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Background: Esophageal adenocarcinoma (EA) arises from Barrett’s epithelium (BE),
and chronic gastroesophageal reflux disease is considered the strongest risk factor for
disease progression. All BE patients undergo acid suppressive therapy, surveillance, and
BE removal by surgery or endoscopic ablation, yet the incidence of EAC continues to
increase. Despite the known side effects and mortality, the one-size-fits-all approach is
the standard clinical management as there are no reliable methods for risk stratification.

Methods: Paired-end Illumina NextSeq500 RNA sequencing was performed on total
RNA extracted from 20-week intervals (0, 20, 40, and 60 W) of an in vitro BE
carcinogenesis (BEC) model to construct time series global gene expression patterns
(GEPs). The cells from two strategic time points (20 and 40 W) based on the GEPs were
grown for another 20 weeks, with and without further acid and bile salt (ABS) stimulation,
and the recurrent neoplastic cell phenotypes were evaluated.

Results: Hierarchical clustering of 866 genes with ≥ twofold change in transcript
levels across the four time points revealed maximum variation between the BEC20W
and BEC40W cells. Enrichment analysis confirmed that the genes altered ≥ twofold
during this window period associated with carcinogenesis and malignancy. Intriguingly,
the BEC20W cells required further ABS exposure to gain neoplastic changes, but the
BEC40W cells progressed to malignant transformation after 20 weeks even in the
absence of additional ABS.

Discussion: The transcriptomic gene expression patterns in the BEC model
demonstrate evidence of a clear threshold in the progression of BE to malignancy.
Catastrophic transcriptomic changes during a window period culminate in the
commitment of the BE cells to a “point of no return,” and removal of ABS is not effective
in preventing their malignant transformation. Discerning this “point of no return” during
BE surveillance by tracking the GEPs has the potential to evaluate risk of BE progression
and enable personalized clinical management.

Keywords: Barrett’s epithelium carcinogenesis, esophageal adenocarcinoma, cell culture model,
gastroesophageal reflux, gene expression patterns
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INTRODUCTION

Esophageal adenocarcinoma (EA) is a morbid cancer with less
than 15% 5-year survival (Eloubeidi et al., 2003; Polednak,
2003). Over the last few decades, the EA incidence rate has
increased more than any other type of cancer in the United States,
Europe, and Asia (Fernandes et al., 2006; Shibata et al., 2008;
Pohl et al., 2010; Edgren et al., 2013; Hur et al., 2013). Flawed
anatomical and physiological conditions in the patients (Coppola
and Karl, 1999; Brown et al., 2008; Jung, 2011) can lead to chronic
reflux of acidic bile from the stomach into the esophagus, a
condition called gastroesophageal reflux disease (GERD) (Runge
et al., 2015). GERD is strongly implicated in the development of
specialized columnar metaplasia or Barrett’s epithelium (BE) at
the junction of the distal esophagus and the stomach (Lagergren
et al., 1999; Hofstetter et al., 2001). This specialized tissue, BE, is
a known precursor of EA, posing a 30- to 120-fold higher risk
compared with the non-BE population (Wild and Hardie, 2003).
A recent retrospective study that explored differences between
progressors and non-progressors in a large cohort of 460 patients
previously diagnosed with BE and followed for over a 21-year
period confirmed the presence of LGD as a risk factor for EAC
(Kambhampati et al., 2020). The risk is known to escalate as
metaplasia progresses from low-grade dysplasia (LGD) to high-
grade dysplasia (HGD), although there exists substantial evidence
that most patients with BE never progress to EA (Conio et al.,
2003; Sharma et al., 2006), and only 0.5–1% of patients with BE
develop EA every year (Thomas et al., 2007; Yousef et al., 2008;
Desai et al., 2012).

Patients with chronic GERD, regardless of their individual risk
of disease progression, are prescribed acid-suppressive drugs, BE
surveillance (upon confirmation of BE metaplasia), and antireflux
surgery (after dysplastic changes are noted) as part of the standard
of care in clinical settings. These acid-suppressive approaches
are based on claims of regression of BE and reduced risk of
development of dysplasia and EA in some cases (Gore et al., 1993;
Neumann et al., 1995; Malesci et al., 1996; DeMeester et al., 1998;
Low et al., 1999; Peters et al., 1999; Hofstetter et al., 2001; El-Serag
et al., 2004; Hillman et al., 2004). However, long-term proton
pump inhibitor (PPI) therapy compromises quality of life and
leads to multiorgan complications (Ciovica et al., 2006). They are
often ineffective in patients with refractory GERD or in patients
with an anatomical defect. Antireflux surgery (fundoplication),
advocated for dysplastic stages of BE, is also associated with risk
of mortality and compromised quality of life (Spechler et al.,
2001). Endoscopic methods of thermal and non-thermal BE
ablation alongside “antacid therapy” have gained recognition,
but the safety and long-term benefits from these procedures
remain to be established. Also, recurrence of BE after complete
eradication of intestinal metaplasia within 1 year is a critical issue,
and there are no definite guidelines for surveillance of patients
after these surgical procedures (Komanduri et al., 2018).

Apart from the lack of therapeutic choices to prevent BE
progression, the inability to discriminate between progressive
and non-progressive dysplastic BE compromises EA risk
prediction and complicates disease management. Several groups
of investigators have utilized clinical samples from different

histological grades of BE to identify stage-specific molecular
signatures for predicting risk of BE progression (Brabender et al.,
2004; Razvi et al., 2007; Dulak et al., 2013; Varghese et al., 2015).
Ironically, no consistent molecular signature/s for BE progression
have yet been identified.

This report postulates that there is a distinctive window period
of catastrophic changes and commitment to BE carcinogenesis
identifiable from global gene expression patterns (GEPs) of
biopsy samples collected from multiple time points during EA
surveillance that can indicate the course of the disease. Using
a mathematical algorithm and RNA-seq datasets from time
series samples collected every 20 weeks (0, 20, 40, and 60 W)
from a previously described BE carcinogenesis (BEC) model
(Das et al., 2011), we demonstrate GEPs coinciding with the
progressive neoplastic changes in the non-neoplastic human
Barrett’s epithelial cells (BAR-T) due to prolonged intermittent
acid and bile salt (ABS) exposure. These GEPs highlight a window
period of remarkable changes in expression of genes associated
with carcinogenesis between BEC20W and BEC40W time points
that lead to commitment of the BEC40W cells to malignant
transformation, i.e., “point of no return” without the need for any
further ABS stimuli. The ability to discern this window period
that propels the cells to the “point of no return” by tracking
GEPs during surveillance for EA will add to the current paradigm
in stratifying patients who respond to acid suppression from
those who may not, and select for those who require, mucosal
resection or radiofrequency ablation or carry druggable targets
for preventing BE progression to EA.

MATERIALS AND METHODS

Cell Culture and Acidic Bile Salt Exposure
The BE carcinogenesis (BEC) model, described elsewhere (Das
et al., 2011), was derived after exposing the human Barrett’s
epithelial cell line (BAR-T) to acidified (pH = 4) bile salt GCDC
(glycochenodeoxycholic acid, physiological component of gastric
refluxate) referred to as acidic bile salt or ABS in text for
5 min every day for 1 year. The human telomerase (h-TERT)
immortalized BAR-T cell line (kind gift from Dr. Rhonda Souza,
Baylor University Medical Center at Dallas) was established from
the biopsies of a patient with non-dysplastic Barrett’s epithelium
(Jaiswal et al., 2007). The BEC model cells displayed characteristic
change in cell shape and clustering of cells after about 34 weeks of
ABS exposure, and malignant characteristics like loss of contact
inhibition (foci formation) and ability to grow in soft agar after
58 weeks and more of ABS exposure, as described earlier (Das
et al., 2011). The cells were frozen away in liquid nitrogen at
regular intervals and have been found to retain the characteristic
cellular properties like altered shape, clustering of cells, foci, and
soft agar colony formation after revival from liquid nitrogen
storage (Bajpai et al., 2012).

For the observations presented in this report, the BEC20W
and BEC40W cells were revived from liquid nitrogen storage
and split into two sets each. These time points were selected due
to their characteristic cellular phenotypes change in cell shape
and clustering of cells, loss of contact inhibition, ability to grow
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in soft agar reported earlier (Das et al., 2011). One set of cells
from each time point was exposed to ABS for another 20 weeks
(BEC20W + 20 weeks with ABS and BEC40W + 20 weeks
with ABS), and the other set was maintained in parallel
in cell culture conditions without any further ABS exposure
(BEC20W + 20 weeks without ABS and BEC40W + 20 weeks
without ABS). This was done to confirm the cellular changes
previously observed in the BEC model, and those characteristics
were used to evaluate the need for ABS exposure during
the critical window period (between BEC20W and BEC40W).
Therefore, the BEC20W + 20 weeks with ABS is a replicate of
BEC40W, and BEC40W + 20 weeks with ABS is a replicate of
BEC60W. All cell lines used in this experiment tested negative
for mycoplasma contamination using the Mycoplasma PCR
detection kit (Sigma).

Cell Shape and Microscopy
The cellular characteristics described above were the endpoints to
assess the neoplastic progression in BEC20W and BEC40W cells
in the presence or absence of further ABS exposure for another
20 weeks. A total of 0.02× 106 cells were plated into each well of
a six-well plate to observe the cell shape at low cell density, using
an Olympus CK40 microscope at× 45 magnification.

Colony Formation in Soft Agar
For evaluation of malignant phenotype, 6,000 cells were plated
per well in a six-well plate in growth medium containing
0.4% agar (500 µl per well); the base agar layer had growth
medium containing 0.8% agar (1 ml per well). Four weeks after
plating, the colonies were stained (cell transformation detection
assay, Chemicon) and counted. Two-sided two-sample t-test was
performed to compare three replicates each of the control and
ABS-exposed groups, and statistical significance was assessed at
p < 0.05.

Foci Formation Assay
The cells were plated at a low density of 5× 105 per 100-mm cell
culture dish and were then allowed to grow for 4–5 weeks and
beyond confluency. For assessment of distribution patterns of the
cells, these plates were fixed with 10% methanol, 10% acetic acid
solution, and stained with 20% ethanol, 0.4% crystal violet for
5 min and recorded using the Olympus CK40 microscope at× 10
magnification. ImageJ1 was used to calculate the percentage of
surface area on the plates occupied by the cells (foci). Two-sided
two-sample t-test was performed to compare three replicates
each of the control and ABS exposed groups, and statistical
significance was assessed at p < 0.05.

RNA-Seq and Enrichment Analysis
Paired-end Illumina NextSeq500 sequencing was performed
on total RNA extracted from BEC0W, BEC20W, BEC40W,
and BEC60W cells (the read count data is available in
Supplementary Table 1). Of the 18,560 genes for which read
count data were available, 5,684 genes had <5 reads in every
sample and were therefore excluded. Read count data for

1http://imagej.nih.gov/ij

the remaining 12,876 genes, with a minimum of five reads
in at least one sample, was normalized using the “rlog”
function of the “DESeq2” package (Love et al., 2014). The
“pheatmap” package in R was used for hierarchical clustering,
and ToppGene suite (Chen et al., 2009) was used for enrichment
analysis. The ToppGene suite also includes mouse genome
informatics (MGI) that curates and infers phenotypic similarity
between mouse models and human diseases based on reports
published in literature.

Classification of Genes Based on Their
Expression Pattern in the Time Series
In case of genes with ≥ twofold expression variation across
the four time points, expression of a gene at each time point
was considered high or low (H/L) depending on whether it
was higher/lower than the average expression of the same
gene across the four time points, i.e., BEC0W, BEC20W,
BEC40W, and BEC60W, respectively. Each gene was placed in
one of the 14 categories (24–2, since HHHH and LLLL are
excluded) based on whether it had high/low expression at the
four time points (BEC0W, BEC20W, BEC40W, and BEC60W,
respectively) of the series.

Confirmatory Quantitative Real-Time
PCR
To validate RNA-seq results, select genes were confirmed by qRT-
PCR on the Bio-Rad CFX96 instrument using the Quantitech
SYBR green PCR kit (Qiagen) to follow the same trend, and the
list of primers is available in Supplementary Table 2. One-sided
Wilcoxon rank sum test was used to compare the normalized
qRT-PCR data at different time points, and statistical significance
was assessed at p < 0.05.

RESULTS

Transcriptomic Changes in the Barrett’s
Epithelial Carcinogenesis Model
The Distinctive Time Series Gene Expression
Patterns
Paired end RNA-sequencing was performed on the BEC0W cells
(not exposed to ABS), and three serial time points, BEC20W,
BEC40W, and BEC60W (Figure 1A). In the normalized RNA-seq
data, expression of most genes varied less than twofold across the
four time points, and only 866 genes showed a twofold or higher
variation in expression across the four time points. Figure 1B
shows a heat map (with hierarchical clustering) of the expression
data of these 866 genes, where the BEC20W sample clustered
with the BEC0W sample; the BEC40W sample clustered with
the BEC60W sample. This suggests that the transcriptome of
BEC20W is more similar to BEC0W cells and that of the BEC40W
is more similar to BEC60W cells, and the major transcriptomic
changes in the BEC model occurred in the window period
between the BEC20W and BEC40W.

The 866 genes with ≥ twofold expression variation across
the four time points were further classified based on their
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FIGURE 1 | Overall pattern of time series changes in gene expression. (A) The outline of the BEC model and time points selected for transcriptomic analyses.
(B) Heatmap (with hierarchical clustering) of the expression data of 866 genes that showed a twofold or higher variation in expression across the four time points.
(C) Classification of the genes based on whether the expression at the four time points (BEC0W, BEC20W, BEC40W, and BEC60W) are higher or lower (H/L) than
the average of the four time points. (D) Number of genes in each category. (E) Biological processes, mouse phenotypes, pathways, and diseases enriched in the
genes of the LLHH (left) and HHLL (right) patterns. (F,G) Confirmatory quantitative PCR for randomly selected genes from LLHH and HHLL patterns.
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time-series expression pattern into 14 categories (Figure 1C).
Two categories had disproportionately high number of genes
(Figure 1C) – HHLL, 171 genes that have high expression
in BEC0W and BEC20W but low expression at BEC40W and
BEC60W and LLHH, 166 genes that have low expression at
BEC0W and BEC20W but high expression at BEC40W and
BEC60W. These genes are listed in Supplementary Table 3, and
the number of genes in the remaining categories are shown in
Figure 1D.

Figure 1E lists the biological processes, mouse phenotypes,
pathways, and diseases enriched in the genes of the LLHH
(left) and HHLL (right) categories. Genes in the LLHH
category were associated with cell motility, cell adhesion,
cell differentiation, generic transcriptional pathways, and
with apoptosis-related pathways, whereas genes associated
with cell migration, cell adhesion, cell cycle, DNA damage
response and extracellular matrix repair were in the HHLL
category. Both categories of genes are known to be associated
with multiple types of cancer, particularly adenocarcinomas
and GI cancers (pancreatic, colorectal, and esophageal).
Gene expression pattern of some genes from LLHH (APOE,
CAPN1, DKK1, HES1, MCAM, and TAGLN) and HHLL
(CCND1, IL8, SEMA3A, TGFBR2, VEGFA, and ZEB1)
categories were randomly selected and validated using qRT-PCR
(Figures 1F,G, respectively).

Transcriptomic Changes in Specific Window Periods
Expression of 451 genes changed twofold or more from
BEC20W to BEC40W, irrespective of their expression at BEC0W
or BEC60W time points (listed in Supplementary Table 4).
Figure 2A, shows the result of ToppGene enrichment analysis
of the 202 genes with increased expression levels (left) and 249
genes with reduced expression levels (right), and these reflect
the impairment of similar biological processes and pathways as
LLHH and HHLL genes (Figure 1E). The transcript levels of
some genes that increased (CLDN1, FN1, FOS, ID2, SERPINEE1,
TNFSF10) or decreased (AGR2, BRCA1, GJA1, MIK67) during
the window period of BEC20W and BEC40W, was confirmed by
qRT-PCR (Figures 2B,C, respectively).

Results of similar enrichment analysis of genes whose
expression changed twofold or more from BEC0W to
BEC20W (Supplementary Table 5) and BEC40W to BEC60W
(Supplementary Table 6), including their biological functions
and associated mouse phenotypes and human diseases, along
with qRT-PCR confirmation of select genes are shown in
Supplementary Figures 1, 2, respectively. The genes that
increased in expression between BEC0W to BEC20W are known
to participate in biological response to acid injury and various
kinds of cellular stress and metabolic activities (Supplementary
Figure 1), while those genes that were reduced in transcript
levels were involved with the integrity of the extracellular
matrix and basement membrane biogenesis and assembly
(Supplementary Figure 1). The intuitive model predicted similar
gene expression alteration associated with abnormalities in the
epidermal–dermal junction morphology and the abdominal wall
morphology in the mouse models (Supplementary Figure 1).
Similarly, the genes with increased transcript levels between

BEC40W to BEC60W were associated with cell cycle and
DNA repair (Supplementary Figure 2), while the genes with
reduced transcript levels were associated with synthesis of
bile acids and bile salts via 24- and 27-hydroxycholesterol
(Supplementary Figure 2).

The “Point of No Return” in the Barrett’s
Epithelial Carcinogenesis Model
The BEC20W Cells Require Further Acidic Bile Salt
Exposure for Progression to Neoplastic Phenotype
Cell shapes of BEC20W cells (Figure 3A), BEC20W + 20 weeks
without ABS (Figure 3B), BEC20W + 20 weeks with ABS
(Figure 3C), and BEC40W cells (Figure 3D) was performed
under the microscope after plating at low density. The set
of BEC20W cells growing for 20 weeks but not exposed to
ABS any further (Figure 3B) remained elongated or spindle
shaped and evenly distributed on culture plates similar to their
parent BEC20W cells (Figure 3A). The set of BEC20W cells
further exposed to ABS for an additional 20 weeks displayed
change in shape from elongated to oval/circular and distinct
clustering of six to eight cells when plated at low density
(Figures 3Ci,ii), and these changes appeared as early as 14 weeks
(BEC20W+ 14 weeks with ABS). This characteristic shape of the
cells was the same as presented by the BEC40W cells (Figure 3D)
and not their parent BEC20W (Figure 3A).

The BEC40W Cells Do Not Require Further Acidic
Bile Salt Exposure for Progression to Malignant
Phenotype
When BEC40W cells, BEC40W + 20 weeks without ABS,
BEC40W + 20 weeks with ABS, and BEC60W cells were
compared for properties of malignant transformation, namely,
the ability to form soft agar colonies (Figures 4A–E) and the
ability to form foci (Figures 4F–I), it was observed that the
BEC40W cells did not form soft agar colonies (Figure 4A)
or foci (Figure 4F) after revival from storage. However, they
acquired the ability to form soft agar colonies (Figure 4B)
due to loss of attachment to substrate and foci (Figure 4G)
due to loss of contact inhibition after growing for 20 weeks
(approximately 20 passages) even without any further ABS
exposure. The total area occupied by the multilayered foci
(patchy dark staining) on BEC40W + 20 weeks without ABS,
BEC40W+ 20 weeks with ABS, and BEC60W cells (Figures 4G–
I) were compared with the BEC40W cells (Figure 4F) that had a
monolayer of cells distributed evenly across the entire plate (even
light staining). Although the foci in each of the experimental
conditions (Figures 4G–I) occupied about 50% of the plate
surface (p < 0.4); this was significantly less (p < 10−4) compared
with the untreated BEC40W (Figure 4J). It was also notable that
the BEC40W cells exposed to ABS for 20 more weeks (Figure 4C)
formed significantly more colonies (Figure 4E) compared with
the BEC40W cells growing for another 20 weeks without further
ABS exposure (Figure 4B). These observations confirmed that
while BEC40W cells are not transformed per se, they are already
committed to transformation and require only time (not further
ABS exposure) to undergo malignant transformation. It was clear
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FIGURE 2 | Time series changes in gene expression from BEC20W to BEC40W. (A) Biological processes, mouse phenotypes, pathways, and diseases enriched in
the genes that went up (left) or down (right) twofold or more from BEC20W to BEC40W. (B,C) Confirmatory quantitative PCR for randomly selected genes with
increased transcript levels or reduced transcript levels, respectively, between BEC20W and BEC40W.

that the BEC60W cells retained their ability to form colonies in
soft agar (Figure 4D) and foci (Figure 4I) after revival from liquid
nitrogen storage. The BEC60W cells continued to form soft agar
colonies when allowed to grow for 20 more weeks with or without
further ABS exposure (data not shown).

DISCUSSION

The development of Barrett’s epithelium at the junction of
esophagus and stomach due to scarring from acid reflux and
its propensity to develop into adenocarcinoma of the esophagus
are well established. Acid-suppressive therapy during the early
stages of BE or ablative surgery and acid-suppressive therapy

at advanced stages are the only recommendations for medical
management of BE, although their efficacy in preventing EA
remains questionable. Acid-suppressive therapy and anti-reflux
surgery reduce exposure of the esophagus to acidic contents of
the stomach (Gore et al., 1993; Peters et al., 1999; Weinstein,
2002; El-Serag et al., 2004; Gashi et al., 2018; Tan et al.,
2018). Although, in most cases, the change in length of the
BE segment is reportedly uncommon, the acid suppression
prevents disease progression during these early stages of BE.
Although the length of the BE segment is directly related to
the risk for dysplasia, histological determination of dysplastic
changes calls for more aggressive disease management. Once
low-grade dysplasia (LGD) is identified in BE, maximal acid
suppression, close surveillance, and evaluation for endoscopic
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FIGURE 3 | Morphological changes in BEC20W cells further exposed to acid and bile salt (ABS) for 20 weeks: (A) BEC20W cells (B) BEC20W + 20 weeks cells not
exposed to ABS retain their elongated morphology and disperse evenly on the surface of the cell culture plates. (C) BEC20W + 20 weeks cells further exposed to
ABS for another 20 weeks transform into oblong morphology and exhibit increased cell–cell cohesion (Ci,ii) similar to the BEC40W cells (D).

resection or ablation procedures are recommended (Shaheen
et al., 2016). A set of reliable biomarkers that could identify
patients at higher risk of EA remains elusive; and regardless
of the advancement in endoscopic procedures for removing
dysplastic BE, lack of objective biomarkers continues to
compromise risk prediction and, hence, the value of surveillance
for EAC. The need to identify patients at higher risk for
esophageal adenocarcinoma has prompted several investigations
into identifying a “gene signature” for high-risk BE dysplasia.
Several animal and cell culture models have been developed
and utilized to understand the molecular mechanisms of
BE progression, although each has its own limitations in
emulating the BE disease process (Bus et al., 2012; Garman
et al., 2012). Several scrupulous investigations involving cutting
edge technology and massive numbers of clinical tissues from
different histological grades of BE, collected prospectively over
several years, have been utilized to identify the gene signature
for BE progression (Brabender et al., 2004; Razvi et al.,
2007; Dulak et al., 2013; Varghese et al., 2015) that could
discriminate progressors from non-progressors and/or predict
risk for BE progression. The investigations have now turned to
next-generation sequencing to analyze the wholesome genomic
alterations during BE progression, and efforts are also underway
to include the epigenome, transcriptome, and proteome data
(Contino et al., 2017).

It is intriguing that the observed changes induced by acid
and bile exposure in the BEC model were irreversible, but

not necessarily oncogenic in the earlier stages, and progressive
transformation of BEC20W cells (not committed to malignant
transformation) into altered shape and adhesion/clustered
behavior could be prevented simply by removing further ABS
trigger. This was suggestive of success with acid-suppressive
strategies before the “point of no return.” The ABS removal
strategy did not succeed with the BEC40W cells as they
showed characteristics of malignant transformation (foci and
soft agar colony formation) even in the absence of further
ABS exposure, although their ability to form colonies was
not as pronounced as the BEC40W cells further exposed to
ABS for 20 weeks or the BEC60W cells. This observation
highlighted the significance of the “point of no return”
strongly associated with catastrophic changes in gene expression
between the BEC20W and BEC40W and commitment of
cell to malignant transformation even in the absence of
ABS exposure. Although we have previously reported the
widespread genetic and epigenetic changes after 20 weeks of
ABS exposure (Bajpai et al., 2013), the clustering of BEC0W
and BEC20W together as one set, and BEC40W and BEC60W
as another, confirmed the magnitude of changes that occur
between 20 and 40 weeks. The committed BEC40W cells
had altered cell shape and cell adhesion properties, increased
basal proliferation potential, and increased resistance to cell
death in response to further ABS exposure (Das et al., 2011).
ToppGene enrichment analyses of the genes altered during the
specific intervals combined with MGI confirmed alteration of
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FIGURE 4 | Colony formation in different stages of BEC model: (A) The BEC40W cells do not initially form colonies in soft agar. (B) BEC40W + 20 weeks begin to
form distinct colonies demonstrating loss of substrate adherence dependence after 20 weeks even in the absence of any further ABS. (C) The BEC40W + 20 weeks
further exposed to ABS form more colonies comparable with the BEC60W cells (D) that retain their ability to form colonies even in the absence of stimulation after
thawed from storage (representative pictures). (E) Total number of colonies compared between the BEC40W + 20weeks with the ABS and without ABS groups, and
the BEC60W cells. Foci formation in different stages of BEC model: (F) The BEC40W cells do not initially form foci when confluent. (G) BEC40W + 20 weeks cells
begin to form distinct foci demonstrating loss of contact inhibition after 20 more weeks even in the absence of any further ABS (H). The BEC40W + 20 weeks further
exposed to ABS form colonies as expected comparable with BEC60W cells (I) that retain their ability to form foci even in the absence of stimulation after thawed
from storage (representative pictures). (J) Percent plate surface occupied by the foci (dark staining patches of multilayered cells) was compared with the monolayer
of cells (BEC40W) covering the entire plate (100%).
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biological functions associated with the phenotypes displayed
during the same interval. Our previous observations (Bajpai
et al., 2012, 2021) also point to chromosomal rearrangements
during this critical period in the BEC model that may account
for catastrophic changes propelling the commitment of BE cells
to malignant progression. There are other pieces of evidence in
literature supporting the presence of chromosomal aberrations
and stage-specific gene expression signatures associated with
disease progression from BE to EAC (Garewal et al., 1989;
Barrett et al., 1996; Newell et al., 2019). However, those
are accumulative data and still inconclusive for replication
in clinical care.

The major limitation of this study is its reliance on a simplistic
in vitro cell culture model. However, similar acid and bile
exposure induced increase in cell proliferation (Hong et al.,
2010a), DNA damage, and resistance to apoptosis (Huo et al.,
2011), perhaps via induction of the NFkB pathway (Hormi-
Carver et al., 2009), oxidative damage (Hong et al., 2010b), and
induction of reactive oxygen species leading to DNA double-
strand breaks (Zhang et al., 2009) in the BAR-T cells, have been
reported by other investigators. Change in appearance of cells
from elongated to circular/oval shape has also been observed
in normal esophageal cell lines after long-term acid and bile
exposure (Minacapelli et al., 2017). Increased cell–cell adhesion
and loss of attachment to substrate was noted in the BEC model
(Das et al., 2011), and induction of epithelial mesenchymal
characteristics (altered adhesion to substrate and increased
motility) was confirmed in the BEC20W cells after further acid
and bile exposure, via activation of the VEGF pathway (Zhang
et al., 2019). It is also notable that the distinctive phenotypic
characteristics and transcriptomic changes acquired after chronic
ABS exposure to the BAR-T cells were retained by the non-
neoplastic (BEC20W) as well as the neoplastic (BEC40W) and
malignantly transformed (BEC60W) BEC cells even after storage
in liquid nitrogen and subsequent retrieval and represent a
viable mechanism of BE carcinogenesis. The distinguishing
phenotypic endpoints make this in vitro model a promising tool
for mechanistic studies to understand the function of biological
molecules implicated in clinical BE progression.

In conclusion, we postulate the presence of emergent gene
expression patterns that signify time series changes during the
progression of BE to EA and provide evidence for a presumable
“point of no return” in Barrett’s carcinogenesis, beyond which
irrevocable changes commit the BE cells to malignant phenotype
that may not be rescued by acid and bile suppression (therapy).
Discerning this “point of no return” using serial biopsies
of patients undergoing surveillance has the potential to find
molecular identifiers to enable the development of individualized
risk prediction model and personalized clinical management of
BE patients.
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