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Cell–cell interactions (CCIs) and cell–cell communication (CCC) are critical for
maintaining complex biological systems. The availability of single-cell RNA sequencing
(scRNA-seq) data opens new avenues for deciphering CCIs and CCCs through
identifying ligand-receptor (LR) gene interactions between cells. However, most
methods were developed to examine the LR interactions of individual pairs of genes.
Here, we propose a novel approach named LR hunting which first uses random
forests (RFs)-based data imputation technique to link the data between different cell
types. To guarantee the robustness of the data imputation procedure, we repeat the
computation procedures multiple times to generate aggregated imputed minimal depth
index (IMDI). Next, we identify significant LR interactions among all combinations of
LR pairs simultaneously using unsupervised RFs. We demonstrated LR hunting can
recover biological meaningful CCIs using a mouse cellular indexing of transcriptomes
and epitopes by sequencing (CITE-seq) dataset and a triple-negative breast cancer
scRNA-seq dataset.

Keywords: random forests, ligand-receptor interaction, cell–cell interaction, cell–cell communications, single-cell
RNA-seq

INTRODUCTION

In recent years, single-cell RNA sequencing (scRNA-seq) has been widely applied to measure gene
expression at single-cell resolution, and has become a powerful tool to detect common and rare cell
subpopulations, construct cell lineage and pseudotime, and identify spatial gene expression pattern,
etc. While there still are many open problems and challenges remaining, scRNA-seq data analysis
can be further expanded and developed to fully utilized the data for better understanding the cell
heterogeneity and gene expression stochasticity (Lahnemann et al., 2020).

Cell–cell interactions (CCIs) and cell–cell communication (CCC) are crucial for cell
development, tissue homeostasis, and immune interactions in multicellular organisms
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(Armingol et al., 2021). In the case of cancer, tumor cells can
reprogram their microenvironment to turn neutral or anti-tumor
cells into tumor supportive elements (Hanahan and Weinberg,
2011; Junttila and de Sauvage, 2013), partly through secreted
ligand and cell surface receptor physical interactions (Ramilowski
et al., 2015). The availability of scRNA-seq data provides the
great opportunities to decipher the CCIs and CCC through
ligand-receptor (LR) gene expressions (Shao et al., 2020; Liu
et al., 2021). Several analysis tools have been developed to
infer CCC by modeling the LR co-expression data including
Spearman correlation between LRs (Zhou et al., 2017; Cohen
et al., 2018), product-based score from gene expression of LR
pair (Kumar et al., 2018; Cabello-Aguilar et al., 2020; Hu et al.,
2021), differential gene combinations (Tyler et al., 2019; Cillo
et al., 2020), gene expression permutation test (Efremova et al.,
2020; Dries et al., 2021; Noel et al., 2021).

Most available CCC analysis methods quantify each LR pair
separately. However, biologically CCIs and CCC happen in much
more complicated scenarios. In particular, the multiple ligands
can compete with each other for binding on the same receptor.
Therefore, the LR relationships may not be one-to-one, but would
be many-to-one or many-to-many instead. To better capture
the complex relationships between LR interactions, here we
propose a new multivariate CCC analysis approach based on
random forests (RFs), which incorporates the correlations and
interactions among intercellular networks to rank and prioritize
the LR interactions.

METHOD

LR Hunting Modeling
We present a machine learning framework for LR interaction
discovery, which can be used to analyze any curated LR
database such as FANTOM5 (Ramilowski et al., 2015), IUPHAR
(Harding et al., 2018), DLRP (Graeber and Eisenberg, 2001), or
CellPhoneDB (Efremova et al., 2020).

Gene Expression Data Imputation
To identify LR interactions between two cell types using LR
hunting analysis, we need to build the complete pseudo gene
expression data matrix since ligand genes and receptor genes are
from different cell types in the “interaction space” (Figure 1A).
We assume that the gene expressions between two cell types
follow a multivariate distribution p so that all the gene expression
can be observed or imputed in the same framework. Formally,
denote X(A) as an nA × pA matrix that records ligands gene
expression for cell type A and let X(B) be an nB × pB matrix that
records receptor gene expressions for cell type B. Our goal is
to obtain an (nA + nB) × (pA + pB) matrix x ∼p so that gene
associations or interactions between cell types A and B can be
computed using multivariate approaches. If we are interested
in the interactions between ligand genes from cell type B and
receptor genes from cell type A, imputation procedure can be
performed similarly as we illustrated in Figure 1A.

To this end, we applied a machine learning model,
the RF missing data imputation algorithm developed by

Tang and Ishwaran (2017), which was shown to be as an efficient
multivariate imputation approach for high-dimensional genomic
data. The RF technology is related to recursive partitioning and
regression tree analyses. A single tree is inherently unstable,
hence a forest of trees is “grown” from bootstrap samples of the
original dataset, where an average of 37% of the data will not be
sampled, referred as out-of-bag (OOB) data. The forest permits
an ensemble average to be calculated across the individual trees
(Breiman, 2001). We adopted the unsupervised splitting rule,
where a random set of q variables, say X1, ..., Xq, is selected to
be the multivariate pseudo-predictors. Let s be a proposed split
for a pseudo-predictor Xi that splits the node t into left and right
daughter nodes tL = {Xi ≤ s} and tR = {Xi > s}. For continuous
variables, the best split is to minimize the split-statistic

Dq (s, t) =
q∑

k=1

∑
j∈tL

(
Xj,k − XtLk

)2
+

∑
j∈tR

(
Xj,k − XtRk

)2
,

Where, XtLk
and XtRk

are the sample means of the k-th pseudo
response coordinate in the left and right daughter nodes. The
imputation utilized the above multivariate unsupervised splitting
rule for each tree where missing values are first discarded. After
the forest is grown, missing data are imputed using OOB non-
missing terminal node data.

Unsupervised Random Forests Minimal Depth Index
In order to detect LR interactions in a multivariate fashion, we
adopted the unsupervised RF approach to analyze the imputed
data (Shi and Horvath, 2006; Mantero and Ishwaran, 2021). RF
is a modern machine learning technique that permits exploration
of complex, non-linear interrelationships (Breiman, 2001; Chen
and Ishwaran, 2012). Its extension to an unsupervised algorithm
composes two steps. The first step involves generating a synthetic
dataset by drawing an equal number of observations from the
corresponding predictor variable marginal distributions. The
second step utilizes a multivariate RF to predict the synthetic
features so that multivariate impurity splitting is able to applied
in a supervised fashion.

Although the unsupervised RF can be used to cluster cells,
we are more interested in selecting genes that interact with
each other. We applied the minimal depth index to evaluate LR
interactions in RF models (Ishwaran et al., 2010, 2011; Chen and
Ishwaran, 2013). With forests, one often observes informative
variables tending to split close to the root node, where the
closeness is measured by minimal depth. When considering a
maximal v-subtree (Ishwaran, 2007), we could use the minimal
depth of variable w to quantify the interaction between variables v
and w. To illustrate this, we denote T as a random tree and define
Tv a v–subtree in T for any variable v if the root node of Tv is
split using v. We call Tv a maximal v–subtree if Tv is not a subtree
of a larger v–subtree and define the minimal depth statistics of
v, denoted by Dv, as the distance from the root node of T to the
root of the closest maximal v-subtree. For example, there are two
maximal v-subtrees in Figure 1B, marked in red. The maximal
v-subtree on the left side is with terminal nodes 1 and 2; that on
the right side is with terminal nodes 3, 4, 5, and 6.
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FIGURE 1 | Illustration of RF methods. (A) Data sheet and imputation illustration. (B) The minimal depth of w in a maximal v-subtree. Letters in parent nodes identify
the variable used to split the node. There are two maximal v-subtrees, marked in red. The maximal v-subtree on the left side is with terminal nodes 1 and 2; that on
the right side is with terminal nodes 3, 4, 5, and 6. The minimal depth of w in the second maximal v-subtree is the depth of w (d = 2 marked with pink background)
normalized by the subtree depth (m = 3), which is d/m = 2/3. (C) Model workflow for LR hunting.

We denote the maximal w–subtree in Tv as Tv,w is w is used
for the daughter nodes of Tv and Tv,w is not a subtree of a larger
w–subtree in Tv. The minimal depth from v to w in Tv equals to
the distance from the root node of Tv to the root of the closest
maximal w–subtree Tv,w, which is denoted as Dv,w. Let m be the
depth of subtree Tv,w and let l be the depth of the entire tree T.
Assuming v and w are weak variables and independent with each
other, we have

P
(
Dv,w = d

)
=

l∑
m=d

P
(
Dv = l−m

)
P
(
Dw = l−m+ d

)
. (1)

It was deducted that P (Dv = s) =
(
1− 1/p

)2s−1[
1−

(
1− 1/p

)2s
]

, which makes Equation 1 a complicated
function of d and l (Ishwaran, 2007). From this, we can
normalize Dv,w using the cumulative distribution function
P
(
Dv,w ≤ d

)
to evaluate LR interactions. A simpler way to

normalize Dv,w is d/m, which gives similar ranks for interactions
according to empirical results.

As illustrated by Figure 1B, the interaction between variables v
and w is marked with pink background: when these two variables
interact with each other, we expect this depth to be smaller
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and this close split pattern to be repeated frequently among
different trees. A single tree can be used to calculate multiple
minimal depths of variables in multiple maximal subtrees, such
as variables h and v in Figure 1B, where the maximal h-subtree
is the entire tree. The minimal depth Dv,w = d is normalized by
the depth of the corresponding subtree as d/m and normalized
values from different maximal v-subtrees are averaged across
the entire forest. We could detect variable interactions in a
multivariate way adopting this imputed minimal depth index
(IMDI), which averages the normalized Dv,w and Dv,w. This
normalized index ranges from 0 to 1 and smaller values indicate
stronger interaction effects.

To enable the imputed dataset robustly represents the
underlining distribution p, we adopt the idea of multiple
imputation, a general approach to allow for the uncertainty about
the missing data by creating several different plausible imputed
datasets and combining results obtained from each imputed
dataset (Harel and Zhou, 2007; Carpenter and Kenward, 2014).
Specifically, we generate imputed dataset Xm, m = 1, ...,M,
from our RF data imputation procedure described in the previous
section, and use the generated IMDI, denoted by I(m) (S) to
identify interaction for gene pair S across imputed dataset. We
define the aggregated IMDI for gene pair S as

I (S) =
1
M

M∑
m=1

I(m)(S).

There are pA × pB pair of potential interactions calculated, and
we use the empirical distribution of I(S) from these pairs to
determine the threshold of significant interactions. The whole
procedure to calculate I(S) is illustrated in Figure 1C. We tested
replication number m from 5, 10, 20, 50, 100, to 200 and found
that the aggregated IMDI index was stable after 20 replications.
We used 20 imputed datasets and aggregated those 20 IMDI for
the analysis in section “Result.”

Random forest hunting was implemented in the open-
source R software using the randomForestSRC. From the
randomForestSRC R package, the function rfsrc was used for
data imputation under default setting with 1,000 trees except
we set na.action = “na.impute”; then minimal depth indices
were estimated using the function find.interaction with method
maxsubtree. LR hunting analysis code is available is at https:
//github.com/TransBioInfoLab/LRinteractions.

Pre-processing and Normalization of
scRNA-seq Dataset
Two scRNA-seq datasets were used to illustrate the LR hunting
approach. The first dataset is a high-quality cellular indexing
of transcriptomes and epitopes by sequencing (CITE-seq) of
murine spleen containing 7,097 cells with more than 1,200
mRNA unique molecular identifiers (UMIs) (Govek et al., 2021).
Another dataset is scRNA-seq data from five primary triple-
negative breast cancer (TNBC) including 24,271 cells and 6,125
UMI detected per cell (Wu et al., 2020). For both datasets, the
SCTransform function from the R package Seurat_3.1.0 was used
for scRNA-seq data normalization before applying LR hunting

algorithm. The CellAssign was applied to annotate cell type for
murine spleen CITE-seq data (Zhang et al., 2019).

scRNA Visualization
A Seruat object was created (CreateSeuratObject, min.cells = 3,
min.features = 200) with the R package Seruat (version 3.2.3)
(Stuart et al., 2019) from logNormalized scRNA from five TNBC
tumors. For clustering, the following parameters were used:
RunPCA; RunUMAP, dims = 1:30; FindNeighbors (dims = 1:30);
and FindClusters. UMAP plots were generated and colored
by expression levels of cell lineage markers to identify cell
populations and interactions. Individual cells were plotted using
previously published cell types or expression of interesting LR
pairs (Wu et al., 2020).

Circos Plot Visualization of
Ligand-Receptor Interaction
To summarize interactions among cell types, individual gene
pair ranks were summed across the five individual patients.
LR interactions were visualized with circos plots colored by
interaction strength (rank sum) and line thickness representing
the frequency of interaction across the tumors. Arrows indicate
direction of ligand to receptor pair between cell types. Circos
plots were generated using the R package circlize (Gu et al., 2014).

RESULTS

LR Hunting Recovered the Validated
Cell–Cell Interactions Using scRNA-seq
Data
The new digital image technologies and pipelines for multiplexed
immunohistochemistry (mIHC) such as CO-Detection by
indexing (CODEX) can quantify the antigens at the single-cell
level to characterize tissue spatial architecture (Goltsev et al.,
2018). A very recent new analysis method, spatially-resolved
transcriptomics via epitope anchoring (STvEA), can integrate the
CITE-seq data with mIHC images to achieve high-resolution of
annotation for cell populations in the mIHC data to uncover
the spatial transcription patterns (Govek et al., 2021). STvEA
integrated CITE-seq and CODEX information to identify the
LR pairs, thus the results are reliable and accurate. We applied
LR hunting approach to only the scRNA-seq data from murine
spleen CITE-seq data and then compared our results with those
obtained using STvEA.

More specifically, we focused on three spatially colocalized cell
populations including monocyte-derived macrophages, red-pulp
macrophages, and neutrophils. We followed the procedures and
LR annotations described in Govek et al. (2021). First, the mouse
gene symbols were converted to the human ortholog symbols
using the Bioconductor package biomaRT. The CellPhoneDB
database was used for LR annotations (Efremova et al., 2020).
Multi-subunit LR complexes were not used in this analysis due
to the difficulty of annotation. The identified LR pairs by LR
hunting were then converted back to their mouse orthologs to
create the ranking lists.
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The comparison of LR hunting results with those based
on STvEA showed that LR hunting was able to detect many
STvEA validated LR interactions such as monocyte-derived
macrophages and neutrophils (Anxa1-Fpr1 and Anxa1-Fpr2),
red-pulp macrophages and neutrophils (Hebp1 and Fpr2), and
others (Supplementary Table 1). STvEA integrated CITE-seq
and CODEX information to identify the LR pairs, thus the
results are reliable. LR hunting method was able to find those
validated LR pairs without borrowing the spatially expressed
protein information.

LR Hunting Identified Immune, Epithelial
and Stroma Interactions in TNBC
Triple-negative breast cancer is a diverse disease with both
tumor (Lehmann et al., 2011) and stromal heterogeneity
(Wu et al., 2020). Stromal-immune interactions can alter
immune cell function (Gruosso et al., 2019). We applied the
LR hunting approach to scRNA-seq data from five TNBC
tumors to identify LR interactions between myeloid cells and
either CD4 T helper (Th) cells or regulatory T cells (Treg)
(Figure 2A). Professional antigen-presenting cells (APCs) such
as macrophages, B cells and dendritic cells, present foreign
antigens loaded on MHC-II to CD4+ Th cells. To fully
activate, Th cells require a second interaction between the co-
stimulatory CD80/CD86 ligands expressed on APCs and the
CD28 receptor on CD4+ T cells (Figure 2B). In addition,
CD4+ cells can also be converted to Treg through consumption
of IL-2 or other inhibitory cytokines, such as transforming
growth factor beta (TGF−β), IL−10, and IL−35. Once converted,
Tregs can interact with APCs through the immune checkpoint
CTLA−4 interacting with CD80/86, impairing APCs function
(Figure 2B). Using our approach, we identified several known
interactions between CD4 Th cells and myeloid APC cells,
such as the costimulatory CD28-CD86 interaction, the immune
activating myeloid secreted interferon gamma (IFNG) with
IFNGR1/2 on CD4 cells and CD40LG-CD40 (Figures 2B,C).
Furthermore, we were able to identify inhibitory interactions
between myeloid and Treg such as CTLA4 on Tregs interacting
with either CD80 or CD86, BTLA on Tregs interacting with
TNFRS14 on APCs, secreted IL10 binding to the IL10RA
on T cells and secreted CSF1 interacting with CSF1R on
APC cells (Figures 2B,D). Examination of scRNA expression
show that CD4-myeloid cell interactions (CD28-CD86 and
CD40LG-CD40) and Treg-myeloid interactions (CTLA4-CD86
and CSF1-CSF1R) are expressed in appropriate cell types
(Figures 2E,F).

Mammary glands consist of two differentiated epithelial cell
types organized into an inner layer of luminal epithelial and
an outer layer of myoepithelial cells in direct contact with
the basement membrane. To better understand the directional
signaling events between these two cell types in TNBC, we
applied the LR hunting approach to identify interactions between
luminal and myoepithelial cells (Figure 3A). We identified
distinct directional interactions with multiple epidermal growth
factor receptor (EGFR) ligands (AREG, BTC, and EREG) with
the EGFR on myoepithelial cells (Figures 3B,C). This signaling

is consistent with the previously observed higher expression
of EGFR in myoepithelial cells and that overexpression of
EGFR can drive cells toward a myoepithelial phenotype in 3D
culture (Ingthorsson et al., 2016). We also overserved several
ligands (HBEGF and NRG1) interacting with multiple human
EGFRs (ERBB2, ERBB3, and ERBB4) expressed on luminal
cells (Figures 3B,C). In addition, we identified JAG1 ligand
on myoepithelial cells interacting with either NOTCH2 or
NOTCH3 on luminal epithelial cells, consistent with others
observing NOTCH3 expression in luminal epithelial cells and
JAG1 expression in the surrounding myoepithelial layer (Reedijk
et al., 2005). Together these interactions describe complex
multiple LR interactions that occur between two mammary
epithelial cell types.

Cancer-associated fibroblasts (CAFs) are a major component
of the tumor microenvironment and can augment many
characteristics of carcinogenesis including extracellular matrix
remodeling, angiogenesis, cancer cell proliferation, invasion, and
inflammation. Two distinct populations of CAFs have been
recently described in scRNA: one with features of myofibroblasts
(myCAFs) and the other characterized by high expression of
growth factors and immunomodulatory molecules (iCAFs) (Wu
et al., 2020). To better understand how myeloid cells interact with
CAFs, we applied our LR hunting approach between myeloid
and either iCAF or myCAF cells (Figure 4A). We compared
the interactions identified between each and show that 60%
of the interactions are shared between iCAF and myCAF cells
with myeloid cells (Figure 4B). Gene ontology pathway analysis
interactions present in myCAFs enriched for extracellular matrix,
integrin and focal adhesion (Figure 4C). However, the top
pathways enriched in iCAF interactions were immune related
(cytokine signaling and signaling by interleukins) in addition
to extracellular matrix, focal adhesion and integrin pathways.
Further examination of signaling between either iCAF or myCAF
to myeloid cells revealed that myCAFs were interacting more
as ligands to myeloid cells (Figures 4D,E). However, the
opposite was true for myeloid ligands, in which the majority
of the interactions occurred between iCAFs (Figures 4F,G).
Therefore, myCAFs appear to signal to myeloid cells, whereas
myeloid cells provide ligands to iCAFs and the presence or
absence of myeloid cells may lead to differential activation of
iCAFs (Figure 4H).

For all TNBC cell pairs analyzed above, we also
compared our LR hunting method with another well-known
method SingleCellSignalR (Cabello-Aguilar et al., 2020).
SingleCellSignalR utilizes LR score, which is a penalized LR
expression product, to rank the LR pairs. We compared results
of CD4-myeloid interactions between our methods with the
SingleCellSignalR method. The rankings of results by these two
methods were strongly correlated (0.90–0.96) (Supplementary
Figure 1). The top 25 interactions agreed well (∼60% were
identified by both methods), however 20% of the interactions
were identified by only one method. Most of the unique
interactions identified by SingleCellSignalR involved B2M and
TCR interactions, while the LR hunting method identified
additional key interactions (CCL5-CCR1, LGALS1-PTPRC,
IFNG-IFNGR2, and CD40LG-CD4), which were not identified
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FIGURE 2 | Differential LR interactions between myeloid cells and either Th or Treg cells. (A) UMAP plot shows distinct cell populations in five TNBC tumors.
(B) Image shows known interactions identified by LR hunting between myeloid antigen presenting cells and either CD4 Th or Tregs. Colored arrows indicate direction
of signaling from ligand to receptor for stimulatory (green) and inhibitory (red) events. Dashed arrows indicated secreted ligands. Circos plots show the top
interactions and by direction for (C) myeloid and CD4 T cells and (D) myeloid and Treg cells. LR interactions are colored by interaction strength (rank sum) and line
thickness represents the frequency of interaction across the five tumors. (E) UMAP plots show expression of CD4 Th and myeloid cell markers and expression of LR
interactions for CD28-CD86 and CD40L-CD40. (F) UMAP plots show expression of Treg and myeloid cell markers and expression of LR interactions for
CTLA4-CD86 and CSF1-CSF1R.
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FIGURE 3 | Multiple ligand receptor interactions between luminal epithelial cells and myoepithelial cells. (A) UMAP plot shows distinct cell populations in five TNBC
tumors. (B) Image shows unique ligand (red) receptor (black) interactions between myoepithelial and luminal breast cells. (C) Circos plots show the top interactions
and by direction between myoepithelial and luminal cells. LR interactions are colored by interaction strength (rank sum) and line thickness represents the frequency
of interaction across the five tumors.

by LR score (Supplementary Figure 1). The full ranking lists of
TNBC analysis using LR hunting and SingleCellSignalR were
listed in Supplementary Tables 2, 3, respectively.

DISCUSSION

We analyzed scRNA-seq data in a multivariate framework to
identify the complex interactions between genes in different cell
types and the gene pairs that are most significantly associated
with each other. Traditional approaches conduct modeling of
each individual LR pair without considering the correlation and
high-order interaction patterns in single-cell gene expression

data. To analyze the high dimensional scRNA-seq data, we
first leveraged information from known LR gene pairs to filter
the genes, and then used non-parametric RF approaches which
had flexible statistical assumptions for the distribution of gene
expression levels and non-linear dependence of gene pairs. The
merit of this approach is that after accounting for correlations
and interactions multivariately, the discoveries of interacted gene
pairs could be more consistent and reproducible. To account
for unequal cell type distributions in different samples, we also
implemented an approach that computed p-values for aggregated
IMDI scores based on empirical distributions.

Using our approach, we were able to identify known
interactions between differing CD4+ T cells and myeloid cells
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FIGURE 4 | Direction of LR interactions favor myofibroblast CAFs to myeloid and myeloid to inflammatory CAFs. (A) UMAP plot shows distinct cell populations in five
TNBC tumors with cells of interest in bold. (B) Venn diagram of interactions between myeloid and myCAF with interaction between myeloid and iCAF. (C) Gene
ontology pathway analysis (C2 canonical pathways) of differential interactions unique to myCAFs (pink) or iCAFs (blue). (D) Circos plots show the top interactions
between iCAF and myeloid cells (iCAF > myeloid) or myCAF to myeloid (myCAF > myeloid). (E) Venn diagram shows overlap of interactions between CAFs and
myeloid cells. (F) Circos plots show the top interactions between myeloid cells and iCAFs (iCAF > myeloid) or myCAFs (myCAF > myeloid). (G) Venn diagram shows
overlap of interactions between myeloid to CAF interactions. (H) Summary of directional interactions between myeloid cells and myCAFs or iCAFs.
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in TNBC. We also provided evidence that the directional
signaling between myCAFs and iCAFs with myeloid cells is
not proportional and majority of the interactions occur in the
directions from myCAFs to myeloid, and myeloid to iCAFs. One
limitation of our study is that only one ligand and one receptor
gene pair were analyzed together in our models. Further work
is needed to model complex protein structures with multiple
receptors functioning as multi-subunit complexes.
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