mj

k�1
q(cjk) (10)

to speed up the computational process. The analytical form of the
variational posterior distribution is obtained by minimizing the
KL divergence, and the derived variational parameters are plugged
back into the ELBO. The model parameters are then updated by
setting the derivative of the ELBO with respect to the parameters
equal to zero. By maximizing the ELBO with respect to the
expanded parameter τ, we are able to further increase the
ELBO and speed up the convergence process. Since the
parameter-expanded model reduces to the original model when
τ � 1, the original model can be recovered by incorporating τ into
the model parameters, as outlined in the Supplementary Material.

2.4 Likelihood Ratio Test to Evaluate
Expression-Trait Association
We perform a likelihood ratio test for expression-trait
association:

H0 : αj � 0 Ha : αj ≠ 0, (11)

with the assumption of no horizontal pleiotropy. This is
equivalent to testing

H0 : cjαj � 0 Ha : cjαj ≠ 0, (12)

since cj ≠ 0. The test statistic for the j-th gene is

Λj � 2 log Pr(γ̂1j, γ̂2j|R̂1j, R̂2j; θ̂
ML) − log Pr(γ̂1j, γ̂2j|R̂1j, R̂2j; θ̂

ML

0 )( ),
(13)
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where θ̂
ML
0 and θ̂

ML
are parameter estimates obtained by

maximizing the marginal likelihood under H0 and H0 ∪ Ha,
respectively. The test statistic asymptotically follows the χ2df�1
under the null hypothesis (Van der Vaart, 2000), and the
calculation of the marginal log-likelihood is detailed in the
Supplementary Material. In practice, horizontal pleiotropy
may be present, and the null hypothesis for CoMM-S4

becomes “there is no expression-trait effect and no horizontal
pleitoropy.” As with other TWAS methods, horizontal pleiotropy
could produce significant associations and inflation of test
statistics (Gusev et al., 2016; Barbeira et al., 2018).

3 RESULTS

3.1 Simulation Studies
In the simulation studies, we primarily focus on a) comparing the
likelihood ratio test statistics from CoMM-S4 and CoMM-S2, b)
assessing the type-I error of CoMM-S4 under the null hypothesis
(h2T � 0), and c) comparing the power of CoMM-S4, CoMM-S2

and S-PrediXcan.

3.1.1 Simulation Settings
When comparing the test statistic and type-I error of CoMM-S4

with CoMM-S2, the sample sizes of the eQTL and GWAS datasets
are n1 � 5, 000 and n2 � 5, 000 respectively. In the power
comparison with CoMM-S2 and S-PrediXcan, the sample sizes
are n1 � 500 and n2 � 10, 000 respectively. For all simulation
scenarios, the sample size of the reference panels for the eQTL
and GWAS datasets are n3 � 400 and n4 � 400 respectively.

A multivariate normal distribution with the covariance
structure N (0,Σ(ρ)) is used to generate a prototype of the
genotype matrix, where the parameter ρ ∈{0.2, 0.5, 0.8}
determines the strength of correlations among the SNPs.
Subsequently, minor allele frequencies are generated from the
uniform distribution U(0.05, 0.5). At each SNP position, the
probability that an individual has 0, 1 or 2 minor alleles is
calculated using the minor allele frequencies, assuming Hardy-
Weinberg Equilibrium; individuals are assigned genotype values
such that the desired genotype probabilities and minor allele
frequencies are achieved.

We generate gene expression values according to yj � W1jγj +
e1, where e1 ∼ N (0, σ2e1In1). The effect sizes cjk are generated fromN (0, σ2cj ) with probability π and set to 0 with probability 1 − π,
where π denotes the sparsity level and k indexes the genetic
variants within a pre-defined window of gene j. To simulate
distinct scenarios, we choose equally-spaced cellular heritability
levels (h2C) of 0.01, 0.03, 0.05, 0.07, and 0.09, and sparsity levels of
0.1, 0.2, 0.3, 0.4, 0.5, and 1. Complex traits are generated
according to z � αjW2jγj + e2 and the number of cis-SNPs is
set to 100. The trait level heritability (h2T) is set to 0 under the null
hypothesis and 0.001, 0.002, and 0.003 under the alternative
hypothesis.

The corresponding summary statistics were generated by
applying a simple linear regression to the individual-level
eQTL and GWAS datasets. Further details on the simulation
procedure are in the Supplementary Material.

3.1.2 Simulation Results
There is a high concordance between the likelihood ratio test
statistics from CoMM-S4 and CoMM-S2, which suggests that
eQTL summary statistics can generally provide comparable
power as individual-level data. In the scatter plot of CoMM-S4

and CoMM-S2 test statistics, the R2 value is greater than 80% and
the simple linear regression slope ranges from 0.88 to 1 (Figure 1
and Supplementay Figures S1–S6). Moreover, the QQ plots
indicate that the observed p-values from CoMM-S4 are close
to the expected p-values under the null hypothesis of no
expression-trait association (Figure 2, Supplementary Figures
S7–S9), indicating good type-I error control.

The power of CoMM-S4, CoMM-S2 and S-PrediXcan is also
evaluated in the following scenarios: i) the eQTL and GWAS
populations have the same LD structure, ii) the eQTL and
GWAS populations have different LD structures, and iii) the
eQTL and GWAS populations have different LD structures and
different gene expression architectures, i.e. the set of cis-SNPs for the
two populations only partially overlap (Figure 3, Supplementary
Figures S10–S14; simulation details in Supplementary Material).

Across the scenarios considered, the greatest gains in power
were observed when the cellular heritability is low (h2C � 0.01)
and the trait heritability is high (h2T � 0.003). When the eQTL and
GWAS samples are drawn from the same population, there is
71% power for CoMM-S4, compared with 30 and 16% power for
S-PrediXcan (ridge) and S-PrediXcan (elastic net), respectively
(sparsity � 0.1; Figure 3). When the eQTL and GWAS samples
have distinct LD structures, there is 76% power for CoMM-S4,
compared with 38 and 15% power for S-PrediXcan (ridge) and
S-PrediXcan (elastic net), respectively (sparsity � 0.1; Figure S13).
When the eQTL and GWAS samples have distinct LD structures
and different gene expression architectures, there is 67% power
for CoMM-S4, compared with 21 and 10% power for S-PrediXcan
(ridge) and S-PrediXcan (elastic net), respectively (sparsity � 0.1;
Supplementary Figure S14).

When the cellular heritability is large (h2C � 0.09) and the gene
expression architecture is the same in both the eQTL and GWAS
datasets, the power of CoMM-S4 is comparable to S-PrediXcan
(Figure 3; Supplementary Figures S10–S13). However, when the
eQTL and GWAS samples have distinct LD structures and
different gene expression architectures, CoMM-S4 shows some
improvement in power over S-PrediXcan: there is 61% power for
CoMM-S4, compared with 39 and 48% power for S-PrediXcan
(ridge) and S-PrediXcan (elastic net), respectively (h2T � 0.003,
sparsity � 0.1; Supplementary Figure S14).

3.2 Real Data Analysis
3.2.1 NFBC1966 Cohort
In the real data analysis, we apply CoMM-S4 to the NFBC1966
dataset (Sabatti et al., 2009). The NFBC1966 dataset contains
phenotype data for the following ten traits: body mass index
(BMI), systolic blood pressure (SysBP), diastolic blood pressure
(DiaBP), high-density lipoprotein cholesterol (HDL-C), low-
density lipoprotein cholesterol (LDL-C), triglycerides (TG),
total cholesterol (TC), insulin levels, glucose levels and
C-reactive protein (CRP). The summary statistics were
generated by applying simple linear regression to individual-
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level NFBC1966 using plink (Purcell et al., 2007). Summary
statistics of cis-eQTLs from eQTLGen Consortium (Võsa
et al., 2018) were used. In addition, linkage disequilibrium for
the eQTL and GWAS datasets was estimated using the 1,000
Genomes dataset (The 1000 Genomes Project Consortium, 2015)
and 400 NFBC subsamples, respectively.

The genomic inflation factor is between 0.91 and 1.09, and the
number of significant genes (p-value < 5 × 10−6) identified by
CoMM-S4 is between 0 and 64 (Table 1). For the trait HDL, CoMM-
S4 identified 61 genes, of which 20 are reported to be associated with
HDL in NHGRI-EBI GWAS Catalog (Buniello et al., 2018). For the
trait LDL, CoMM-S4 detected 64 genes, of which 13 are reported in
GWAS Catalog. The corresponding QQ plots for these ten traits are
illustrated in Supplementary Figure S15.

3.2.2 Biobank Japan
We apply CoMM-S4 to GWAS summary statistics from Biobank
Japan (BBJ) (Ishigaki et al., 2020). We considered two
autoimmune traits (Graves’ disease, rheumatoid arthritis),
four cardiovascular traits (cerebral aneurysm, congestive
heart failure, ischemic stroke, peripheral artery disease), two
infection-related traits (chronic hepatitis B, chronic hepatitis C)
and osteoporosis. The TWAS analysis is performed using

whole-blood cis-eQTL summary statistics from two studies,
eQTLGen (Võsa et al., 2018) and GTEx (v8) (The GTEx
Consortium, 2020), to assess the robustness of TWAS results
to choice of eQTL dataset. The GTEx and eQTLGen datasets
contain association results for 19,599 and 19,176 genes
respectively, of which 16,692 genes are in common. Linkage
disequilibrium corresponding to the GWAS and eQTL datasets
were estimated using Japanese and European samples from the
1,000 Genomes Project (The 1000 Genomes Project
Consortium, 2015), respectively. As population differences in
eQTL architecture may reduce gene expression imputation
accuracy for the GWAS samples, it is preferable for the
eQTL and GWAS data to be collected from the same
population (Keys et al., 2020). However, the availability of
highly-powered eQTL studies may be limited for the
population of interest. Moreover, populations that are closely
related still provide good power to detect associations between
gene expression and trait (Keys et al., 2020), and the relatively
high concordance rate (68.8%) of cis-regulation in European
and Japanese eQTL studies (Narahara et al., 2014) suggest that
European eQTL studies could serve as a reasonable proxy.

TWAS was performed to find genetic loci that may be
associated with the traits of interest. For traits where TWAS

FIGURE 1 | The scatter plot of CoMM-S4 vs. CoMM-S2, the model setting is n1 � 5,000, n2 � 5,000, n3 � 400, n4 � 400,mj � 100, ρ � 0.5, π � 0.2, the number of
replication is 2,000.
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identified more than 100 statistically significant genes, we further
carried out an enrichment analysis based on gene ontology (GO)
terms using Enrichr (Chen et al., 2013). The genomic inflation
factor is between 1.06 and 1.30 when eQTL summary statistics

were obtained from eQTLGen, and between 0.87 and 1.26 when
eQTL summary statistics were obtained from GTEx (v8) whole
blood (Table 2). The number of identified genes (p-value < 5 ×
10−6) ranged from 2 to 450, and there is a high degree of overlap

FIGURE 2 | The QQ plot of CoMM-S4, the model setting is n1 � 5,000, n2 � 5,000, n3 � 400, n4 � 400, ρ � 0.5, the number of replication is 2,000.

FIGURE 3 | The empirical type I error (h2T � 0) and power (h2T >0) of CoMM-S4, CoMM-S2, S-PrediXcan (ridge) and S-PrediXcan (elastic net) across 500
replications. The model setting is n1 � 500, n2 � 10,000, n3 � 400, n4 � 400, ρ � 0.5.
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between the genes identified in the two analyses (Table 2),
indicating robustness to eQTL dataset choice. Moreover,
around half or more of the genes identified by CoMM-S4 have
not been previously reported as significant in the GWAS Catalog
or the Biobank GWAS analysis (Table 2).

The TWAS results recapitulate known or proposed biological
mechanisms that give rise to the studied traits. GWAS and animal
model studies have implicatedMHCmolecules, interferon-gamma
signalling and apoptosis in the development of Graves’ disease
(Morshed and Davies, 2015; Okada et al., 2015; Smith and
Hegedüs, 2016), rheumatoid arthritis (Castañeda-Delgado et al.,
2017; Okada et al., 2019), and chronic hepatitis B infection (Ebert
et al., 2015; Zhu et al., 2016). Pathway enrichment analyses
recapitulate these findings. For Graves’ disease, 143 of the 245
associated genes (TWAS p-value < 5 × 10−8) are involved in GO
biological processes, and the 23 significantly enriched processes
(FDR<0.05, Supplementary Table S3) include interferon-gamma-
mediated signaling pathway (p � 6.86 × 10−10), as well as antigen
processing and presentation of peptide antigen via MHC class I
(p � 3.14 × 10−8) and via MHC class II (p � 2.76 × 10−6). For
rheumatoid arthritis, 137 of the 220 associated genes are involved
in GO biological processes, and the 25 significantly enriched

processes (Supplementary Table S4) include interferon-gamma-
mediated signaling pathway (p � 1.20 × 10−11), and antigen
processing and presentation of exogenous peptide antigen via
MHC class II (p � 4.21 × 10−11). For chronic hepatitis B, 91 of
the 132 associated genes are involved in GO biological processes,
and the 32 significantly enriched processes (Supplementary Table
S5) include antigen processing and presentation of exogenous
peptide antigen via MHC class II (p � 2.28 × 10−7) and positive
regulation of apoptotic cell clearance (p � 9.21 × 10−6).

Moreover, CoMM-S4 is able to identify novel susceptibility
loci by aggregating the contributions of SNPs with smaller effect
sizes. A comparison of the GWAS results with CoMM-S4 results
based on the highly-powered eQTLGen study shows that the
TWAS signal is larger than the GWAS signal at chr17q12 for
congestive heart failure (CHF), chr17p13.1 for peripheral artery
disease (PAD), chr17q21.31 for ischemic stroke, and chr6q22.33
for osteoporosis (Supplementary Figures S17–S25). Plausible
mechanisms can be identified for genes at these loci, which may
serve as a stepping stone for further investigation. For CHF, the
second largest signal at chr17q12 corresponds to FBXL20 (p �
1.33 × 10−5), which negatively regulates autophagy (Mathiassen
and Cecconi, 2017). Reduced autophagy contributes to
accelerated cardiac ageing and heart failure (Nishida et al.,
2009; Abdellatif et al., 2018; Dong et al., 2019), and may serve
as a link between FBXL20 and CHF. For PAD, the second largest
signal at chr17p13.1 corresponds to GABARAP (p � 8.63 × 10−8),
which is involved in autophagy initiation and autophagosome-
lysosome fusion (Schaaf et al., 2016). Impaired autophagy
aggravates atherosclerosis (De Meyer et al., 2015), and may
serve as a link between GABARAP and PAD.

For ischemic stroke, the TWAS signal is larger than the GWAS
signal at chr17q21.31. The top association corresponds to
HEXIM1 (p � 1.07 × 10−6), which modulates hypoxia-
inducible factor-1 alpha and vascular endothelial growth factor
(Ogba et al., 2010; Ketchart et al., 2013), angiogenic factors which
may influence stroke risk by mediating neovascularization in
atherosclerotic lesions, potentially precipitating thrombi that
obstruct blood flow to the brain (Bentzon et al., 2014;
Chistiakov et al., 2015; Camaré et al., 2017). For osteoporosis,

TABLE 1 | The genomic inflation factor (GIF) and the number of associated genes
(p-value <5 × 10−6) found by CoMM-S4 for the ten NFBC traits. The number
within the parentheses is the number of associated genes reported in the NHGRI-
EBI GWAS Catalog (Buniello et al., 2018).

GIF No. of associated
genes (reported in
GWAS Catalog)

CRP 0.94 25 (5)
Glucose 0.99 4 (1)
Insulin 0.86 1 (0)
TC 1.06 26 (4)
HDL 1.09 61 (20)
LDL 1.09 64 (13)
TG 1.06 2 (0)
BMI 0.98 3 (1)
SysBP 1.05 0 (0)
DiaBP 0.91 0 (0)

TABLE 2 | The genomic inflation factor and number of associated genes (p-value <5 × 10−6) for 9 traits in the Biobank Japan dataset. Two eQTL datasets were used:
eQTLGen and GTEx. In parentheses are the number of associated genes that are also present in the other eQTL dataset’s gene set. The last column shows the number
of associated genes that are common to both the eQTLGen and GTEx analyses; in parentheses are the number of associated genes that are statistically significant in the
GWAS analysis (p-value <5 × 10−8), and the number of associated genes reported in the GWAS Catalog.

eQTLGen GTEx eQTLGen and GTEx

GIF No. associated genes
(No. in GTEx)

GIF No. associated genes
(No. in eQTLGen)

No. common associated genes (sig. in BBJ GWAS;
reported in GWAS Catalog)

Graves’ disease 1.17 283 (247) 1.09 454 (364) 245 (125; 7)
Rheumatoid arthritis 1.30 266 (230) 1.26 402 (323) 220 (134; 22)
Chronic hepatitis B 1.06 148 (133) 0.87 211 (172) 132 (70; 6)
Chronic hepatitis C 1.09 73 (66) 1.00 163 (145) 64 (4; 1)
Ischemic stroke 1.25 23 (21) 1.24 60 (56) 19 (3; 3)
Congestive heart failure 1.18 4 (2) 1.13 10 (9) 1 (0; 0)
Peripheral artery disease 1.13 13 (10) 0.99 45 (37) 7 (0; 0)
Cerebral aneurysm 1.11 4 (4) 0.99 6 (6) 2 (0; 0)
Osteoporosis 1.07 2 (2) 0.93 7 (6) 1 (0; 0)
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the TWAS signal is larger than the GWAS signal at chr6q22.33.
The top association corresponds to RNF146 (p � 1.05 × 10−8),
which was shown to promote osteoblast development while
antagonizing osteoclast differentiation in mice (Matsumoto
et al., 2017). Notably, none of the genes described above are
reported as significant in the GWAS Catalog or the Biobank
Japan GWAS analysis, thus highlighting the potential utility of
applying CoMM-S4 to identify relevant genes.

On the other hand, the TWAS results are limited by the data
availability in the eQTL dataset. Although the TWAS results
recapitulate most GWAS results, the Manhattan plots also show
some GWAS signals without corresponding TWAS signals
(Supplementary Figures S17–S25), in part due to the relative
sparsity of genes in the eQTL dataset. A further limitation is that
TWAS provide information about association, rather than
causality. In the present analysis, TMEM184C and PRMT10
showed significant association with cerebral aneurysm.
However, a previous report has indicated that these are not
the causal genes. Instead, the likely causal gene is EDNRA,
which is in the same locus as TMEM184C and PRMT10 and
regulates response to hemodynamic stress (Low et al., 2012). As
EDNRA is not present in any of the eQTL datasets, it could not be
evaluated in this analysis.

In addition, we compare the CoMM-S4 results with
S-PrediXcan (elastic net) results for the 9 Biobank Japan traits.
For S-PrediXcan, gene expression prediction weights for GTEx
(v8) whole blood were obtained from the elastic net model in
PredictDB (http://predictdb.org/), and the covariance matrix
used to calculate the test statistics is based on Japanese
samples from the 1,000 Genomes Project. To allow for fair
comparison, we consider only genes that are common to both
the CoMM-S4 and S-PrediXcan analyses. Compared with
S-PrediXcan (elastic net), CoMM-S4 identifies a similar
number of statistically significant genes for 5 Biobank Japan
traits (cerebral aneurysm, congestive heart failure, ischemic
stroke, peripheral artery disease, and osteoporosis), and more
statistically significant genes for 4 Biobank Japan traits (Graves’
disease, rheumatoid arthritis, chronic hepatitis C, and chronic
hepatitis B) (Supplementary Table S2). The tail behaviour in the
QQ plots indicate that the p-values tend to be smaller for
statistically significant genes (Supplementary Figure S16). The
higher number of identified genes in the Biobank Japan traits is
consistent with the higher power demonstrated in simulations.

4 DISCUSSION

In this article, we have developed a collaborative mixed model
using both summary statistics from eQTL and GWAS to examine
the expression-trait associations in transcriptome-wide
association studies. We compared the performance between
CoMM-S4 and CoMM-S2, and simulation results demonstrate
that CoMM-S4 performs as well as CoMM-S2 even though the
former uses only summary-level data. Moreover, our analysis of
the NFBC1966 cohort has suggested novel susceptibility loci for
glucose levels, insulin levels, C-reactive protein, BMI and lipid
traits. Our analysis of Biobank Japan traits has similarly suggested

novel susceptibility loci for congestive heart failure, ischemic
stroke, peripheral artery disease and osteoporosis, and has also
recapitulated known and putative mechanisms for Graves’ disease,
rheumatoid arthritis, chronic hepatitis B and chronic hepatitis C.

CoMM-S4 has several advantages over CoMM-S2 and
S-PrediXcan. Compared to stage-wise methods like S-PrediXcan,
CoMM-S4 accounts for imputation uncertainty, which makes it
statistically more powerful in identifying expression-trait
associations. Moreover, CoMM-S4 requires only summary-level
data (z-scores) from eQTL studies, instead of individual-level
data. This allows us to make use of eQTL large-scale studies and
meta-analyses where individual-level data may be unavailable.

On the other hand, likelihood-ratio tests are less
computationally efficient than score-based tests; the
relationship between these tests in the context of individual-level
data (CoMM and SKAT, respectively) are discussed in detail in
(Yang et al., 2018). To reduce the computational time of CoMM-S4,
we have estimated the parameters using variational inference and
parameter expansion. Finally, CoMM-S4, like S-PrediXcan, is not
able to distinguish between causal relationship and horizontal
pleiotropy. In practice, we can first perform a TWAS to identify
regions that show association with the trait of interest, and then
applyMendelian randomization analysis to draw causal conclusions.
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