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Breast cancer is one of the most common malignant tumors in women, which
seriously endangers women’s health. Great advances have been made over the
last decades, however, most studies predict driver genes of breast cancer using
biological experiments and/or computational methods, regardless of stage information.
In this study, we propose a computational framework to predict the disease genes of
breast cancer based on stage-specific gene regulatory networks. Firstly, we screen
out differentially expressed genes and hypomethylated/hypermethylated genes by
comparing tumor samples with corresponding normal samples. Secondly, we construct
three stage-specific gene regulatory networks by integrating RNA-seq profiles and TF-
target pairs, and apply WGCNA to detect modules from these networks. Subsequently,
we perform network topological analysis and gene set enrichment analysis. Finally, the
key genes of specific modules for each stage are screened as candidate disease genes.
We obtain seven stage-specific modules, and identify 20, 12, and 22 key genes for three
stages, respectively. Furthermore, 55%, 83%, and 64% of the genes are associated
with breast cancer, for example E2F2, E2F8, TPX2, BUB1, and CKAP2L. So it may be
of great importance for further verification by cancer experts.

Keywords: breast cancer, DNA methylation, differentially expressed genes, stage-specific gene regulatory
networks, WGCNA

INTRODUCTION

Breast cancer is one of the most common malignant tumors in women, and it is the main disease
factor that causes cancer deaths in women worldwide. According to statistics (Siegel et al., 2021),
breast cancer accounts for 30% of female cancers. In China, breast cancer incidence has two peaks:
one is 45–55 years old, and the other is 70–74 years old. From the perspective of age distribution, the
incidence of breast cancer gradually increases from the age of 30, and reaches a peak at the age of 55.
About 40% of female patients are under 50 (Wild et al., 2020). The symptoms of early breast cancer
are unobvious and easy to be overlooked. In the late, cancer cells would metastasize far away, which
causes multiple organ diseases, which seriously threatens the lives of patients. However, the current
disease genes for breast cancer diagnosis and treatment are far from enough, and it is particularly
important to find new candidate disease genes.

Epigenetics is currently a promising field in cancer research. As an important part of epigenetics,
DNA methylation has received increasing attention, which is the process of adding methyl
groups to DNA molecules and essential for cell development. The functional epigenetic module
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(FEM) algorithm (Jiao et al., 2014) has verified the inverse
correlation between DNA methylation and gene expression, and
a large number of researchers have studied the effect of DNA
methylation on breast cancer. Bediaga et al. (2010) analyzed
the DNA methylation of cancer-related gene regulatory regions
in breast cancer paired samples, and effectively identified 15
individual CpG loci that were differentially methylated in breast
cancer tumor subtypes, which provides evidence that DNA
methylation profile can predict breast cancer subtypes. Based
on DNA methylation in whole blood and specific genes, Tang
et al. (2016) studied the level of DNA methylation in the
blood of breast cancer patients and healthy controls, and found
that epigenome-wide blood DNA of breast cancer patients is
hypomethylated, and the frequency of BRCA1 and RASSF1A
methylation is higher. Lu et al. (2017) explored the relationship
between RUNX3 gene methylation and breast cancer, and the
results showed that the hypermethylation of RUNX3 plays a
significant role in the pathological stage and prognosis of breast
cancer, which has great potential as a molecular marker for
early diagnosis of breast cancer. De Almeida et al. (2019)
analyzed the correlation between genome-wide methylation and
gene expression by matching breast cancer DNA methylation
with normal tissues in the TCGA, and identified new DNA
methylation markers, including PRAC2, TDRD10, TMEM132C,
etc., are expected to become diagnostic and prognostic markers
of breast cancer.

There are also bioinformatics experts who study breast cancer
based on biological molecular networks. Cai et al. (2019) used
WCGNA to screen out the gene modules related to the risk
of breast cancer metastasis, combined with the PPI network to
screen out five key genes related to breast cancer progression
and verified them. Lin et al. (2020) constructed a PPI network
to screen hub genes, used modular analysis and survival analysis
to identify potential target genes and pathways that may affect
the occurrence and development of HER-2 positive breast cancer.
Tang J. N. et al. (2018) identified five candidate biomarkers by
analyzing the co-expression network, and used candidates in the
basic and clinical research of breast cancer. Xi et al. (2018a)
detected that TP53 and PNRM1 driver genes play an important
role in breast cancer through matrix tri-factorization framework
with pairwise similarity constraints. Guo et al. (2017) explained
the mechanism of breast cancer development by identifying key
pathways in breast cancer tissue and constructing the network
of transcription factors (TFs) and microRNA (miRNA). Qiu
et al. (2019) established the gene co-expression network for
identifying modules related to breast cancer development, and
discovered hub genes that may be used as markers of invasive
breast cancer. Xi et al. (2018b) discovered mutated driver genes
by using a robust and sparse co-regularized matrix factorization
framework with prior information from mRNA expression
patterns and interaction network. By combining the subspace
learning framework, Xi et al. (2020) proposed the DriverSub
algorithm to infer specific driver genes from heterogeneous
breast cancer samples.

In this article, we propose a computational framework
to predict candidate stage-specific disease genes of breast
cancer based on the stage-specific gene regulatory networks.

Firstly, we screen out differentially expressed genes and
hypermethylated/hypomethylated genes by comparing tumor
samples and normal samples. Secondly, we construct and analyze
three stage-specific gene regulatory networks by taking stage
information into account. Thirdly, we identify stage-specific
modules by module division. Finally, we predict candidate stage-
specific disease genes.

Our contributions consist of two points:

(1) We integrate stage information and DNA methylation
information to construct a stage-specific gene regulatory
network for breast cancer, which may help doctors identify
patient’s disease stage more quickly and design better
treatment strategy.

(2) The proposed computational framework is effective
in predicting breast cancer related genes, which will
help experts to explore the molecular mechanisms
of breast cancer.

MATERIALS AND METHODS

Our computational framework for predicting candidate disease
genes includes four parts: Stage-specific gene regulatory networks
construction, Module division, Topological properties analysis
and gene set enrichment analysis, Candidate disease genes
prediction (Figure 1).

Data Preprocessing
We download breast cancer phenotype data, gene expression
profile and DNA methylation data from TCGA (Tomczak et al.,
2015) (The Cancer Genome Atlas), which is currently the largest
public cancer database, containing nearly 40 common cancer
types and tens of thousands of samples. There are 60,484 genes
and 1,217 samples in the gene expression profile, and 485,578
CpG sites and 890 samples in the DNA methylation data,
respectively. We only retain the sample pairs, i.e., each tumor
sample has a corresponding normal sample. Then, we divide
the samples according to the stage information, and obtain 29
pairs, 94 pairs, 32 pairs of samples in stage I, stage II, and
stage III, respectively. There are only two pairs of samples in
stage IV that meet the experimental standards, which is not
convincing. Therefore, we exclude samples in stage IV. For
the DNA methylation data, we first convert the CpG site into
the gene. As there are many CpG sites in a gene, we just use
their mean β value to represent the DNA methylation level
of the gene. For the gene expression profile, we download
normalized FPKM data and filter out 15% genes with missing
values. Then we select samples that have both cancer tissue
and normal tissue.

The Gene Expression Omnibus (GEO) (Barrett et al., 2005)
database includes a large amount of sequencing data and
omics data, which is comprehensive and free. We download
the GSE15852 and GSE69914 datasets from GEO (Liu et al.,
2017). GSE15852 is the raw gene expression data from 43
human breast cancers and their corresponding normal tissues.
GSE69914 is DNA methylation profiling of 50 normal samples
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FIGURE 1 | Workflow of the computational framework for predicting disease genes based on stage-specific gene regulatory network.

from healthy women, 42 matched normal-adjacent breast
cancer pairs (84 samples), 263 unmatched breast cancers,
seven normal samples from BRCA1 carriers and four BRCA1
breast cancers. We only use 42 matched pairs of normal-
adjacent breast cancer.

Differentially Expressed Genes and
Hypomethylated/Hypermethylated
Genes Identification
For the gene expression profile, we use Limma (Ritchie et al.,
2015) in the R package to screen the differentially expressed
genes, and use p-value less than 0.05 and |log FC| less than
0.5 as the threshold. For the DNA methylation data, we define
β value greater than 0.8 as hypermethylated genes and β

value less than 0.2 as hypomethylated genes. Then we take
the intersection of the differentially expressed genes and the
hypermethylated/hypomethylated genes and obtain 1,027 genes,
1,012 genes, and 1,220 genes in stage I, stage II, and stage III,
respectively. Then we compare the relationship between the DNA
methylation profile and gene expression profile, and find that the

higher the gene methylation level, the lower the gene expression.
And the results are shown in Figure 2.

Stage-Specific Gene Regulatory
Networks Construction
Gene Regulatory Network database (GRNdb) (Fang et al., 2020)
is a gene regulatory network database, which includes a large
number of human and mouse transcription factor and target gene
pairs. We download the TF-target gene pairs from the GRNdb,
and filter out the pairs in which the target genes are differentially
expressed genes and hypermethylated/hypomethylated genes
(Qin et al., 2019). Then we calculate the Pearson Correlation
Coefficient (PCC) for each TF-target gene pair based on their
expression level, and the cut-off is set as 0.5 and construct
stage-specific gene regulatory networks.

Module Division
We use WGCNA (Langfelder and Horvath, 2008) to divide
the stage-specific gene regulatory network into modules. Firstly,
we perform hierarchical clustering on the three stage-specific
gene regulatory networks to generate a hierarchical clustering
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FIGURE 2 | The relationship between DNA methylation and gene expression of each stage.

tree. Then, we use the Dynamic Tree Cut algorithm (Langfelder
et al., 2008) to divide the above-generated hierarchical clustering
tree and ensure that the number of molecules in each
module is at least 30.

Topological Properties Analysis and
Gene Set Enrichment Analysis
Hub genes are important for biological processes. We identify
and compare hub genes for each gene regulatory network. We
perform topological analysis of stage-specific gene regulatory
networks using Cytoscape (Shannon et al., 2003), including
degree distribution, centrality distribution, and so on. Then,
we perform gene set enrichment analysis using Metascape
(Zhou et al., 2019).

Candidate Disease Gene Prediction
We filter out candidate disease genes from the above
modules and network topological information. Then, we
checked them by known disease-related genes from OMIM,
COSMIC, and DAVID. Online Mendelian Inheritance in
Man (OMIM) (Hamosh et al., 2005) mainly covers the
relationship of genes and diseases, the relationship of genes
and phenotypes, and some clinical features. Catalog of
Somatic Mutations in Cancer (COSMIC) (Sondka et al.,
2018) integrates cancer somatic mutations and provides
cancer gene mutation map data information. DAVID (Huang
et al., 2009) integrates biological data and analysis tools and

provides systematic and comprehensive biological function
annotation information for large-scale gene or protein
lists. Furthermore, we check the association of the rest of
the candidate disease genes and breast cancer in PubMed
(Shashikiran, 2016).

RESULTS

Stage-Specific Gene Regulatory
Network Construction
We filter out the TF-target gene pairs whose target
genes are not differentially expressed genes and
hypermethylated/hypomethylated genes, and use the PCC
cut-off 0.5 to construct stage-specific gene regulatory networks.
There are 1,129, 1,066, and 1,339 nodes and 4,429, 4,879, and
6,461 edges, respectively.

Module Division
We use WGCNA to divide three gene regulatory networks
into modules and the results are shown in Figure 3. We
find that the first-stage network is divided into 11 modules,
of which the turquoise module contains up to 270 genes.
The number of genes in the remaining modules ranges
from 40 to 149. The second-stage network is divided into
10 modules, of which the turquoise module contains 337
genes. The number of genes in the remaining modules ranges
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FIGURE 3 | Module division results of each stage. (A) Stage I, (B) Stage II, (C) Stage III.

from 40 to 125. The third-stage network is divided into 13
modules, of which the turquoise module contains 337 genes.
The number of genes in the remaining modules ranges from
30 to 142. In particular, the gray modules contain genes that
are not classified into any module and discarded. The detailed
information of the number of genes in each module is shown in
Table 1.

We identify differentially expressed genes that only exist
in one stage as the stage-specific genes and obtain 92 genes,
60 genes, and 187 genes in stage I, stage II, and stage III,
respectively. Then we count the distribution of these genes in
each module, as shown in Table 1. We find that the specific
genes in stage I are mainly distributed in the S1_brown module,
S1_turquoise module and S1_blue module, the specific genes
in stage II are mainly distributed in the S2_turquoise module,

and the specific genes in stage III are mainly distributed in the
S3_turquoise module, S3_brown module and S3_green module.
Therefore, we regard these seven modules as the specific modules
of corresponding stage.

Topological Properties Analysis and
Gene Set Enrichment Analysis
We perform network topological analysis for seven specific
modules using Cytoscape. For the degree distribution, the degrees
of S1_turquoise module, S2_turquoise module, and S3_turquoise
module are mainly distributed between 100 and 400, and
the degrees of S1_brown module, S1_blue module, S3_brown
module, and S3_green module are mainly distributed between
50 and 100, respectively. And the degree distribution of each
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module conforms to the power law distribution. The betweenness
centrality of most nodes in each module is at a high level. The
closeness centrality of most nodes in each module ranges from
0.5 to 0.9. These values indicate that the network corresponding
to each module is a dense graph, so the hub genes screened by
these three parameters are all core genes.

We use Metascape to perform the joint enrichment analysis
on the genes in the seven specific modules, and set p-value
cut-off 0.01. The joint enrichment results are shown in
Figure 4. The most significant enrichment item for each
module is shown in Table 2. According to Figure 4 and
Table 2, S1_turquoise, S2_turquoise, and S3_turquoise modules
are roughly identical, and these significant pathways are all
related to cell transcription and cycle regulation. S3_green,

S1_brown, S1_blue, and S3_brown modules are closely related
to each other, and these significant pathways are mainly related
to gene transcription. In addition, transcription regulation
complex (GO:0005667) and chromatin binding (GO:0003682)
are the common enrichment items of the seven specific
modules. The results show that the stage-specific modules have
strong functionality and the genes within the modules are
highly correlated.

Candidate Disease Gene Prediction
We predict disease genes based on correlation matrix and
network topological properties. Firstly, we calculate the
correlation matrix of genes at each specific module, and
select genes with correlation cut-off 0.8 and p-value cut-off

TABLE 1 | Gene distribution of each module.

Module Gene count Specific gene count Module Gene count Specific gene count Module Gene count Specific gene count

S1_black 71 5 S2_black 66 4 S3_black 99 11

S1_blue 149 11 S2_blue 125 5 S3_blue 142 8

S1_brown 120 28 S2_brown 116 3 S3_brown 120 26

S1_green 106 5 S2_green 90 9 S3_green 110 25

S1_grey 42 4 S2_grey 40 3 S3_greenyellow 51 14

S1_magenta 63 4 S2_magenta 58 3 S3_grey 30 2

S1_pink 66 10 S2_pink 58 6 S3_magenta 61 4

S1_purple 40 2 S2_red 68 3 S3_pink 70 14

S1_red 95 8 S2_turquoise 337 21 S3_purple 54 10

S1_turquoise 270 13 S2_yellow 108 2 S3_red 104 15

S1_yellow 107 1 S3_tan 45 2

S3_turquoise 337 47

S3_yellow 116 8

S1, S2, and S3 represent stage I, stage II, and stage III, respectively.

FIGURE 4 | Joint enrichment analysis of seven specific modules.

Frontiers in Genetics | www.frontiersin.org 6 July 2021 | Volume 12 | Article 717557

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-717557 July 10, 2021 Time: 13:27 # 7

Fan et al. Stage-Specific GRN Analysis

TABLE 2 | Functional enrichment analysis.

Module Term Description Log10(P) Count

S1_turquoise GO:0044770 Cell cycle phase transition −32.060 52

GO:0051301 Cell division −31.343 50

GO:0006260 DNA replication −21.835 30

S1_blue GO:0022411 Cell component disassembly −8.88 18

GO:0001046 The core promoter sequence specifically binds to DNA −8.71 7

GO:0070897 Transcription pre-priming complex assembly −3.78 6

S1_brown GO:0001228 DNA binding transcription activator activity −9.13 15

GO:0001227 DNA binding transcription repressor activity −6.08 10

GO:0004879 Nuclear receptor activity −5.54 5

S2_turquoise GO:0044770 Cell cycle transition −41.180 66

GO:0007059 Chromosome segregation −38.573 50

GO:0005819 Spindle −27.162 42

S3_turquoise GO:0044770 Cell cycle transition −44.41 69

GO:0098687 Chromosome region −38.25 50

hsa04110 Cell cycle −28.49 29

S3_brown GO:0006352 DNA template transcription −9.100 12

GO:0001046 The core promoter sequence specifically binds to DNA −7.678 6

GO:0034655 Catabolism of nucleobase-containing compounds −6.932 14

S3_green GO:0016570 Histone modification −6.678 12

GO:0005697 Telomerase holoenzyme complex −5.816 4

GO:0034243 Macromolecule methylation −5.194 5

0.05 as the core genes of each module. Then, we sort the
degree distribution, betweenness centrality and closeness
centrality of each gene in the seven modules, and select the
top 5% as the core gene of each module. The intersection of
core genes selected by these two methods are considered as
candidate disease genes.

We obtain 20 candidate disease genes in stage I, such as E2F2,
E2F8, TPX2, etc., 12 genes in stage II, such as KPNA2, CKAP2L,
CBX3, etc., and 22 genes in stage III, such as RAD21, FBXO5,
CCNE2, etc. A complete gene list of each stage is shown in
Table 3. E2F2, CKAP2L and CBX3 are genes shared by three
stages. For the remaining candidate genes at different stages, we
compare their gene expression data and find that they are indeed
different at different stages. And the results are shown in the
Supplementary Figures 1∼2.

Candidate Disease Gene Verification
In order to determine whether the selected candidate disease
genes are effective in the diagnosis and treatment of breast cancer,
we use OMIM, COSMIC, and DAVID to verify the candidate
genes, and obtain seven genes related to breast cancer. BUB1
is mitotic checkpoint serine, E2F2 is a transcription activator,
NEK2 is a serine/threonine-protein kinase, TPX2 is the target
protein for Xklp2, TTK is essential for spindle establishment and
centrosome replication, PCNA is the proliferating cell nuclear
antigen, and TOP2A is DNA topoisomerase 2-alpha. Most of
these genes are related to cell proliferation and transcription.

We search the rest candidate disease genes related to the
genes in PubMed, and verify whether the genes are related to
breast cancer. Kos et al. (2020) found STIL is an important
prognostic and predictive biomarker for triple-negative breast

TABLE 3 | Candidate disease genes at each stage.

Stage Candidate disease genes

Stage I E2F2*, E2F8#, TPX2*, BUB1*, CKAP2L#, CBX3#, CASC5#,
KPNA2#, LMNB1, NEK2*, TTK*, SLC25A36, CREBRF,
ZC3H6, PAN2, BTAF1, SLC25A39, DDX49, SLC39A1#,
MRPS12

Stage II E2F2*, E2F8#, TPX2*, KPNA2#, CKAP2L#, CBX3#, DDIAS,
BUB1*, CCNE2#, CASC5#, SPDL1, TOP2A*

Stage III E2F2*, RAD21#, FBXO5#, CCNE2#, CBX3#, STIL#,
CKAP2L#, PCNA*, NEK2*, TTK*, CSE1L#, H2AFZ#,
NR2F6, TRAPPC6A, IGSF8, FDXR, SLC39A1#, EXOSC5,
RBBP5, KDM5B#, H3F3A, CDC42SE1

Common genes E2F2, CKAP2L, CBX3

*Genes verified by OMIM, COSMIC, DAVID. #Genes verified by PubMed.

cancer and HER2-positive breast cancer. At present, there have
been studies on pathological assessment of breast cancer based on
STIL, which is a key step for molecular markers to move toward
clinical treatment. Based on the study of differentially expressed
hub genes, Qi et al. (2019) proposed that the overexpression
of CCNE2, H2AFZ, TOP2A is closely related to the diagnosis
and poor prognosis of breast cancer. Yuksel et al. (2015) found
the overexpression of CSE1L has a certain relationship with
the distant metastasis of breast cancer and may be a valuable
prognostic tool. Tang J. et al. (2018) used WGCNA to construct
a co-expression network and found FBXO5 and TPX2 are related
to the poor prognosis of breast cancer. Liang et al. (2017) found
CBX family proteins have epigenetic regulatory functions, among
which the high expression of CBX3 is related to the worsening
of recurrence-free survival rate of breast cancer patients.
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Liu et al. (2018) found E2Fs are transcription factors that affect
cell proliferation, differentiation and apoptosis, and the high
expression of E2F8 is also related to the deterioration of patients’
recurrence-free survival rate, and can be used as a potential target
for individualized treatment of breast cancer patients. Zhang et al.
(2019) showed that KDM5B is up-regulated in breast cancer and
many other cancers and its expression is positively correlated
with breast cancer metastasis. Duan et al. (2020) and Liu et al.
(2020) showed the expression of KPNA2 and SLC39A1 in breast
cancer tissues is significantly up-regulated, which can regulate
the development of breast cancer and provide new targets for
breast cancer treatment. NEK2 is a kind of serine, which plays
an important role in mitosis. Cappello et al. (2014) and Chen
et al. (2020) have proven NEK2 is a target for breast cancer.
Atienza et al. (2005) has shown through experiments that RAD21
can enhance the anti-tumor activity of chemotherapeutics by
inducing DNA damage and is a new target for cancer drugs. Based
on survival analysis and mutation analysis, Fu et al. (2019) found
that the high expression of CKAP2L and CASC5 is closely related
to the poor prognosis of breast cancer patients. These verified
genes are shown in Table 3.

In summary, we detect 20, 12, and 22 candidate disease genes
for three stages, respectively. Through PubMed search, 11, 10,
and 14 genes are verified, respectively. That is 55%, 83%, and
64% of the candidate disease genes are proved to be related
to the diagnosis and treatment of breast cancer, respectively,
such as E2F2, E2F8, TPX2, BUB1, CKAP2L, etc. The results
show the effectiveness of our computational framework for
predicting disease genes.

We also use GSE15852 gene expression profile and GSE69914
DNA methylation profile to verify the validity of the proposed
computational framework. Firstly, we screen out 79 differentially
expressed genes and hypermethylated/hypomethylated genes.
Secondly, we combine with the TF-target gene pairs and
construct a gene regulatory network with 195 nodes and 313
edges. Thirdly, we divide the gene regulatory network into four
modules: 76 genes in turquoise module, 68 genes in blue module,
18 genes in gray module, and 33 genes in brown module,
respectively. In particular, the gray module contains genes
that are not classified into any module and discarded. Finally,
we screen the candidate disease genes of each module based
on correlation matrix and network topological properties, and
obtain four genes in turquoise module, four genes in blue module,
and two genes in brown module, respectively. In detail, these
genes are H2AFZ, NPM1, MAF, NR3C1, PTGER3, TCF4, IRF1,
RARB, CHD2, and SMAD4. Except PTGER3 and CHD2, other
genes have been verified. This means that our method is effective,
and it may help experts explore breast cancer related genes.

DISCUSSION

At present, the proposed computational framework has only
been tested on breast cancer, and satisfactory results have been
obtained. In the future, we will try to apply this framework to
other types of diseases for discovering more disease-related genes.

CONCLUSION

We propose a computational framework to predict candidate
stage-specific disease genes for breast cancer based on stage-
specific gene regulatory networks. And we conduct experiments
using two breast cancer data sets and find that most predicted
genes are related to breast cancer, which shows that our method
is effective. We also predict some candidate disease genes that
need to be further verified. Nevertheless, our research has some
limitations. Our proposed computational framework is based on
the public TCGA and GEO datasets, and the noise affects the
analysis results. Another limitation is that we should integrate
more omics data so that more disease genes may be predicted
more accurately.
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