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In recent years, due to low accuracy and high costs of traditional biological experiments,
more and more computational models have been proposed successively to infer
potential essential proteins. In this paper, a novel prediction method called KFPM is
proposed, in which, a novel protein-domain heterogeneous network is established first
by combining known protein-protein interactions with known associations between
proteins and domains. Next, based on key topological characteristics extracted from the
newly constructed protein-domain network and functional characteristics extracted from
multiple biological information of proteins, a new computational method is designed to
effectively integrate multiple biological features to infer potential essential proteins based
on an improved PageRank algorithm. Finally, in order to evaluate the performance of
KFPM, we compared it with 13 state-of-the-art prediction methods, experimental results
show that, among the top 1, 5, and 10% of candidate proteins predicted by KFPM,
the prediction accuracy can achieve 96.08, 83.14, and 70.59%, respectively, which
significantly outperform all these 13 competitive methods. It means that KFPM may be
a meaningful tool for prediction of potential essential proteins in the future.

Keywords: essential proteins, protein-protein network, computational model, domain-domain network, protein-
domain network

INTRODUCTION

Essential proteins are indispensable proteins in the reproduction and survival of organisms,
and experimental results have shown that removal of essential proteins may lead to inability of
organisms to survive and develop (Zhang Z. et al., 2020; Zhao et al., 2020; Meng et al., 2021).
In recent years, with the rapid development of high-throughput technologies, more and more
interactions between proteins have been found in Saccharomyces cerevisiae, and it has become a
hot spot of research to identify essential proteins from large amount of known protein-protein
interaction (PPI) data by adopting computational methods. Up to now, a lot of computational
prediction methods have been proposed successively to infer potential essential proteins, and
in general, these methods can be roughly divided into two categories. The first category of
methods mainly relies on topological characteristics of PPI networks to predict essential proteins.
For instance, based on the centrality-lethality rule (Jeong et al., 2001) that proteins with high
degree of interconnectivity are more likely to be essential proteins than those with low degree
of interconnectivity in a PPI network, a series of centrality-based methods including DC (Hahn
and Kern, 2004), CC (Wuchty and Stadler, 2003), BC (Joy et al., 2005), EC (Bonacich, 1987), SC
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(Estrada and Rodriguez-Velazquez, 2005), and IC (Stephenson
and Zelen, 1989) have been designed to identify key proteins by
the interconnectivities of proteins in PPI networks, and among
them, the SC method was proven to be the best (Estrada, 2010).
Except for these centrality-based methods, Wang et al. (2012)
presented a method named NC for detecting essential proteins
based on the edge aggregation coefficients. Li et al. (2011)
proposed a method called LAC to predict essential proteins by
evaluating the relationship between proteins and their neighbors
in the PPI network. Wang et al. (2011) put forward a model called
SoECC by the correlation between PPI network proteins. Przulj
et al. (2004) designed a prediction model by constructing the
shortest path spanning tree for each protein in the PPI network.
In the first category of methods, some topological structures
of PPI networks such as the node degree of interconnectivities
and common neighboring nodes have been adopted to infer key
proteins, however, due to the incompleteness of PPI networks,
these methods cannot achieve satisfactory prediction accuracy.

In order to overcome the limitations of the first category of
methods, the second category of methods focus on predicting
essential proteins by combining topological features of PPI
networks and functional features of proteins extracted from
the gene expression data, orthology information and the
subcellular localization of proteins. For example, Lei et al.
(2018c) combined topological features of PPI networks and
the GO data of proteins to design a novel method called
RSG for predicting essential proteins. Zhang et al. (2013)
designed a method called COEWC by integrating neighborhood
features of the PPI network with the gene expression data of
proteins to infer key proteins. Li et al. (2012) developed a
prediction model named Pec by combining the PPI network
and the gene expression data of proteins. Tang et al. (2014)
proposed a novel method named WDC based on the edge
clustering coefficients and the Pearson correlation coefficients of
proteins. Peng et al. (2012) developed a computational model
called ION by integrating the protein orthology information
with PPI data to predict essential proteins. Xiao et al.
(2013) developed a method for predicting essential proteins
by combining the PPI network with the co-expressed gene
data of proteins. Ren et al. (2011) invented a method to
identify key proteins by integrating PPI networks with the
protein complex information. Jiang et al. (2015) integrated
topological features of PPI networks with the gene expression
data of proteins to design a prediction model called IEW
for key protein prediction. Zhao et al. (2014) developed a
computational method named POEM by combining the gene
expression data of proteins with topological attributes of PPI
networks. Zhong et al. (2020) developed a predictive model
called JDC by combining topological characteristics of PPI
networks and gene expression data of proteins. Keretsu and
Sarmah (2016) used the marginal clustering coefficients and
the gene expression correlation between interacting proteins
to design a method for identifying protein complexes. Zz
et al. (2019) proposed a method that refines PPI networks by
using gene expression information and subcellular localization
information. Ahmed et al. (2021) designed a predictive model
called EPD-RW through incorporating PPI networks with four

kinds of biological data of proteins including GO data, gene
expression profiles, domain information and phylogenetic profile
to infer essential proteins. Zhang et al. (2021) proposed an
identification model by combining PPI networks with the
gene expression profile, GO information, subcellular localization
information, and orthology data of proteins to detect essential
proteins. Lei et al. (2018a) combined the gene expression
data, subcellular location and protein complex information of
proteins with the topological characteristics of PPI networks
to develop a key protein identification algorithm FPE. Zhao
et al. (2019) designed an iterative method called RWHN by
integrating the PPI network with domains, subcellular location
and homology information of proteins to identify essential
proteins. Lei et al. (2018b) designed a novel calculation model
named AFSO_EP to identify essential proteins by combining
PPI networks with the gene expression, GO annotation and
subcellular location information of proteins. Zhang et al. (2019)
proposed a predictive model called TEGS by combining multiple
functional features including the subcellular location data and
gene expression data of proteins with topological features
of PPI networks. Li et al. (2020) put forward a prediction
model named CVIM by combing gene expressions data and
orthologous information of proteins with PPI networks to infer
essential proteins.

Experimental results have demonstrated that the second
category of methods can achieve better prediction performance
than the first category of methods by integrating biological
characteristics of proteins and topological characteristics of PPI
networks, and it is useful to adopt the biological characteristics of
proteins to compensate for the incompleteness of the PPI data.
Hence, in order to further improve the accuracy of prediction
models, in this paper, we extracted some new topological features
from a newly constructed protein-domain network and some
new functional features of proteins from the domain data, gene
expression data, and orthologous information of proteins etc.,
based on which, a novel identification model called KFPM was
proposed to infer potential essential proteins. Different from
existing models, in KFPM, the gene expression data of protein
will be processed first by adopting the Pearson Correlation
Coefficient (PCC) (Horyu and Hayashi, 2013), and then, an
improved Criteria Importance Though Intercrieria Correlation
algorithm (CRITIC) (Zhang B. et al., 2020) will be applied
to effectively combine multiple biological features of proteins
by the contrast strength of features and the conflicts between
features, based on which, a novel distribution rate network
is constructed and an improved PageRank algorithm will be
designed to identify potential essential proteins. Finally, we
compared KFPM with 13 advanced methods including DC
(Hahn and Kern, 2004), CC (Wuchty and Stadler, 2003),
BC (Joy et al., 2005), EC (Bonacich, 1987), SC (Estrada and
Rodriguez-Velazquez, 2005), IC (Stephenson and Zelen, 1989),
NC (Wang et al., 2012), CoEWC (Zhang et al., 2013), Pec
(Li et al., 2012), ION (Peng et al., 2012), POEM (Zhao
et al., 2014), TEGS (Zhang et al., 2019), and CVIM (Li
et al., 2020). And experimental results showed that KFPM
outperformed all these competitive state-of-the-art predictive
methods as a whole.
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MATERIALS AND METHODS

Experimental Data
In this section, In order to evaluate the prediction accuracy
of KFPM, known protein-protein interactions (PPI) would be
downloaded first from the saccharomyces cerevisiae related
public databases including DIP database (Xenarios et al., 2002),
the Krogan database (Krogan et al., 2006), and the Gavin
database (Gavin et al., 2006), respectively. As illustrated in
Table 1, after filtering out repetitive interactions, we finally
obtained 5,093 proteins and 24,743 interactions from the DIP
database, 3,672 proteins and 14,317 interactions from the
Krogan database, and 1,855 proteins and 7,669 interactions from
the Gavin database. Next, we downloaded 1,107 domains
from the Pfam (Bateman et al., 2004) database as well.
Therefore, we constructed a (5,093+1,107) × (5,093+1,107),
a (3,672+1,107) × (3,672+1,107) and a
(1,855+1,107) × (1,855+1,107) dimensional networks by
combining the datasets downloaded from the DIP, the Krogan
and the Gavin databases with the dataset downloaded from
the Pfam database separately. Moreover, we downloaded
the gene expression data for calculating the initial protein
scores from the Tu-BP database (Tu et al., 2005). Gene
expression data contains 6,776 lines with length of 36, and
each line represents the corresponding expression data of a
different gene. Through comparison, we found that in datasets
downloaded from the DIP and the Gavin databases, the
number of proteins containing the gene expression data is
more than 95%. Additionally, we downloaded orthologous
information of proteins from the InParanoid database
(Gabriel et al., 2010) and subcellular localization data of
proteins from the COMPART-MENTS databases (Binder
et al., 2014) to calculate initial scores for proteins, and as a
result, we derived eleven subcellular locations such as the
Mitochondrion, Peroxisome, Plasma, Extracellular, Endosome,
Vacuole, Endoplasmic, Cytosol, Golgi, and Cytoskeleton
Nucleus, that are related to essential proteins. Finally, a
benchmark dataset for testing different prediction models
was downloaded from the following four databases such
as MIPS (Mewes et al., 2006), SGD (Cherry et al., 1998),
DEG (Zhang and Lin, 2009), and SGDP (Saccharomyces
Genome Deletion Project, 2012), which contains 1,293 key
proteins. In this paper, we would provide comparison results
based on datasets downloaded from the DIP and the Krogan
databases in detail, and introduce briefly the experimental
results based on the dataset downloaded from the Gavin
database instead.

As shown in Figure 1, the flowchart of KFPM consists of the
following four major steps:

Step 1: Based on known PPI dataset downloaded from
a given public database, an original PPI network
will be constructed first. And then, based on key
topological characteristics of the original PPI network,
weights between protein nodes will be calculated and
adopted to transform the original PPI network to a
weighted PPI network.

Step 2: Next, based on known relationships between proteins
and domains, a weighted domain-domain network and
an original protein-domain network will be constructed
sequentially. And then, a novel heterogeneous protein-
domain network will be established by integrating these
three newly constructed networks such as the weighted
PPI network, the weighted domain-domain network
and the original protein-domain network.

Step 3: Moreover, an improved CRITIC algorithm will be
applied to effectively integrate multiple biological
features of proteins with key topological features
extracted from the heterogeneous protein-
domain network to calculate initial scores for
proteins and domains.

Step 4: Finally, a novel transition probability matrix will be
obtained, and then, through combining initial scores
of proteins and domains with the transition probability
matrix, a new iterative algorithm will be designed
to identify potential essential proteins based on the
PageRank algorithm.

Construction of the Weighted PPI
Network
For convenience, let P =

{
p1, p2, · · · , pN,

}
denote the set of

different proteins downloaded from a given public database, and
for a pair of proteins pu and pv in P, if there is a known interaction
between them, we define that there is an edge e(pu, pv) = 1.
Hence, let E represent the set of edges between proteins in P,
Then it is obvious that we can obtain an original PPI network
PPIN = (P,E).

Additionally, inspired by the assumption that degrees of
connections between essential proteins are mostly higher than
degrees of connections between non-essential proteins (Zhang
et al., 2016), for any two given protein nodes pu and pv in PPIN, it
is obvious that we can estimate the degree of relationship between
them according to the following equation (1):

WPP
(
pu, pv

)
=


|NG (pu) ∩NG (pv) |

2

(|NG (pu) |+1) × (|NG (pv) |+1)
if e (pu, pv) = 1

0 otherwise
(1)

Here, NG
(
pu
)

represents the set of neighboring nodes of pu
in PPIN,

∣∣NG (pu)∣∣ denotes the total number of neighboring
nodes of pu in PPIN, and NG

(
pu
)
∩ NG

(
pv
)

means the set
of common neighboring nodes of both pu and pv in PPIN.
Obviously, according to above Eq. 1, it is easy to obtain a N × N
dimensional adjacency matrix WPP, based on which, we can
obtain a weighted PPI network easily as well.

TABLE 1 | The information of the DIP, Krogan and Gavin database.

Database Proteins Interactions Essential proteins

DIP 5,093 24,743 1,167

Krogan 3,672 14,317 929

Gavin 1,855 7,669 714
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FIGURE 1 | Flowchart of KFPM.

Construction of the Heterogeneous
Protein-Domain Network
In this section, we will download the domain set of proteins
D =

{
d1, d2, · · · , dM

}
from the Pfam database (Bateman et al.,

2004), based on which, an initial protein-domain interaction
network will be constructed as follows: for any given pu ∈ P
and domain dv ∈ D, if there is pu ∈ dv, we define that there
is an edge existing between them. Thereafter, it is easy to see
that we can obtain an initial protein-domain interaction network
and a N × M dimensional adjacency matrix WPD as follows:
for any given pu ∈ P and domain dv ∈ D, if there is an edge
between them, then there is WPD(pu, dv) = 1, otherwise there
is WPD(pu, dv) = 0.

Moreover, for any two given domains du and dv, let N
(
du
)

and N
(
dv
)

represent the number of proteins belonging to

du and dv separately, N
(
du
)
∩ N

(
dv
)

denote the number of
proteins belonging to both du and dv simultaneously, then we
can calculate the weight between du and dv according to the
following Eq. 2:

WDD
(
du, dv

)
=


N (du) ∩N (dv)√
|N (du) |×|N (dv) |

if
∣∣N (du)∣∣ > 0 and

∣∣N (dv)∣∣ > 0

0 otherwise
(2)

Based on above Eq. 2, it is obvious that we can further
obtain a M × M dimensional adjacency matrix WDD. And
then, through combining above obtained N × N dimensional
adjacency matrix WPP, N × M dimensional adjacency matrix
WPD and M × M dimensional adjacency matrix WDD, wen can
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obtain a new (M + N)× (M + N) dimensional adjacency matrix
NWPD as follows:

NWPD =
[

WPP WPD
WPDT WDD

]
(3)

Calculation of Initial Scores for Proteins
and Domains
In order to reduce the negative impact of false positives, in this
section, we will adopt topological and functional characteristics
of proteins to calculate initial scores for proteins. For any given
protein pu, let I

(
pu
)

denote the orthologous information of
pu, then we can obtain the orthologous score BIO_I

(
pu
)

of
pu as follows:

BIO_I
(
pu
)
=

I
(
pu
)

max pv∈P
(
I
(
pv
)) (4)

Moreover, considering that gene expression refers to the
process of synthesizing protein under the guidance of genes, and
Pearson correlation coefficient (PCC) is suitable for measuring
the degree of linear correlation between two vectors, hence, for
any two given proteins pu and pv, it is obvious that we can
implement PCC on gene expressions of these two proteins to
calculate the similarity between them as follows:

PCC (pu, pv) =
1

n− 1

n∑
i=1

(
Exp (pu, i)− Exp (pu)

σ (pu)

)
(
Exp (pv, i)− Exp (pv)

σ (pv)

)
(5)

Here, Exp
(
pu, i

)
represents the expression level of pu at the

ith time node. Exp( pu) denotes the average gene expression value
of pu, and σ( pu) is the standard deviation of gene expressions of
pu. Therefore, we can obtain a gene expression based functional
characteristic of pu as follows:

BIO_Exp
(
pu
)
=

∑
pvεNG( pu)

PCC
(
pu, pv

)
(6)

Next, based on subcellular localizations of proteins, for any
given protein pu, let Sub(pu) represent the set of subcellular
localizations associated with pu, we can as well obtain a
subcellular localization based functional characteristic of pu
as follows:

BIO_sub
(
pu
)
=

∑
iεSub(pu)

Evesub(i) (7)

Where,

Evesub(i) =
Nsub (i)
Avesub

(8)

Avesub =
∑Nsub

i=1 Nsub (i)
Nsub

(9)

Here, Nsub means the number of all subcellular localizations
of proteins and Nsub (i) represents the number of proteins
associated with the ith subcellular localization.

In KFPM, We apply an improved CRITIC method, which
can be used to measure weights of different characteristics based
on the contrast strengths of characteristics and the conflicts
between characteristics, to integrate three kinds of biological
characteristics obtained above to calculate final biological feature
scores for proteins as follows:

First, let Cj denote the amount of information contained in
the jth biological feature of protein, where Cj can be expressed
as follows:

Cj = σj

n∑
i=1

(
1−

∣∣rij∣∣) (10)

Here, rij represents the correlation coefficient between
biological characteristics i and j. σj represents the standard
deviation of the jth biological feature. Obviously, the greater the
value of Cj, the greater the amount of information contained in
the jth biological feature. Therefore, the objective weight wj of the
jth biological feature can be defined as follows:

Wj =
Cj∑n
j=1 Cj

(11)

Hence, based on three kinds of biological characteristics
obtained above, the final biological feature score of protein pu can
be calculated as follows:

BIO
(
pu
)
=

n∑
j=1

wjBF
(
pu
)

(12)

Where BF
(
pu
)
=
(
BIO_I

(
pu
)
,BIO_Exp

(
pu
)
,BIO_sub

(
pu
))

(13)
Based on above formula (12), we have obtained biological

feature scores for proteins, next, for any given protein pu, we
will further calculate its topological feature score based on the
topological structure of the newly constructed heterogeneous
protein-domain network as follows :

TOP
(
pu
)
=

∑
vεNG(pu)

∣∣NG (pu) ∩ NG (pv)∣∣∣∣NG (pu)∣∣ (14)

Where
∣∣NG (pu) ∩ NG (pv)∣∣ denotes the number of elements

in the set of NG
(
pu
)
∩ NG

(
pv
)

and
∣∣NG (pu)∣∣denotes the

number of nodes in NG
(
pu
)
.

Therefore, through combining the topological feature and
biological feature of pu, we can define an unique final score for
pu as follows:

S0
(
pu
)
= BIO

(
pu
)
× θ+ (1− θ)× TOP

(
pu
)

(15)

Here, θ ∈ (0, 1) is a parameter of weight factor.
Additionally, in a similar way, for any given domain du, we

can as well calculate an initial topological feature score for it as
follows:

S
(
du
)
=

∑
p∈du

S0
(
p
)

(16)
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FIGURE 2 | Performance comparison between KFPM and 13 competitive methods based on the DIP database (A) Top 1% ranked proteins. (B) Top 5% ranked
proteins. (C) Top 10% ranked proteins. (D) Top 15% ranked proteins. (E) Top 20% ranked proteins. (F) Top 25% ranked proteins.

Since the numbers of proteins in different domains are quite
different, which lead to big difference between scores of domains
obtained by above formula (16), therefore, after normalization,
we can obtain the final topological feature score of du as follows:

S0 (du) =
S (du)

max1≤j≤NS (dj)
(17)

Design of KFPM
First, for any two given proteins pu and pv in the
heterogeneous protein-domain network, let PPN

(
pu, pv

)
=

WPP (pu,pv)
(1+max (WPP (pu,pv)))

2 , it is obvious that we can obtain a

distribution probability of pu to pv as follows:

DPMPP (pu, pv) =


PPN (pu,pv)∑
j PPN (pu,pj)

× S0
(
pv
)
, if PPN

(
pu, pv

)
6= 0

0 otherwise
(18)

Next, for any given protein pu and domain dv, let
PDN

(
pu, dv

)
=

WPD (pu,dv)
(1+max (WPD (pu,dv)))

2 , it is obvious that
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FIGURE 3 | Performance comparison between KFPM and 13 competitive methods based on the Krogan database (A) Top 1% ranked proteins. (B) Top 5% ranked
proteins. (C) Top 10% ranked proteins. (D) Top 15% ranked proteins. (E) Top 20% ranked proteins. (F) Top 25% ranked proteins.

we can obtain a distribution probability of pu to dv
as follows:

DPMPD (pu, dv)
=


PDN (pu,dv)∑
j PDN (pu,dj)

× S0
(
dv
)
, if PDN

(
pu, dv

)
6= 0

0 otherwise
(19)

Similarly, for any given domain du and protein pv, we can
obtain a distribution probability of du to pv as follows:

DPMDP (du, pv)
=


PDNT(du,pv)∑
j PDNT (du,pj)

× S0
(
pv
)
, if PDNT (du, pv) 6= 0

0 otherwise
(20)
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FIGURE 4 | Performance comparison between KFPM and 13 state-of-the-art methods based on the method of Jackknife under the DIP database. (A) Comparison
between KFPM and DC, SC, BC, EC, IC, CC, NC. (B) Comparison between KFPM and Pec, CoEWC, POEM, ION, TEGS, CVIM.

FIGURE 5 | Performance comparison between KFPM and 13 state-of-the-art methods based on the method of Jackknife under the Krogan database.
(A) Comparison between KFPM and DC, SC, BC, EC, IC, CC, NC. (B) Comparison between KFPM and Pec, CoEWC, POEM, ION, TEGS, CVIM.

For any given domain du and domain dv, let DDN
(
du, dv

)
=

WDD (du,dv)
(1+max (WDD (du,dv)))

2 , we can obtain a distribution probability

of du to dv as follows:

DPMDD (du, dv)
=


PDD (du,dv)∑
j PDD (du,dj)

× S0
(
dv
)
, if DDN

(
du, dv

)
6= 0

0 otherwise
(21)

Hence, based on above description, we can obtain a novel
distribution probability matrix NDPM as follows:

NDPM =
[
DPMPP DPMPD

DPMDP DPMDD

]
(22)

Based on above formula (22), let S(t) denote critical
scores of proteins obtained at the tth round of iteration,
then we can calculate the final critical scores of proteins
by an improved PageRank algorithm according to the
following Eq. 23:

S(t+1) = α× NDPM × S(t) (1− α)× S0 (23)

Here,α ∈ (0, 1) is a parameter used to adjust the iterative ratio.
Based on the above descriptions, the process of KFPM can be

described in detail as follows:

Algorithm: KFPM

Input: Original PPI network, orthologous data, subcellular
data, gene expression data and domain data,
iteration termination condition ε, parameter α and θ.

Output: Final critical scores of proteins.
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TABLE 2 | Commonalities and differences between KFPM and 13 competitive methods based on top 200 ranked proteins under the DIP database.

Different methods (Mi) | KFPM∩Mi| | KFPM-Mi| Percentage of key proteins in {KFPM-Mi} Percentage of key proteins in {Mi-KFPM}

DC 37 163 84.66% 30.67%

IC 35 165 84.85% 30.30%

EC 31 169 84.62% 29.59%

SC 31 169 84.62% 29.59%

BC 30 170 84.71% 30.00%

CC 27 173 84.39% 31.79%

NC 82 118 83.90% 46.61%

Pec 95 105 80.95% 51.43%

CoEWC 94 106 79.25% 54.72%

POEM 100 100 79.00% 60.00%

ION 100 100 78.00% 58.00%

TEGS 110 90 74.44% 66.67%

CVIM 120 80 72.50% 65.00%

TABLE 3 | Commonalities and differences between KFPM and 13 competitive methods based on top 200 ranked proteins under the Krogan database.

Different methods (Mi) | KFPM∩Mi| | KFPM-Mi| Percentage of key proteins in {KFPM-Mi} Percentage of key proteins in {Mi-KFPM}

DC 68 132 75.76% 34.85%

IC 70 130 76.15% 30.77%

EC 54 146 78.77% 26.03%

SC 54 146 78.77% 26.03%

BC 52 148 78.38% 32.43%

CC 44 156 80.13% 26.92%

NC 102 98 72.45% 43.88%

Pec 92 108 70.37% 44.44%

CoEWC 92 108 70.37% 48.15%

POEM 100 100 69.00% 51.00%

ION 88 112 72.32% 58.93%

TEGS 106 94 64.89% 56.38%

CVIM 144 56 66.07% 53.57%

FIGURE 6 | Intuitive comparison of predictive performance between KFPM and 13 competitive methods. The X-axis represents 13 methods. The Y-axis denotes the
percentage of essential proteins in {KFPM−Mi} or {Mi−KFPM}.

Frontiers in Genetics | www.frontiersin.org 9 June 2021 | Volume 12 | Article 708162

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-708162 June 23, 2021 Time: 17:41 # 10

He et al. Method for Identifying Essential Proteins

FIGURE 7 | Comparison of PR curves and ROC curves between KFPM and 13 competing methods based on the DIP database. (A) PR curves and the ROC curves
of DC, BC, SC, and NC. (B) PR curves and ROC curves of EC, IC, CC and Pec. (C) PR curves and ROC curves of CoEWC, POEM, ION, TEGS, and CVIM.
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FIGURE 8 | Comparison of PR curves and ROC curves between KFPM and 13 competing methods based on the Krogan database. (A) PR curves and the ROC
curves of DC, BC, SC, and NC. (B) PR curves and ROC curves of EC, IC, CC, and Pec. (C) PR curves and ROC curves of CoEWC, POEM, ION, TEGS, and CVIM.
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Step 1: Establishing the heterogeneous protein-domain
network according to formulas (1)–(3);

Step 2: Calculating initial scores of proteins and domains
in the heterogeneous protein-domain network
according to formulas (4)–(17);

Step 3: Establishing the transition probability matrix NDPM
according to formulas (18)–(22);

Step 4: Computing S(t+1) by equation (23), let t = t+1;
Step 5: Repeating step4 until

∣∣∣∣S(t+1) − S(t)
∣∣∣∣2 < ε;

Step 6: Outputting the top k% predicted proteins in the
descending order.

RESULTS

Comparison Between KFPM and
Representative Methods
In this section, we will compare KFPM with 13 state-of-the-art
predictive methods based on the DIP and Krogan databases
separately. Figure 2 illustrates experimental results based on
the DIP database, from which, it can be seen that KFPM
can achieve predictive accuracy of 96.08, 83.14, 70.59, 61.78,
56.33, and 51.18% in top 1, 5, 10, 15, 20, and 25% predicted
proteins, respectively, which are better than all 13 competitive
methods, except in the top 15% predicted proteins, is a little
lower than CVIM. Figure 3 shows experimental results based
on the Krogan database, from which, it can be seen that KFPM
can achieve predictive accuracy of 91.89, 79.89, 70.03, 63.88,
59.26, and 55.56% in top 1, 5, 10, 15, 20, and 25% predicted
proteins separately, which are better than all 13 competitive
methods as well, except in the top 1% predicted proteins, is
a little lower than CVIM. Hence, from above two kinds of
experimental results, as a whole, we can conclude that the
prediction performance of KRPM is better than all these 13
state-of-the-art methods.

Validation With Jackknife Methodology
The method of Jackknife (Holman et al., 2009) can effectively
estimate the advantages and disadvantages of essential protein
prediction models. Therefore, in this section, we will further
utilize the method of Jackknife to compare KFPM with 13
competitive methods. Figure 4 shows the comparison result
based on top 400 predicted proteins under the DIP dataset.
From observing Figures 4A,B, it is easy to see that the
prediction performance of KFPM is not only better than
the first category of methods that are based on topological
features of PPI networks only, such as DC, SC, BC, EC,
IC, CC, and NC, but also better than the second category
of methods that are based on the combination of biological
data of proteins and PPI networks, such as Pec, CoEWC,
POEM, ION, TEGS, and CVIM, simultaneously. Especially,
comparing with CVIM that can achieve the best predictive
performance in all these competitive methods, although the
performance curves of KFPM and CVIM overlap at some
times, but with the number of candidate proteins increasing,
the prediction performance of KFPM will become higher

and higher than CVIM. Figure 5 illustrates the comparison
result based on top 600 predicted proteins under the Krogan
dataset. From observing Figures 5A,B, it is obvious that
KFPM can achieve better performance than both the first
category of methods such as DC, SC, BC, EC, IC, CC,
and NC, and the second category of methods such as Pec,
CoEWC, POEM, ION, TEGS, and CVIM, as well. Hence,
based on above description, we can conclude that the
detective ability of KFPM is superior to all these 13 existing
advanced methods.

Difference Analysis of KFPM and
Competitive Methods
In order to better analyze the difference and uniqueness
of KFPM and state-of-the-art predictive methods, in this
section, we will compare KFPM with 13 competitive
methods based on top 200 predicted proteins under the
DIP and Krogan databases, respectively. Comparison
results are shown in Tables 2, 3, where Mi represents one
of these 13 predictive methods, |KFPM ∩Mi| represents
the number of common essential proteins recognized by
both KFPM and Mi. |KFPM−Mi| denotes the number of
essential proteins that were detected by KFPM but not by
Mi. {KFPM−Mi} is the set of essential proteins predicted
by KFPM but ignored by Mi. {Mi−KFPM} is the set of
essential proteins predict by Mi but ignored by KFPM. From
observing Tables 2, 3, we can see that the proportion of key
proteins in {KFPM−Mi} is higher than the percentage of
key proteins in {Mi−KFPM}, which means that KFPM can
screen out more essential proteins that are not found by
competing methods. Figure 6 shows the superiority of KFPM
more intuitively.

Validation by Receiver Operating
Characteristic Curve
In this section, we will further utilize the ROC (Receiver
Operating Characteristic) curve to evaluate the detection

TABLE 4 | AUCs achieved by KFPM and 13 competitive methods based on the
DIP and Krogan databases.

Method AUCs (based on DIP) AUCs (based on Krogan)

DC 0.6704 0.6583

IC 0.6657 0.6573

EC 0.6384 0.6167

BC 0.625 0.6248

SC 0.6384 0.6167

CC 0.6291 0.6114

NC 0.6879 0.6584

Pec 0.6329 0.6316

CoEWC 0.6513 0.6404

POEM 0.6662 0.6726

TEGS 0.7386 0.7287

ION 0.7522 0.7413

CVIM 0.7559 0.7458

KFPM 0.7802 0.7833
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TABLE 5 | The Number of essential proteins recognized by KFPM and 13 competing methods based on the Gavin database.

Methods Top1%(19) Top5%(93) Top10%(196) Top15%(279) Top20%(371) Top25%(464)

DC 7 36 101 158 222 264

IC 16 55 119 163 213 254

CC 11 45 93 135 180 221

BC 9 40 85 122 162 201

SC 0 17 87 130 190 240

EC 0 38 94 134 166 209

NC 11 51 123 170 213 259

CoEWC 16 69 136 190 237 275

Pec 15 69 142 193 238 285

ION 17 73 150 207 263 312

POEM 17 74 148 199 249 296

CVIM 16 80 160 219 271 322

KFPM 19 86 169 216 279 332

TABLE 6 | Influence of the parameter α on the prediction accuracy of KFPM based on the DIP database.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rank

Top1% (51) 47 47 47 48 49 48 47 46 45

Top5% (255) 209 210 211 214 212 210 210 210 210

Top10% (510) 358 363 360 363 360 361 360 363 358

Top15% (764) 466 473 474 477 472 470 465 466 461

Top20% (1019) 572 574 575 570 574 570 566 564 568

Top25% (1274) 647 648 648 648 652 654 653 648 643

TABLE 7 | Influence of the parameter α on the prediction accuracy of KFPM based on the Krogan database.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rank

Top1% (37) 36 36 35 35 34 34 34 33 31

Top5% (184) 147 147 149 148 147 149 150 149 147

Top10% (367) 264 264 260 257 257 255 254 252 255

Top15% (551) 368 365 361 357 353 348 345 346 339

Top20% (734) 441 441 443 440 435 433 426 422 42

Top25% (918) 499 503 503 504 510 504 505 502 482

performance of KFPM. The closer the ROC curve is to the
upper left corner, the higher the recall rate of the model
(Hanley and Mcneil, 1982). Figures 7, 8 show ROC curves
and PR (Precision Recall) curves of KFPM and 13 competing
methods under the DIP and Krogan databases, respectively.
As shown in Figure 7, it is obvious that KFPM can achieve
better predictive performance than all these 13 state-of-the-
art methods based on the DIP database, although the ROC
curves of KFPM and CVIM overlap partially in Figure 7C.
As shown in Figure 8, it is easy to see that the predictive
performance of KFPM is better than all these 13 state-
of-the-art methods based on the Krogan database as well.
Table 4 shows the superiority of KFPM more intuitively
based on the performance indicator of AUCs (Area Under
roc Curves).

Additionally, in order to verify the applicability of
KFPM, we further compared KFPM with 13 competitive

methods based on the Gavin database. As shown in
Table 5, it is easy to see that the prediction performance
of KFPM is better than all competing methods, especially,
in the top 1% candidate proteins, the number of true
essential proteins recognized by KFPM is 19, which
means that the recognition rate of KFPM can reach 100%.
Hence, we can draw a conclusion as well that KFPM has
satisfactory applicability.

Analysis of Parameters
In KFPM, we have introduced a parameter α ∈ (0, 1) to
adjust the iterative ratio. Therefore, we will estimate the
effect of α on the prediction accuracy of KFPM in this
section. Experimental results based on the DIP and Krogan
databases are shown in Tables 6, 7 separately. From observing
these two tables, it is easy to see that, as a whole, KFEM
can achieve the best predictive performance when the
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value of α is set to 0.5. Moreover, the KFPM can obtain the best
performance when the value of θ in formula (15) is set to 0.7.

DISCUSSION

Essential proteins are indispensable proteins for the survival
and reproduction of organisms. In recent years, identification
of essential proteins has become a research hotspot. It takes
a lot of time and money to predict the essential proteins
through traditional biological experiments. Therefore, many
researchers focus on designing effective predictive models
by combining PPI networks. With gradual improvement of
high-throughput techniques, prediction methods with more
accurate predictive performance have been proposed successively
based on combination of biological data of proteins and
PPI networks. Inspired by this, a novel predictive model
called KFPM has been proposed in this paper, which can
achieve satisfactory predictive accuracy by combining topological
characteristics of a newly constructed protein-domain interaction
network and functional characteristics of proteins. Experimental
results demonstrate the superiority of KFPM, which may
provide a useful tool for future researches on prediction
of key proteins.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories

and accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

XH and LW conceived and designed the study. XH,
ZC, and LK obtained and processed datasets. XH
and LK wrote this manuscript. YT, LW, and LK
provided suggestions and supervised the research. All
authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the National Natural Science
Foundation of China (No. 61873221), the Research Foundation
of Education Bureau of Hunan Province (No. 20B080), and the
Natural Science Foundation of Hunan Province (Nos. 2018JJ4058
and 2019JJ70010).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.708162/full#supplementary-material

REFERENCES
Ahmed, N. M., Chen, L., Li, B., Liu, W., and Dai, C. (2021). A random walk-

based method for detecting essential proteins by integrating the topological
and biological features of ppi network. Soft Comput. doi: 10.1007/s00500-021-
05780-8

Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffithsjones, S., et al.
(2004). The pfam protein families database. Nucleic Acids Res. 32, D138–D141.
doi: 10.1093/nar/gkh121

Binder, J. X., Sune, P. F., Kalliopi, T., Christian, S., O’DonoghueSeán, I.,
Reinhard, S., et al. (2014). Compartments: unifification and visualization of
protein subcellular localization evidence. Database J. Biol. Databases Curation
2014:bau012. doi: 10.1093/database/bau012

Bonacich, P. (1987). Power and centrality: a family of measures. Am. J. Soc. 92,
1170–1182. doi: 10.2307/2780000

Cherry, J. M., Adler, C., Ball, C., Chervitz, S. A., Dwight, S. S., and Hester, E. T.
(1998). SGD: saccharomyces genome database. Nucleic Acids Res. 26, 73–79.
doi: 10.1093/nar/26.1.73

Estrada, E. (2010). Virtual identification of essential proteins within the
protein interaction network of yeast. Proteomics 6, 35–40. doi: 10.1002/pmic.
200500209

Estrada, E., and Rodriguez-Velazquez, J. A. (2005). Subgraph centrality in complex
networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71:056103. doi: 10.1103/
PhysRevE.71.056103

Gabriel, O., Thomas, S., Kristoffffer, F., Tina, K., David, N. M., Sanjit, R., et al.
(2010). InParanoid 7: new algorithms and tools for eukaryotic orthology
analysis. Nucleic Acids Res. 38, D196–D203. doi: 10.1093/nar/gkp931

Gavin, A. C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., et al.
(2006). Proteome survey reveals modularity of the yeast cell machinery. Nature
440, 631–636. doi: 10.1038/nature04532

Hahn, M. W., and Kern, A. D. (2004). Comparative genomics of centrality and
essentiality in three eukaryotic protein-interaction networks. Mol. Biol. Evol.
22, 803–806. doi: 10.1093/molbev/msi072

Hanley, J. A., and Mcneil, B. J. (1982). The meaning and use of the area under
a receiver operating characteristic (roc) curve. Radiology 143:29. doi: 10.1148/
radiology.143.1.7063747

Holman, A. G., Davis, P. J., Foster, J. M., Carlow, C. K., and Kumar, S. (2009).
Computational prediction of essential genes in an unculturable endosymbiotic
bacterium, wolbachia of brugia malayi. BMC Microbiol. 9:243. doi: 10.1186/
1471-2180-9-243

Horyu, D., and Hayashi, T. (2013). Comparison between pearson correlation
coefficient and mutual information as a similarity measure of gene
expression profiles. Japanese J. Biometr. 33, 125–143. doi: 10.5691/jjb.
33.125

Jeong, H., Mason, S., and Barabási, A. (2001). Lethality and centrality in protein
networks. Nature 411, 41–42. doi: 10.1038/35075138

Jiang, Y., Wang, Y., Pang, W., Chen, L., Sun, H., Liang, Y., et al. (2015). Essential
protein identification based on essential protein–protein interaction prediction
by integrated edge weights. Methods 83, 51–62. doi: 10.1016/j.ymeth.2015.04.
013

Joy, M. P., Brock, A., Ingber, D. E., and Huang, S. (2005). High-betweenness
proteins in the yeast protein interaction network. J. Biomed. Biotechnol. 2005,
96–103. doi: 10.1155/jbb.2005.96

Keretsu, S., and Sarmah, R. (2016). Weighted edge based clustering to identify
protein complexes in protein–protein interaction networks incorporating
gene expression profile. Comput. Biol. Chem. 65, 69–79. doi: 10.1016/j.
compbiolchem.2016.10.001

Krogan, N. J., Cagney, G., Yu, H. Y., Zhong, G. Q., Guo, X. H., Ignatcenko, A.,
et al. (2006). Global landscape of protein complexes in the yeast Saccharomyces
cerevisiae. Nature 440, 637–643. doi: 10.1038/nature04670

Frontiers in Genetics | www.frontiersin.org 14 June 2021 | Volume 12 | Article 708162

https://www.frontiersin.org/articles/10.3389/fgene.2021.708162/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.708162/full#supplementary-material
https://doi.org/10.1007/s00500-021-05780-8
https://doi.org/10.1007/s00500-021-05780-8
https://doi.org/10.1093/nar/gkh121
https://doi.org/10.1093/database/bau012
https://doi.org/10.2307/2780000
https://doi.org/10.1093/nar/26.1.73
https://doi.org/10.1002/pmic.200500209
https://doi.org/10.1002/pmic.200500209
https://doi.org/10.1103/PhysRevE.71.056103
https://doi.org/10.1103/PhysRevE.71.056103
https://doi.org/10.1093/nar/gkp931
https://doi.org/10.1038/nature04532
https://doi.org/10.1093/molbev/msi072
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1186/1471-2180-9-243
https://doi.org/10.1186/1471-2180-9-243
https://doi.org/10.5691/jjb.33.125
https://doi.org/10.5691/jjb.33.125
https://doi.org/10.1038/35075138
https://doi.org/10.1016/j.ymeth.2015.04.013
https://doi.org/10.1016/j.ymeth.2015.04.013
https://doi.org/10.1155/jbb.2005.96
https://doi.org/10.1016/j.compbiolchem.2016.10.001
https://doi.org/10.1016/j.compbiolchem.2016.10.001
https://doi.org/10.1038/nature04670
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-708162 June 23, 2021 Time: 17:41 # 15

He et al. Method for Identifying Essential Proteins

Lei, X., Fang, M., Wu, F. X., and Chen, L. (2018a). Improved flower pollination
algorithm for identifying essential proteins. Bmc Syst. Biol. 12:46. doi: 10.1186/
s12918-018-0573-y

Lei, X., Yang, X., and Wu, F. (2018b). Artificial fish swarm optimization
based method to identify essential proteins. IEEE/ACM Trans. Comput. Biol.
Bioinform. 17, 495–505. doi: 10.1109/TCBB.2018.2865567

Lei, X., Zhao, J., Fujita, H., and Zhang, A. (2018c). Predicting essential proteins
based on RNA-Seq, subcellular localization and GO annotation datasets.
Knowledge Based Syst. 151, 136–148. doi: 10.1016/j.knosys.2018.03.027

Li, M., Wang, J., Xiang, C., Wang, H., and Yi, P. (2011). A local average
connectivity-based method for identifying essential proteins from the network
level. Comput. Biol. Chem. 35, 143–150. doi: 10.1016/j.compbiolchem.2011.04.
002

Li, M., Zhang, H., Wang, J. X., and Pan, Y. (2012). A new essential protein
discovery method based on the integration of protein-protein interaction and
gene expression data. Bmc Syst. Biol. 6:15. doi: 10.1186/1752-0509-6-15

Li, S., Chen, Z., He, X., Zhang, Z., Pei, T., Tan, Y., et al. (2020). An iteration method
for identifying yeast essential proteins from weighted PPI network based on
topological and functional features of proteins. IEEE Access 8, 90792–90804.
doi: 10.1109/access.2020.2993860

Meng, Z., Kuang, L., Chen, Z., Zhang, Z., and Wang, L. (2021). Method for essential
protein prediction based on a novel weighted protein-domain interaction
network. Front. Genet. 12:645932. doi: 10.3389/fgene.2021.645932

Mewes, H. W., Frishman, D., Mayer, K. F. X., Munsterkotter, M., Noubibou, O.,
Pagel, P., et al. (2006). MIPS: analysis and annotation of proteins from whole
genomes in 2005. Nucleic Acids Res. 34, D169–D172. doi: 10.1093/nar/gkj148

Peng, W., Wang, J. X., Wang, W. P., Liu, Q., Wu, F. X., and Pan, Y. (2012).
Iteration method for predicting essential proteins based on orthology and
protein-protein interaction networks. Bmc Syst. Biol. 6:87. doi: 10.1186/1752-
0509-6-87

Przulj, N., Wigle, D. A., and Jurisica, I. (2004). Functional topology in a network of
protein interactions. Bioinformatics 20, 340–348. doi: 10.1093/bioinformatics/
btg415

Ren, J., Wang, J., Min, L., Wang, H., and Liu, B. (2011). “Prediction of essential
proteins by integration of ppi network topology and protein complexes
information,” in Bioinformatics Research & Applications-international
Symposium, eds J. Chen, J. Wang, and A. Zelikovsky (Berlin: Springer),
12–24. doi: 10.1186/1477-5956-11-S1-S20

Saccharomyces Genome Deletion Project (2012). Available online at: http://
yeastdeletion.stanford.edu/ (accessed June 20, 2012).

Stephenson, K., and Zelen, M. (1989). Rethinking centrality: methods and
examples. Soc. Networks 11, 1–37. doi: 10.1016/0378-8733(89)90016-6

Tang, X., Wang, J., Zhong, J., and Pan, Y. (2014). Predicting essential proteins based
on weighted degree centrality. IEEE/ACM Trans. Comput. Biol. Bioinform. 11,
407–418. doi: 10.1109/TCBB.2013.2295318

Tu, B. P., Kudlicki, A., Rowicka, M., and McKnight, S. L. (2005). Logic of the yeast
metabolic cycle: temporal compartmentalization of cellular processes. Science
310, 1152–1158. doi: 10.1126/science.1120499

Wang, H., Li, M., Wang, J. X., and Pan, Y. (2011). “A new method for identifying
essential proteins based on edge clustering coefficient,” in Bioinformatics
Research and ApplicationsISBRA 2011, LNBI, eds J. Chen, J. Wang, and A.
Zelikovsky (Berlin, Heidelberg: Springer), 87–98. doi: 10.1007/978-3-642-
21260-4_12

Wang, J. X., Li, M., Wang, H., and Pan, Y. (2012). Identification of essential proteins
based on edge clustering coefficient. IEEE/ACMTrans. Comput. Biol. Bioinform.
9, 1070–1080. doi: 10.1109/TCBB.2011.147

Wuchty, S., and Stadler, P. F. (2003). Centers of complex networks. J. Theor. Biol.
223, 45–53. doi: 10.1016/S0022-5193(03)00071-7

Xenarios, I., Salwinski, L., Duan, X. J., Higney, P., Kim, S. M., and Eisenberg, D.
(2002). DIP, the database of interacting proteins: a research tool for studying
cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305. doi:
10.1093/nar/30.1.303

Xiao, Q., Wang, J., Peng, X., and Wu, F. X. (2013). Detecting protein complexes
from active protein interaction networks constructed with dynamic gene
expression profiles. Proteome Sci. 11:S20. doi: 10.1186/1477-5956-11-S1-S2

Zhang, B., Wang, Q., Liu, S., Dong, H., Zheng, S., Zhao, L., et al. (2020). Data-
Driven abnormity assessment for low-voltage power consumption and supplies
based on CRITIC and improved radar chart algorithms. IEEE Access 8, 27139–
27151. doi: 10.1109/access.2020.2970098

Zhang, R., and Lin, Y. (2009). DEG 5.0.A database of essential genes in both
prokaryotes and eukaryotes. Nucleic Acids Res. 37, D455–D458.

Zhang, W., Xu, J., Li, Y., and Zou, X. (2016). Detecting essential proteins based
on network topology, gene expression data and gene ontology information.
IEEE/ACM Trans. Comput. Biol. Bioinform. 15, 109–116. doi: 10.1109/tcbb.
2016.2615931

Zhang, W., Xu, J., and Zou, X. (2019). Predicting essential proteins by integrating
network topology, subcellular localization information, gene expression profile
and go annotation data. IEEE/ACM Trans. Comput. Biol. Bioinform. 17, 2053–
2061. doi: 10.1109/TCBB.2019.2916038

Zhang, W., Xue, X., Xie, C., Li, Y., Liu, J., Chen, H., et al. (2021). CEGSO: boosting
essential proteins prediction by integrating protein complex, gene expression,
gene ontology, subcellular localization and orthology information. Interdiscip.
Sci. Comput. Life Sci. doi: 10.1007/s12539-021-00426-7 [Epub ahead of print],

Zhang, X., Xu, J., and Wang, X. X. (2013). A new method for the discovery
of essential proteins. PLoS One 8:e58763. doi: 10.1371/journal.pone.00
58763

Zhang, Z., Luo, Y., Hu, S., Li, X., and Zhao, B. (2020). A novel method to predict
essential proteins based on tensor and hits algorithm. Human Genomics 14:14.
doi: 10.1186/s40246-020-00263-7

Zhao, B., Han, X., Liu, X., Luo, Y., Hu, S., Zhang, Z., et al. (2020). A novel method
to predict essential proteins based on diffusion distance networks. IEEE Access
8, 29385–29394. doi: 10.1109/ACCESS.2020.2972922

Zhao, B., Zhao, Y., Zhang, X., Zhang, Z., Zhang, F., and Wang, L.
(2019). An iteration method for identifying yeast essential proteins from
heterogeneous network. BMC Bioinform. 20:355. doi: 10.1186/s12859-019-
2930-2

Zhao, B. H., Wang, J. X., Li, M., Wu, F. X., and Pan, Y. (2014). Prediction
of essential proteins based on overlapping essential modules. IEEE Trans.
Nanobioence 13, 415–424. doi: 10.1109/TNB.2014.2337912

Zhong, J., Tang, C., Peng, W., Xie, M., and Yang, J. (2020). A novel essential protein
identification method based on PPI networks and gene expression data. Res.
Square [Preprint] doi: 10.21203/rs.3.rs-55902/v2

Zz, A. Jr., Jg, A., and Fxw, B. (2019). Predicting essential proteins from protein-
protein interactions using order statistics. J. Theor. Biol. 480, 274–283. doi:
10.1016/j.jtbi.2019.06.022

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 He, Kuang, Chen, Tan and Wang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 15 June 2021 | Volume 12 | Article 708162

https://doi.org/10.1186/s12918-018-0573-y
https://doi.org/10.1186/s12918-018-0573-y
https://doi.org/10.1109/TCBB.2018.2865567
https://doi.org/10.1016/j.knosys.2018.03.027
https://doi.org/10.1016/j.compbiolchem.2011.04.002
https://doi.org/10.1016/j.compbiolchem.2011.04.002
https://doi.org/10.1186/1752-0509-6-15
https://doi.org/10.1109/access.2020.2993860
https://doi.org/10.3389/fgene.2021.645932
https://doi.org/10.1093/nar/gkj148
https://doi.org/10.1186/1752-0509-6-87
https://doi.org/10.1186/1752-0509-6-87
https://doi.org/10.1093/bioinformatics/btg415
https://doi.org/10.1093/bioinformatics/btg415
https://doi.org/10.1186/1477-5956-11-S1-S20
http://yeastdeletion.stanford.edu/
http://yeastdeletion.stanford.edu/
https://doi.org/10.1016/0378-8733(89)90016-6
https://doi.org/10.1109/TCBB.2013.2295318
https://doi.org/10.1126/science.1120499
https://doi.org/10.1007/978-3-642-21260-4_12
https://doi.org/10.1007/978-3-642-21260-4_12
https://doi.org/10.1109/TCBB.2011.147
https://doi.org/10.1016/S0022-5193(03)00071-7
https://doi.org/10.1093/nar/30.1.303
https://doi.org/10.1093/nar/30.1.303
https://doi.org/10.1186/1477-5956-11-S1-S2
https://doi.org/10.1109/access.2020.2970098
https://doi.org/10.1109/tcbb.2016.2615931
https://doi.org/10.1109/tcbb.2016.2615931
https://doi.org/10.1109/TCBB.2019.2916038
https://doi.org/10.1007/s12539-021-00426-7
https://doi.org/10.1371/journal.pone.0058763
https://doi.org/10.1371/journal.pone.0058763
https://doi.org/10.1186/s40246-020-00263-7
https://doi.org/10.1109/ACCESS.2020.2972922
https://doi.org/10.1186/s12859-019-2930-2
https://doi.org/10.1186/s12859-019-2930-2
https://doi.org/10.1109/TNB.2014.2337912
https://doi.org/10.21203/rs.3.rs-55902/v2
https://doi.org/10.1016/j.jtbi.2019.06.022
https://doi.org/10.1016/j.jtbi.2019.06.022
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Method for Identifying Essential Proteins by Key Features of Proteins in a Novel Protein-Domain Network
	Introduction
	Materials and Methods
	Experimental Data
	Construction of the Weighted PPI Network
	Construction of the Heterogeneous Protein-Domain Network
	Calculation of Initial Scores for Proteins and Domains
	Design of KFPM

	Results
	Comparison Between KFPM and Representative Methods
	Validation With Jackknife Methodology
	Difference Analysis of KFPM and Competitive Methods
	Validation by Receiver Operating Characteristic Curve
	Analysis of Parameters

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


