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Stripe rust is one of the most destructive diseases of wheat (Triticum aestivum L.),
caused by Puccinia striiformis f. sp. tritici (Pst), and responsible for significant yield
losses worldwide. Single-nucleotide polymorphism (SNP) diagnostic markers were used
to identify new sources of resistance at adult plant stage to wheat stripe rust (YR) in
141 CIMMYT advanced bread wheat lines over 3 years in replicated trials at Borlaug
Institute for South Asia (BISA), Ludhiana. We performed a genome-wide association
study and genomic prediction to aid the genetic gain by accumulating disease resistance
alleles. The responses to YR in 141 advanced wheat breeding lines at adult plant stage
were used to generate G × E (genotype × environment)-dependent rust scores for
prediction and genome-wide association study (GWAS), eliminating variation due to
climate and disease pressure changes. The lowest mean prediction accuracies were
0.59 for genomic best linear unbiased prediction (GBLUP) and ridge-regression BLUP
(RRBLUP), while the highest mean was 0.63 for extended GBLUP (EGBLUP) and
random forest (RF), using 14,563 SNPs and the G × E rust score results. RF and
EGBLUP predicted higher accuracies (∼3%) than did GBLUP and RRBLUP. Promising
genomic prediction demonstrates the viability and efficacy of improving quantitative rust
tolerance. The resistance to YR in these lines was attributed to eight quantitative trait
loci (QTLs) using the FarmCPU algorithm. Four (Q.Yr.bisa-2A.1, Q.Yr.bisa-2D, Q.Yr.bisa-
5B.2, and Q.Yr.bisa-7A) of eight QTLs linked to the diagnostic markers were mapped
at unique loci (previously unidentified for Pst resistance) and possibly new loci. The
statistical evidence of effectiveness and distribution of the new diagnostic markers for
the resistance loci would help to develop new stripe rust resistance sources. These
diagnostic markers along with previously established markers would be used to create
novel DNA biosensor-based microarrays for rapid detection of the resistance loci on
large panels upon functional validation of the candidate genes identified in the present
study to aid in rapid genetic gain in the future breeding programs.
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INTRODUCTION

Wheat is an important cereal crop, providing almost 20% of daily
food calories to the world population. With record production
of 777 million metric tons (MMT) in the years 2019–2020,
and 604 MMT being directly used for human consumption, it
cannot still feed the starving section of the population1. The
demands are yet not met for the growing population despite the
increase in the year-by-year production. Besides the deficit in the
demand–supply ratio, wheat also faces various serious hindrances
in production. Various biotic and abiotic factors hinder the
total yield in many ways. Puccinia striiformis (Pst) causing
yellow rust or stripe rust (YR) in wheat is causing significant
economic damages to the production of wheat, causing losses
up to 70% of total yields in epidemic conditions (Chen, 2005).
Sustainable management of wheat stripe rust is only possible by
identifying and introducing rust resistance genes into the wheat
elite cultivars.

The quantitative nature of many diseases coupled with lack
of knowledge of pathosystems and dynamics of host genotypic
stability across environments makes it imperative to study the
role of environment and genotype-by-environment interaction
(G × E). Breeding programs are often affected by environment
due to the variable response of host–pathogen interactions,
thus deluding identification of genotypes stable for disease
resistance (Das et al., 2019). Hence, any further evaluation of
the genotypes for identification of loci of resistance via linkage
mapping or association mapping or even prediction studies is
highly influenced with the unstable phenotypic response. Various
stability approaches have been designed and implemented across
crops for several phenotypes (including diseases) to overcome the
variance introduced by G× E (Juliana et al., 2017; Tekalign et al.,
2017; Elbasyoni et al., 2019; Parmley et al., 2019; Jiwuba et al.,
2020).

Genomic prediction (GP) models are developed using the
phenotypic and genotypic information calculating marker effects,
which are further used for calculating genomic estimated
breeding values (GEBVs) (Azizinia et al., 2020). With an
assumption of markers being in linkage disequilibrium (LD),
each marker’s effect regardless of significance is used to capture
genetic variance (Crossa et al., 2017; Robertsen et al., 2019).
Training the models on a training set and utilizing it for
calculating GEBVs of a test set help in calculating the prediction
accuracies/ability of the model as cross-validation (CV). The
CV is calculated as a correlation of GEBVs and the phenotypic
values of the training set. Various GP statistical models with high
accuracy used in many crops for different traits are primarily
of three types: linear parametric methods such as genomic
best linear unbiased prediction (GBLUP), extended GBLUP
(EGBLUP), and ridge-regression BLUP (RRBLUP); nonlinear
semi-parametric such as Reproducing Kernel Hilbert Space
(RKHS); and nonlinear and nonparametric methods such as
random forest (RF) (Crossa et al., 2017; Wang et al., 2018).
Genomic selection (GS) along with the rapid generation of

1https://www.uswheat.org/wheatletter/first-look-at-2019-20-by-usdasees-
another-record-world-wheat-crop

advancement through speed breeding (Watson et al., 2018) could
be beneficial leading to higher selection intensity over a smaller
period, which could further increase rates of genetic gains. As
established by Azizinia et al. (2020), implementation of GS
models in rust resistance breeding has been studied in different
wheat breeding programs (Rutkoski et al., 2011, 2014, 2015a,b;
Ornella et al., 2012; Daetwyler et al., 2014; Juliana et al., 2017;
Muleta et al., 2017).

The availability of draft sequences in wheat has become
a useful resource due to a well-annotated and high-quality
reference genome (Appels et al., 2018). Genome-wide association
studies (GWASs) has various advantages over traditional
quantitative trait locus (QTL) mapping and linkage analysis, for
instance, comprehensive allele coverage, which is economical,
rapid, and the most important (Olukolu et al., 2016). GWAS can
exploit LD and detect loci to observe marker–trait associations
(MTAs) and find novel genes linked with aggregate quantitative
phenotypic traits (Yang et al., 2015; Liu et al., 2017). High LD
in wheat can considerably decrease the markers required for
detecting MTAs (Chao et al., 2010). GWAS has been used for
mapping loci for various disease resistance in wheat such as leaf
rust, stem rust, and spot blotch (Gao et al., 2016; Kankwatsa
et al., 2017; Edae et al., 2018; Kaur et al., 2021; Tomar et al.,
2021). Besides, GWAS has enabled verification of stripe rust
resistance and identification of the underlying resistance genes in
wheat (Juliana et al., 2017, 2018). GWAS and GP-based breeding
programs have substantially accelerated the detection of various
trait-related genomic regions with high accuracy and further use
in developing and selecting new elite cultivars.

Only a few GP studies have been conducted for rust resistance,
and among those significantly few are based on RF model, while
none of the GP studies has been reported based on the Indian
wheat scenario. In the present study, a collection of advanced
breeding lines from CIMMYT was used to detect the MTAs
and GP of rust resistance. The current study goals were to (1)
compare the nonparametric method with some of the other the
well-known models widely applied in GP for predicting wheat
rust disease, (2) detect genomic regions responsible for resistance
against stripe rust disease, and (3) shape the possible ground work
for DNA-based biosensors for pathogen detection for precision
agriculture applications.

MATERIALS AND METHODS

Plant Genetic Material and Screening for
Rust Resistance
A set of 141 advanced spring wheat breeding lines developed
by the global wheat program of CIMMYT Mexico and sent to
South Asia were used in this study (Supplementary Table 1).
The lines were planted at BISA Ludhiana for three consecutive
years (E1 = 2017, E2 = 2018, and E3 = 2019) in two replications.
Each genotype was planted in a 4-m-long plot of six rows with a
row-to-row distance of 22 cm. The spreader rows of susceptible
genotypes, namely, Agra Local, PBW343, and HD2967, were
planted on both sides of plots as borders. Indian Institute of
Wheat and Barley Research, Regional Station, Shimla, India,
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provided the mixture of YR races, viz., 78S84, 46S119, 110S119,
and 238S119 (Supplementary Table 4; Singh et al., 2020; Arora
et al., 2021). The seedlings were raised in plastic trays in the
glasshouse and inoculated with the mixture of YR races using
the urediospore–talc mixture to multiply the pathogen spores.
The glasshouse’s temperature was maintained below 20◦C with
100% relative humidity to aid in infection. The spores were
collected from the infected plants to inoculate the genotypes in
the field during the first and second weeks of January. The border
rows and the population were inoculated with a liquid inoculum
containing approximately 1 g of stripe rust spores suspended
in 10 L of water with two to three drops of Tween 20 as a
dispersant solution. The disease was evaluated according to Line
and Qayoum (1992) as a percentage of diseased areas covering
flag leaves on a 0–100% scale.

To limit the number of escapes, stripe rust response was
evaluated twice during the mid-phase to advanced phase of
disease development from adult plants when the spreader
rows showed complete susceptibility. These evaluations were
performed between plant heading (GS50, growth stage 50 on the
Zadoks scale) and grain filling stage (GS80) (Zadoks et al., 1974).
Only the reaction showing the highest disease severity between
the two stages (usually the later) was used in further analysis.

Genotyping for Stripe Rust
Seeds of all lines were obtained from the CIMMYT genetic
resources program, and genomic DNA was extracted from
five bulked leaves using a modified cetyltrimethylammonium
bromide (CTAB) procedure as described by Dreisigacker et al.
(2016) in CIMMYT molecular protocol manual, Mexico. The
DNA samples were sent to Kansas State University, United States,
for genotyping by sequencing (GBS). GBS was performed
following the protocol described by Poland et al. (2012). All
lines were sequenced with Illumina HiSeq2000. GBS–single-
nucleotide polymorphism (GBS-SNP) markers were called with
TASSEL v5.2 pipeline GBSv2 (Bradbury et al., 2007) and aligned
to the reference Chinese Spring Wheat Assembly (RefSeq v1.0).
The raw SNP files generated by the GBSv2 pipeline were
filtered removing SNPs with greater than 30% missing data,
20% heterozygosity, and minor allele frequency of less than
5%. The resultant 14,563 SNP markers were subjected to data
imputation using Beagle v4.1 (Browning and Browning, 2016).
Genotyping Hapmap file is provided as a supplementary file
(Supplementary Table 2).

Statistical Analysis
The analysis of variance (ANOVA) of three seasons and replicated
data was done using META-R version 6.4 (Alvarado et al.,
2020). The adjusted means of replicates combined across the
environments in the trial were obtained by fitting mixed linear
models (MLMs) using the equation:

Yijk = µ+ Ej + Ri
(
Ej

)
+ Gk + EjXGk + εijk

where Yijk is the trait of interest, µ is the mean effect, Ej is the
jth environment, Ri

(
Ej

)
is the effect of the ith replicate in the

jth environment, Gk is the effect of the kth genotype, EjXGk is

the effect of the jth environment by kth genotype interaction,
and εijk is the error associated with the ith replication, the
jth environment, and the kth genotype, which is assumed to
be normally and independently distributed, with mean zero
and homoscedastic variance σ2. The genotypes and replications
were selected as fixed effects, while environments were selected
as random effects to calculate adjusted means across different
environments’ replicates. Further principal component analysis
(PCA) and biplot analysis were performed, using FactoMineR
and factoextra libraries in R, to identify the relationship between
the environment and rust scores. The broad-sense heritability was
estimated using the formula,

H2
=

σ 2
g

σ 2
g + σ 2

ge/ n env+ σ 2
e /(n reps X n env)

where σ2
g is genotypic variance, σ2

ge is G × E variance and σ2
e

is error variance, n env is the number of environments, and
n reps is the number of replications. The broad-sense heritability
estimated the quality of a breeding program for the traits and the
environments. The least significant difference (LSD) with type I
error, α = 0.05 of the level of significance, was calculated using the
formula,

LSD = t(1−0.05,dferror) × ASED

where t is the cumulative Student’s t-test distribution, dferror is
the degrees of freedom for the variance of error, and ASED is the
average standard error of the differences between pairs of means.
And the coefficient of variation is calculated using the formula,

CV = 100×
ASED

grand mean

Genomic Prediction Models
In the present study, five statistical algorithms were used for GP,
RRBLUP (Meuwissen et al., 2001), GBLUP (VanRaden, 2008),
EGBLUP (Jiang and Reif, 2015), RKHS (Gianola and Van Kaam,
2008; De Los Campos et al., 2010), and RF (Breiman et al., 2001).
GP was performed using GBLUP, RRBLUP, EGBLUP, RKHS, and
RF models from G × E data in the BWGS pipeline (Charmet
et al., 2020). GBLUP is a modification of the conventional
BLUP used for predictions by estimating line effects, where
genomic relationships are used instead of the traditional pedigree
relationships. GBLUP fits individuals as random effects, and
the covariance among individuals is given by G estimated from
genome-wide markers calculating genomic-kinship matrix. With
the use of mixed-model solver of RRBLUP library, restricted
maximum-likelihood is calculated using the formula,

y = Xβ + Zµ+ ε

where Xβ is the mean with β as a fixed-effect vector and
µ as a random-effect vector of additive genetic effects with
variance for µ = Kσ 2

µ. The residual variance for ε = Iσ2
ε . It has

is a single variance component other than the residual error
and is close to ridge regression (ridge parameter λ = σ2

µ/σ
2
ε).

RRBLUP is a mixed GP primary model using package glmnet
(Friedman et al., 2010) and, in theory, equivalent to GBLUP with
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a smoothening parameter λ as ratio of variance components.
EGBLUP model is BLUP using a “squared” relationship matrix to
model epistatic 2× 2 interactions, as described by Jiang and Reif
(2015) using the BGLR library. Linear models uses information
from relatives for breeding value prediction, with closer relative
information weighted more heavily. These models assume that
the trait is conditioned by an infinitesimal number of additive loci
(no major genes).

RKHS model is based on genetic distance and a kernel
function to regulate the distribution of marker effects using
multiple linear regression enabling it to fit for complex
interaction patterns (Gianola and Van Kaam, 2008; De Los
Campos et al., 2010) with an ability to account for non-additive
effects with regressions in a higher-dimensional space using
the BGLR library. Thus, the RKHS method is suitable even
for detecting non-additive effects. RF model is based on RF
regression, using randomForest library (Breiman et al., 2001).
In the RF model, a series of regression trees were grown
independently to the largest extent possible using subsets of
bootstrap samples. At each split of the tree, a random subset of
variables is selected to identify the best split. RF is able to capture
interactions between markers.

Cross-Validation Scheme
A five-fold CV scheme (Owens et al., 2014) was performed
by randomly dividing the advanced breeding lines into
approximately equal subsets/folds. The procedure was repeated
1,000 times, and the resulting accuracy was averaged. CV based
on prediction accuracies has previously been used to evaluate GP
models (Bernardo and Yu, 2007; Heffner et al., 2009; Crossa et al.,
2010; Jannink et al., 2010; Iwata and Jannink, 2011). Prediction
accuracy of each fold was calculated as Pearson’s correlation
of observed values, i.e., best linear unbiased estimates (BLUEs)
to the predicted values or genomic estimated breeding values
(GEBVs). The average of the five-fold correlations was calculated
as the prediction accuracy of the iteration. All calculations were
performed in R 4.0.2 (R Core Team, 2019).

Marker–Trait Associations Analysis and
False Discovery Rate Correction
The FarmCPU algorithm of GAPIT 3.0 (Wang and Zhang,
2021) was used for 141 genotypes with 14,563 SNP markers
for the association study. False discovery rate (FDR)-adjusted
p-values (0.05) from GAPIT were used for significant association
threshold (Benjamini and Hochberg, 1995). Significant MTAs
from the GWAS result were visualized by an integrated display of
MTAs, gene structure, and LD matrix in the IntAssoPlot package
(He et al., 2020) in R 4.0.2 (R Core Team, 2019).

Validation of Significantly Associated
Single-Nucleotide Polymorphisms and
the Postulation of Candidate Genes
Significant SNPs associated with stripe rust from GWAS results
of the present study were further analyzed if the MTAs fall within
the proximity of genomic regions known for rust resistance
using functional annotation from the reference genome assembly

(IWGSC RefSeq v1.0) and compared with known QTLs/genes.
Functional annotation of the genes in the genomic regions
harboring significant SNPs were retrieved and examined for
their association with yellow rust resistance. Subsequently, genes’
annotated protein functions were literature mined to establish
these genes’ relationship with disease resistance. The IntAssoPlot
package (He et al., 2020) was used to calculate the extent of
linkage between markers from the D prime (D’) estimates and
to visualize the LD patterns.

RESULTS

Phenotypic Variability and Estimates of
Heritability
Substantial variation was observed among genotypes for rust
disease. However, as seen from the histogram, the distribution
was skewed toward resistance. The majority of genotypes showed
high-to-moderate resistance to disease reaction, and only a few
genotypes showed high susceptibility (Figure 1A). Although
there was consistency in the resistance reaction over the years,
however, to enhance accuracy in the results, the G× E model was
fitted to obtain the disease’s average effect on the different lines
across the years (Supplementary Table 3). This combined G× E
disease severity data were used as environment 4 (E4), which
showed a strong positive correlation from 0.60 to 0.93 with all
the three environments. The disease score of E4 was successfully
able to explain the across year disease variability, which would
eliminate the year-wise variability and provides significant stable
data for both GWAS and GP studies (Figure 1B). Moderate
heritability was observed 0.57 for G × E with a noteworthy
genotypic significance of 1.7E-09 for genotypes as random
effects, while 4.51E–13 was observed for genotypes as fixed
effects (Table 1).

Evaluation of Statistical Models for
Prediction Accuracy
The GP was performed in a five-fold scheme of dividing the
141 lines randomly into five subgroups. The average prediction
accuracy were 0.59 for GBLUP, 0.59 for RRBLUP, 0.60 for RKHS,
0.63 for the EGBLUP, and 0.63 for the RF model (Figure 2
and Table 2). The moderately high range of prediction accuracy
of all the models suggests that the models can predict the
GEBVs for stripe rust resistance. Despite EGBLUP and RF models
showing similar CVs (>3% than other models), the interquartile
range (IQR) represented by RF (0.037) was smaller than that of
EGBLUP (0.042), indicating more stability of the model. The RF
model was found to be the most efficient method among all the
techniques, due to higher median prediction accuracy of 0.633
along with lowest standard variation and IQR.

Genome-Wide Association Mapping of
Resistance to Stripe Rust at the Adult
Plant Stage
The association analysis was performed using the FarmCPU
algorithm with 14,563 SNP and G × E disease severity data.
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FIGURE 1 | (A) The trends of disease score distribution for 141 advanced breeding lines across the three individual environments E1, E2, and E3 along with the
G × E data as E4. The histograms show the disease distribution across the environments, while the dot plots show the correlation of disease for respective lines
across the environments. (B) PCA biplot of disease score across the four environments using the first and second principal component vectors. PCA, principal
component analysis.

TABLE 1 | Combined analysis of variance of 141 advanced lines evaluated for
stripe rust disease resistance for disease severity recorded for three environments.

Statistics BLUPs BLUEs

Heritability 0.573759

Genotype variance 85.74016

Gen × Loc variance 167.2694

Residual variance 47.63594 47.63593

Grand mean 15.65485 15.65485

LSD 16.82923 22.21773

CV 44.08781 44.08781

Replicates 2 2

Environments 3 3

Genotype significance 1.7E-09 4.51E-13

LSD, least significant different; CV, coefficient of variation; BLUP, best linear
unbiased prediction; BLUE, best linear unbiased estimate.

A total of eight MTAs (eight QTLs) showed significant
associations with stripe rust resistance at five different
chromosomes (2A, 2D, 5B, 6A, and 7A). The phenotypic
effect explained by these QTLs was in the range of 2.74–5.5%
with both major and minor alleles imparting resistance to the
lines used in this study. The Manhattan plots, gene locations,
and LD haplotypes of genomic regions with significant MTAs
are given in Figure 3. The markers significantly associated with
stripe rust, their chromosomal locations, p-values, the closest
mapped gene(s), and predicted function in the Triticum aestivum
gene transcripts are summarized in Tables 3, 4. The significance
of the MTAs with FDR-adjusted p-value was highly significant for
Q.Yr.bisa.2A.3. The genes flanking to the significant QTLs were

identified, and the functions of the encoded proteins of these
genes have been provided in Table 4. Furthermore, we compared
the detected QTLs with previously known QTL/genomic regions
on a physical map; from the literature mining, four QTLs
appeared to be potentially novel (Figure 4). The identified
QTLs were associated with the disease resistance-related protein
family (Table 4).

Linkage Disequilibrium-Based Linked
Quantitative Trait Loci
The LD of the eight MTAs on 2A, 2D, 5B, 6A, and 7A
chromosomes was obtained and used to demarcate as LD-based
QTL (Figures 3A–G). For LD estimation, the eight significant
MTAs associated with YR resistance in advanced wheat breeding
lines were used. Marker pairs with a D′ value greater than
0.80 and the p-value for the existence of LD equal to 0 were
designated into an LD-based QTL. The eight significant MTAs,
as well as their chromosomal position and designated QTLs, are
shown in Table 3. Manhattan plots represent the information
associated with significant loci and LD and linkage to the
significant loci’s in the genomic assembly. Linking lines with the
associated markers with LD of the region were also highlighted in
systematics schemes.

Allelic Effect of Identified Quantitative
Trait Loci for Stripe Rust
The allelic effect of disease severity between the two alleles of
the SNPs was plotted for all eight significant QTLs (Figure 5).
The biallelic effects of the QTLs showed distinctive variation
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FIGURE 2 | Prediction accuracies of five genomic prediction methods for the G × E data calculated as correlation of GEBVs predicted to phenotypic data of the
advanced breeding lines. GEBVs, genomic estimated breeding values.

TABLE 2 | Prediction accuracies using five-fold cross-validation for different
genomic prediction models for the G × E data of stripe rust disease score as E4.

GBLUP EGBLUP RRBLUP RKHS RF

Mean 0.588 0.627 0.586 0.605 0.628

Std. Dev. 0.033 0.040 0.050 0.048 0.032

Min 0.449 0.520 0.438 0.473 0.505

Median 0.589 0.628 0.585 0.605 0.633

Max 0.680 0.743 0.741 0.733 0.703

IQR 0.042 0.057 0.072 0.068 0.037

Std. Dev., standard deviation; min, minimum prediction accuracy; max, maximum
prediction accuracy; IQR, interquartile range; GBLUP, genomic best linear unbiased
prediction; EGBLUP, extended genomic best linear unbiased prediction; RRBLUP,
ridge-regression best linear unbiased prediction; RKHS, reproducing kernel Hilbert
space; RF, random forest; IQR, interquartile range.

between the two alleles. Most of the alleles had a significant
impact, indicating a larger phenotypic effect by the resistance
allele’s presence. For example, the minor allele of Q.Yr.bisa-
2A.3, i.e., C allele, showed a significant effect on disease
resistance with the highly significant difference among the
two alleles. Similarly, the major allele C of Q.Yr.bisa-2D
significantly contributed to resistance. For Q.Yr.bisa-6A, the
allele G was associated with resistance to stripe rust. The
significant difference among the alleles C and T of Q.Yr.bisa-
7A was significantly less between the two alleles with resistance
associated with the C allele. This outcome suggests that
even though all alleles were associated with the stripe rust
resistance in the set of genotypes used, the 2A and 2D genomic
regions were highly responsible for resistance in the panel
(Figure 5A). The presence of multiple genomic regions for
stripe rust resistance in the panel with varying effects suggests
the quantitative nature of the genes involved. The presence

or absence of the resistant alleles in the highly resistant lines
with a disease severity score of zero leads to identifying the
QTL composition of the 14 resistant breeding lines. Four
(GID7310704, GID7398217, GID7399277, and GID7400704)
advanced breeding lines were identified to have seven of the
eight identified QTLs from the present study (Figure 5B). These
lines are the primary targets for transfer of these QTLs in future
breeding programs.

DISCUSSION

The problem of population explosion can only be dealt with
by increasing the total production and yields for important
cereal crops to feed the growing population. This situation is
further made complex by the constant threat of various biotic
stresses. The breeding programs must continuously introduce
new sources of disease resistance to counter the ever-evolving
pathogen. Wheat stripe rust is one of the critical economically
significant diseases that threaten the wheat production. The
current study was planned to identify new disease resistance
sources, using advanced breeding lines from CIMMYT, Mexico,
against the stripe rust pathogens prevalent in South Asia.

Effect of Reference and Validation of
Population on Genomic Selection
We estimated the GP accuracy using five models for stripe
rust disease. The stripe rust disease resistance in wheat is
controlled by many small- to large-effect QTLs/genes. Instead
of relying on single to few major effect loci, GS helps
to include many loci that are spread across the genome
with higher resolution and power (Jannink et al., 2010).
As evident from the results, EGBLUP and the RF models
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FIGURE 3 | GWAS results for stripe rust resistance. (A,B) Q-Q and Manhattan plots of SNPs associated with stripe rust resistance. Horizontal line depicts
significance threshold level. (C–G) Manhattan plots of SNP-specific genomic region clusters on chromosomes 2A, 2D, 5B, 6A, and 7A and corresponding linkage
disequilibrium (LD) D′ patterns. SNP names and corresponding local LD value patterns are in the bottom part of the graph. Numbers within the diamonds of the
triangular LD matrix are D′ values. GWAS, genome-wide association study; SNPs, single-nucleotide polymorphisms.

TABLE 3 | Summary of the QTL mapping using GWAS in the present study.

QTLs SNP marker Alleles Effective allele Chr Pos. (Mb) MAF FDR Adj. p-val Effect p-Val (-log10)

Q.Yr.bisa-2A.1 S2A_451543170 C/T C 2A 451.543 0.099 0.022855184 5.114 5.0261

Q.Yr.bisa-2A.2 S2A_719332307 G/T T 2A 719.332 0.163 0.000000043 −5.491 11.2247

Q.Yr.bisa-2A.3 S2A_753261678 A/C C 2A 753.262 0.422 0.000000003 −5.526 12.6547

Q.Yr.bisa-2D S2D_76635286 C/T C 2D 76.635 0.301 0.010022488 3.518 5.5602

Q.Yr.bisa-5B.1 S5B_56640410 A/T T 5B 56.640 0.124 0.013329820 −3.595 5.3395

Q.Yr.bisa-5B.2 S5B_598915625 A/C A 5B 598.916 0.213 0.031241407 3.039 4.7654

Q.Yr.bisa-6A S6A_602916015 C/G G 6A 602.916 0.351 0.031241407 −2.742 4.8066

Q.Yr.bisa-7A S7A_717077502 C/T C 7A 717.078 0.408 0.001195850 3.728 6.6085

Chr, chromosome; Mb, million bases; MAF, minor allele frequency; QTL, quantitative trait locus; GWAS, genome-wide association study; SNP, single-nucleotide
polymorphism; FDR, false discovery rate.

could predict GEBVs with moderately high accuracy. Besides
the RF model having higher prediction accuracies among
all models, the GEBVs predicted by RF model also showed
lower standard deviations and CV. CV based on prediction
accuracies explains the efficiency of the GS models as advocated
in various earlier studies in plants (Bernardo and Yu, 2007;
Heffner et al., 2009; Crossa et al., 2010; Jannink et al., 2010;
Iwata and Jannink, 2011).

Prediction accuracies are reasonably high under homogenous
breeding lines, but it is far from practice. Introducing new lines
over the years and phenotyping on multiple locations are critical
to the accomplishment of GS to improve resistance cultivars.
Among the 141 lines that were randomly selected as the training
population, and the testing population, the highest prediction
accuracy of 0.628 was observed for the RF model followed by
0.627 of EGBLUP model. Since these testing populations were

advanced screened resistant lines, moderately high prediction
accuracy was observed with higher disease pressure. No study
reported the use of GP for stripe rust disease for wheat in
India. The present study provides an essential precursor in
utilizing the GS for breeding stripe rust and other disease-
resistant cultivars.

Candidate Resistance-Associated Loci
Identified by Genome-Wide Association
Study
The high-density SNPs provided insights into the functional
causal variant(s) underlying YR resistance. We identified eight
significant MTAs using GWAS and analyzed the LD of the
candidate regions containing significant SNPs. Furthermore,
we extracted information for the candidate genes, including
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TABLE 4 | Summary of genes found adjacent to SNPs associated with the QTLs mapped in the present study based on the gene annotation using wheat reference
sequence (RefSeq v1.0) annotation database.

QTL Chr Dist. from SNP (bp) Genes IDs Annotation

Q.Yr.bisa-2A.1 2A −525,831 TraesCS2A01G274900 Importin-like protein

10,809 TraesCS2A01G275000 Eukaryotic aspartyl protease family protein

Q.Yr.bisa-2A.2 2A −13,141 TraesCS2A01G483500 Organic cation transporter protein

11,815 TraesCS2A01G483600 Elongation factor 1-alpha

Q.Yr.bisa-2A.3 2A −6,179 TraesCS2A01G543100 Acyl-protein thioesterase 1

6,259 TraesCS2A01G543200 Leucine-rich repeat receptor-like protein kinase

Q.Yr.bisa-2D 2D −857 TraesCS2D01G131100 Mediator of RNA polymerase II transcription subunit 3

4,259 TraesCS2D01G131200 ATP-dependent RNA helicase DDX47

Q.Yr.bisa-5B.1 5B −77,352 TraesCS5B01G051900 Cullin-associated NEDD8-dissociated protein 1

338,835 TraesCS5B01G052000 Patatin

Q.Yr.bisa-5B.2 5B −161,555 TraesCS5B01G422900 ATP-dependent Clp protease ATP-binding subunit

205,384 TraesCS5B01G423000 ATP-dependent Clp protease ATP-binding subunit

Q.Yr.bisa-6A 6A −2,481 TraesCS6A01G384600 Fatty acid hydroxylase superfamily protein

129,242 TraesCS6A01G384700 Protein kinase family protein

Q.Yr.bisa-7A 6A −7,604 TraesCS7A01G539900 Receptor-like protein kinase

3,441 TraesCS7A01G540000 Mediator of RNA polymerase ii transcription subunit 15a

Negative sign shows that the gene was present upstream of the associated SNP, and positive sign shows that the gene was present downstream of the associated SNP.
QTL, quantitative trait locus; Chr, chromosome; SNP, single-nucleotide polymorphism.

FIGURE 4 | Physical map of candidate QTLs for stripe rust resistance (represented in green) indicating physical positions on the respective chromosomes along with
genes/QTLs identified in previous studies (represented in blue). QTLs, quantitative trait loci.

their possible functional roles in disease resistance. The genes
identified were directly or indirectly involved in pathogenesis
or plant–pathogen interaction (Table 4). In the present study,
the FarmCPU algorithm identified eight significant MTAs
associated with stripe rust on chromosomes 2A, 2D, 5B,
6A, and 7A. Q.Yr.bisa-2A.3 on chromosome 2A at the

physical position 753.3 Mb identified for YR resistance in
this study was found in the vicinity of a Q.YrTd.pau.2A.2
mapped at 766.16 Mb by Dhillon et al. (2020). Another QTL
mapped on chr2D (Q.Yr.bisa-2D) at a terminal end of 2DS
was identified in the vicinity (∼70 Mb apart) of QYr.caas-
2DS_Libellula (Lu et al., 2009). The Q.Yr.bisa-6A at 602.91 Mb
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FIGURE 5 | (A) Boxplots showing the effect of phenotypic variation between the two alleles of the associated SNPs of identified QTLs for stripe rust disease score;
the Kruskal–Wallis test was used to determine the significant differences between the mean values of two alleles. (B) Cell plot of the distribution of the different alleles
of significant SNPs of identified QTLs in the totally resistant lines from the panel. #Blue color indicates presence of resistant allele, red color indicates presence of
susceptible allele, and green color indicates presence of heterozygous allele. SNPs, single-nucleotide polymorphisms; QTLs, quantitative trait loci.

at chromosome 6A was mapped in a region, where IWA3066
marker has been identified to be associated with YR rust-
resistant by Maccaferri et al. (2015) in the same genomic
region. However, the study involved used linkage mapping
instead of physical mapping. Q.Yr.bisa-7A on chromosome
7A at 717.1-Mb position in the present study is likely to
be a new stripe rust resistance locus, as we were not able
to literature mine any gene/QTL linked to stripe resistance
mapped in this region.

Potential Candidate Resistance Genes
for the Significant Stripe Rust
Quantitative Trait Loci
Q.Yr.bisa-2A.1 was found adjacent to TraesCS2A01G274900
encoding Importin-like protein and TraesCS2A01G275000
encoding aspartyl protease family protein. Importin
from Arabidopsis thaliana is a nuclear import receptor
(Smith et al., 1997), and encoding aspartyl protease
family protein regulates defense responses in A. thaliana
(Xia et al., 2004). Q.Yr.bisa-2A.2 is found adjacent to
TraesCS2A01G483500 encoding Organic cation transporter

protein and TraesCS2A01G483600 encoding Elongation
factor 1-alpha (EF-1α). Organic cation transporter protein
affects root length responses to cadaverine in Arabidopsis
(Strohm et al., 2015). EF-1α has been identified as being
Fusarium-responsive in wheat (Kruger et al., 2002; Han
et al., 2005) and interrelated with numerous biological
processes including senescence and tissue longevity (Silar
and Picard, 1994). The Q.Yr.bisa-2A.3 was found to be
associated with the candidate genes TraesCS2A01G543100,
encoding Acyl-protein thioesterase 1, and TraesCS2A01G543200
encoding Leucine-rich repeat receptor-like protein kinase
(PK). Acyl-protein thioesterase 1 is key regulatory enzyme
for dynamic palmitoylation (Garland et al., 2018). Leucine-
rich repeat receptor-like PK is well known to play a role
in plant defense and associated with stripe rust resistance
(Zhang et al., 2019). It indicates that TraesCS2A01G543200
may be the presumably aspirant resistance gene, while the
role of TraesCS2A01G543100 could not be overlooked.
Because resistance genes in plants are normally assembled
in clusters, some may play immediate imperative roles
(Zhao et al., 2016; Kourelis and Van Der Hoorn, 2018).
Hence, the characterization of these genes by molecular
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approaches may reveal additional channels of rust
resistance in wheat.

The Q.Yr.bisa-2D was found to associate with
TraesCS2D01G131100, a mediator of RNA polymerase II
transcription subunit 3, and with TraesCS2D01G131200, which
encodes ATP-dependent RNA helicase. RNA polymerase II
transcription subunit 3 is involved at RNA polymerase II
transcriptive specificity of wheat leaves at the early stages
of rust infection (Pure et al., 1984). ATP-dependent RNA
helicase has been reported to be critical for pre-mRNA
splicing, cold-responsive gene regulation, and cold tolerance in
Arabidopsis (Guan et al., 2013). Q.Yr.bisa-5B.1 was associated
with genes TraesCS5B01G051900 encoding Cullin-associated
NEDD8-dissociated protein 1 and TraesCS5B01G052000, which
encodes patatin. Cullin-associated NEDD8-dissociated protein
1 regulates plant height, flowering time, seed germination,
and root architecture in tomato (Cheng et al., 2020); and the
Arabidopsis patatin-like protein 2 (PLP2) plays a role in cell death
execution and differentially affects the biosynthesis of oxylipins
and resistance to pathogens (La Camera et al., 2009). The
Q.Yr.bisa-5B.2 was found in-between TraesCS5B01G422900 and
TraesCS5B01G423000, both the gene encoding ATP-dependent
Clp protease ATP-binding subunit. ATP-dependent Clp protease
ATP-binding subunit responds to cold stress in rice seedlings
(Cui et al., 2005). Its levels significantly increased during
cadmium stress in tobacco and Amaranthus hybridus L. roots
(Xie et al., 2014; Jin et al., 2016).

The Q.Yr.bisa-6A was found to be associated with
TraesCS6A01G384600 encoding fatty acid hydroxylase
superfamily protein and TraesCS6A01G384700 encoding
PK family protein gene. Fatty acid hydroxylase superfamily
protein is essential for sporopollenin synthesis in Arabidopsis
pollen (Dobritsa et al., 2009). PK family protein gene confers
temperature-dependent resistance to wheat stripe rust (Fu et al.,
2009). PKs are vital for transmembrane signaling, regulating
plant development and adaptation to various environments
(Liang and Zhou, 2018). Numerous kinase proteins have
been linked to plant innate immunity. For example, a kinase
and a putative START lipid-binding domain are essential to
confer wheat rust resistance of Yr36 (Fu et al., 2009). Stripe
rust resistance gene Yr15 (WTK1) (Klymiuk et al., 2018) and
barley (Hordeum vulgare L.) stem rust (Puccinia graminis f. sp.
tritici) resistance gene Rpg1 (Brueggeman et al., 2002) contain
a structure with tandem kinase domains. The Q.Yr.bisa-7A was
associated with TraesCS7A01G539900, which encodes receptor-
like PK gene conferring temperature-dependent resistance to
wheat stripe rust (Fu et al., 2009) and TraesCS7A01G540000
encoding mediator of RNA polymerase II transcription subunit
15a, which is known to negatively regulate disease resistance
against stripe rust (Maytalman et al., 2013). Furthermore, the
SNP markers associated with QTLs could be developed into
PCR markers, which can be utilized for marker-assisted selection
in stripe rust resistance breeding programs and further could
be used to develop an electrochemical-based DNA platform
for nucleic acid for rapid detection applications, Further, this
may serve as the foundation for an efficient, responsive, and
low-cost framework.

CONCLUSION

The high accuracy percentage from the GP models indicates
that the stripe rust resistance trait does not present complicating
modeling factors such as the presence of great dominance
and epistasis. The RF model based on ML is flexible and
does not depend on an a priori specification adjustment of
the model, making it easier to contemplate such complicated
factors. Evaluations of the accuracy of the stripe rust resistance
prediction confirmed that both EGBLUP and RF models showed
better effectiveness, incurring an even lower computational
rate. Four (Q.Yr.bisa-2A.1, Q.Yr.bisa-2D, Q.Yr.bisa-5B.2,
and Q.Yr.bisa-7A) of the eight identified QTLs associated
with Pst resistance were possibly new QTLs, and identified
candidate genes can offer valuable insights on the genetic
architecture of the stripe rust disease resistance. CIMMYT
advanced wheat lines contain ample known and unknown
resistance genes for stripe rust, which could be used to
accelerate their validation and deployment in wheat breeding
with effective stripe rust resistance. Identification of these
genes and QTLs would help in laying a foundation for
the biosensor diagnostics techniques, which are displacing
conventional detection diagnostics approaches. Due to
the small and portable size of biosensors with power of
rapid detection, they could aid in precision agriculture
applications. Over the next few years, it is anticipated that
the new biosensor will reveal many more new insights
into the internal workings of plants and their responses to
external stimuli.
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