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Highly multiplexed imaging technology is a powerful tool to facilitate understanding
the composition and interactions of cells in tumor microenvironments at subcellular
resolution, which is crucial for both basic research and clinical applications. Imaging mass
cytometry (IMC), a multiplex imaging method recently introduced, can measure up to
100 markers simultaneously in one tissue section by using a high-resolution laser with a
mass cytometer. However, due to its high resolution and large number of channels, how
to process and interpret the image data from IMC remains a key challenge to its further
applications. Accurate and reliable single cell segmentation is the first and a critical step to
process IMC image data. Unfortunately, existing segmentation pipelines either produce
inaccurate cell segmentation results or require manual annotation, which is very time
consuming. Here, we developed Dice-XMBD', a Deep learning-based Cell sEgmentation
algorithm for tissue multiplexed imaging data. In comparison with other state-of-the-art
cell segmentation methods currently used for IMC images, Dice-XMBD generates more
accurate single cell masks efficiently on IMC images produced with different nuclear,
membrane, and cytoplasm markers. All codes and datasets are available at https://
github.com/xmuyulab/Dice-XMBD.

Keywords: imaging mass cytometry, multiplexed imaging, single cell segmentation, U-net, knowledge distillation,
digital pathology

1. INTRODUCTION

Analysis of the heterogeneity of cells is critical to discover the complexity and factuality
of life system. Recently, single-cell sequencing technologies have been increasingly used in
the research of developmental physiology and disease (Stubbington et al., 2017; Papalexi and
Satija, 2018; Potter, 2018; Lihnemann et al, 2020), but the spatial context of individual
cells in the tissue is lost due to tissue dissociation in these technologies. On the other
hand, traditional immunohistochemistry (IHC) and immunofluorescence (IF) preserve spatial
context but the number of biomarkers is limited. The development of multiplex IHC/IF
(mIHC/mIF) technologies has enabled the simultaneous detection of multiple biomarkers
and preserves spatial information, such as cyclic IHC/IF and metal-based multiplex imaging
technologies (Zrazhevskiy and Gao, 2013; Angelo et al., 2014; Giesen et al.,, 2014; Tan et al,
2020). Imaging mass cytometry (IMC) (Giesen et al, 2014; Chang et al, 2017), one of

IXMBD: Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and
Medicine, Xiamen University, China.
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metal-based mIHC technologies, uses a high-resolution laser
with a mass cytometer and makes the measurement of 100
markers possible.

IMC has been utilized in studies of cancer and autoimmune
disorders (Giesen et al., 2014; Damond et al., 2019; Ramaglia
et al., 2019; Wang et al., 2019; Bottcher et al.,, 2020). Due to
its high resolution and large number of concurrent marker
channels available, IMC has been proven to be highly effective in
identifying the complex cell phenotypes and interactions coupled
with spatial locations. Thus, it has become a powerful tool to
study tumor microenvironments and discover the underlying
disease-relevant mechanisms (Briahler et al., 2018; Ali et al,
2020; Aoki et al.,, 2020; de Vries et al., 2020; Dey et al., 2020;
Jackson et al., 2020; Zhang et al., 2020; Schwabenland et al.,
2021). Apart from using IMC techniques alone, several other
technologies, such as RNA detection in situ and 3D imaging, have
been combined with IMC to expand its applicability and utility
(Schulz et al., 2018; Bouzekri et al., 2019; Catena et al., 2020; Flint
et al., 2020).

The IMC data analysis pipeline typically starts with single
cell segmentation followed by tissue/cell type identification
(Carpenter et al., 2006; Sommer et al., 2011; Liu et al., 2019). As
the first step of an IMC data processing pipeline, the accuracy of
single cell segmentation plays a significant role in determining
the quality and the reliability of the biological results from an
IMC study. Existing IMC cell segmentation methods include
both unsupervised and supervised algorithms. Unsupervised cell
segmentation, such as the watershed algorithm implemented in
CellProfiler (Carpenter et al., 2006), does not require user inputs
for model training. However, the segmentation results are not
precise in particular when cells are packed closely or they are
in complicated shapes. To achieve better segmentation results,
supervised methods use a set of images annotated with pixel-
level cell masks to train a segmentation classifier. However, the
manual annotation task is very time consuming and expensive
as well since it is normally done by pathologists or experienced
staff with necessary knowledge in cell annotation. Particularly,
for multiplexing cellular imaging methods such as IMC, their
channel configurations including the total number of markers
and markers selection are typically study dependent. Therefore,
manual annotation may need to be performed repeatedly for each
study to adapt the segmentation model to different IMC channel
configurations, which can be impractical.

To overcome this limitation, a hybrid workflow combining
unsupervised and supervised learning methods for cell
segmentation was proposed (Ali et al., 2020). This hybrid
workflow uses Ilastik (Sommer et al., 2011), an interactive
image processing tool, to generate a probability map based
on multiple rounds of user inputs and adjustments. In each
round, a user only needs to perform a limited number of
annotations on regions where the probability map generated
based on previous annotations is not satisfactory. CellProfiler
is then used to perform the single cell segmentation based on
the probability map once the result from Ilastik is acceptable.
This hybrid workflow significantly reduces manual annotation
workload and has gained popularity in many recent IMC studies
(Damond et al., 2019; Bottcher et al., 2020; de Vries et al., 2020;
Jackson et al., 2020; Schwabenland et al., 2021). However, the

annotation process still needs to be performed by experienced
staff repeatedly for each IMC study, which is very inconvenient.
In addition, the reproducibility of the experimental results
obtained from this approach can be an issue due to the per-study,
interactive training process used in creating the single cell masks.
Hence, a more efficient, fully automated single cell segmentation
method for IMC data without compromising the segmentation
accuracy is necessary for IMC to gain broader applications in
biomedical studies.

Convolutional neural networks (CNNs) have been
successfully used for natural image segmentation and recently
applied in biomedical image applications (Shen et al.,, 2017;
Zhang et al., 2018; Andrade et al., 2019; Vicar et al., 2019). CNN-
based U-Net was developed for pixel-wise cell segmentation
of mammalian cells (Ronneberger et al., 2015). It has been
demonstrated that the U-Net architecture and its variants such
as Unet++ (Zhou et al., 2018), 3D Unet (Cigek et al., 2016),
and V-Net (Milletari et al., 2016) can obtain high segmentation
accuracy. Motivated by the good performance of U-Nets in cell
segmentation (Van Valen et al., 2016; Hollandi et al., 2020; Salem
et al., 2020), we developed Dice-XMBD, a deep neural network
(DNN)-based cell segmentation method for multichannel IMC
images. Dice-XMBD is marker agnostic and can perform cell
segmentation for IMC images of different channel configurations
without modification. To achieve this goal, Dice-XMBD first
merges multiple-channel IMC images into two channels, namely,
a nuclear channel containing proteins originated from cell
nucleus, and a cell channel containing proteins originated
from cytoplasm and cell membrane. Channels of proteins
with ambiguous locations are ignored by Dice-XMBD for
segmentation as they contribute little to the segmentation
results. Furthermore, to mitigate the annotation workload,
we adopted the knowledge distillation learning framework
(Hinton et al., 2015) in training Dice-XMBD, where the training
labels were generated using Ilastik with interactive manual
annotations as a teacher model. We used four IMC datasets of
different channel configurations to evaluate the performance of
Dice-XMBD and the results show that it can generate highly
accurate cell segmentation results that are comparable to those
from manual annotation for IMC images from both the same
and different datasets to the training dataset, validating its
applicability for generic IMC image segmentation tasks.

2. MATERIALS AND METHODS

2.1. Overview of the Pipeline

In Dice-XMBD, we used a U-Net-based pixel classification model
to classify individual pixels of an IMC image to their cellular
origins, namely, nuclei, cytoplasm/membrane, or background.
The classification model outputs pixel-level probability values for
each class, which were then input to CellProfiler (version 3.1.0)
to produce the final cell segmentation masks (Figure 1).

The ground truth cell segmentation of IMC images is
in general not available. To obtain the training labels, we
generated pixel probability maps using an iterative manual
annotation process with Ilastik on the training IMC dataset.
Furthermore, the same iterative manual annotation process was
performed on the testing IMC datasets to produce the ground
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FIGURE 1 | Dice-XMBD workflow. Imaging mass cytometry (IMC) images are combined into 2-channel images containing nuclear and membrane/cytoplasm proteins
expression information. In stage 1, the pixel probability maps of the input 2-channel images are predicted using a semi-supervised learning model based on U-Net
architecture. The training data were generated from llastik by an iterative interactive annotation process. In stage 2, the cell segmentation masks are generated from

truth pixel probability maps, which were used by CellProfiler
to produce the ground truth cell segmentation masks for
performance evaluation.

Note that to obtain a generic pixel classifier that can be
used across IMC datasets of different channel configurations,
channels of different proteins were combined based on their
cellular origins into two channels, namely, nuclear and cell
(membrane/cytoplasmic) channels. Channels of proteins without
specific cellular locations were ignored by Dice-XMBD. The pixel
classification model was trained using the combined two-channel
images as input. Likewise, the same preprocessing was used at
the prediction stage to produce the two-channel (nuclear/cell)
images as input to the pixel classification model. Of note,
although the prediction may be performed on images with
different markers, the channels were always combined based on
their origins so that pixel classification was performed based
on the two channels of putative protein locations rather than
channels of individual proteins.

2.2. Training and Evaluation Datasets

We used four IMC image datasets in this study. BRCA1 and
BRCA2 (Ali et al, 2020) contain 548 and 746 images from
patients with breast cancer with 36 and 33 markers, respectively.
T1D1 (Damond et al,, 2019) and T1D2 (Wang et al., 2019)

contain 839 and 754 images from patients with type I diabetes
with 34 markers. Dice-XMBD was trained on a subset of BRCA1
dataset (n = 348) with 200 held-out images reserved for
validation and testing. To test the generalization ability of Dice-
XMBD, we also tested the trained model on the other three
independent IMC datasets (BRCA2, T1D1, and T1D2).

2.3. Generating Ground Truth Cell Masks

The ground truth pixel probability maps and the cell masks used
for model training and evaluation were generated using Ilastik
and CellProfiler. We used the smallest brush size (1 pixel) in
annotating the image to avoid annotating a group of neighboring
pixels of different classes. To mitigate the manual workload, the
annotation was performed in an interactive manner, where the
random forest prediction model of Ilastik was updated regularly
during annotation to produce an uncertainty map indicating
the confidence level of the classification results produced by
the prediction model. The annotation was then guided by the
uncertainty map to focus on the regions with high uncertainty
iteratively, until the overall uncertainty values were low except for
regions of which the boundaries were visually indistinguishable.
The initial annotation was performed on a randomly selected
subset of the dataset. After the initial annotation, we loaded
all the images from the dataset into Ilastik to calculate their
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uncertainty maps, and then selected those with the highest
average uncertainty values for further annotation. This process
was iterated until the uncertainty values of all images converged,
that is, the average uncertainty value over all images did not
decrease significantly for three consecutive iterations.

In the end, we annotated 49 images in BRCAIl to train
the model in Ilastik. We then imported all the images of the
BRCA1 dataset into Ilastik for batch processing and export
their corresponding pixel classification probability maps for
training Dice-XMBD. The probability maps were further input
to CellProfiler to produce the ground truth cell segmentation.
In CellProfiler, we used the “IdentifyPrimaryObjects” module to
segment the cell nuclei and used the “IdentifySecondaryObjects”
to segment the cell membranes using the propagation method.
The output masks from CellProfiler are regarded as ground truth
cell segmentation of the dataset for performance evaluation.

We also generated the ground truth cell masks of the other
three datasets by the same iterative procedure separately for
testing the generalization ability of Dice-XMBD. During the
process, 72 images in BRCA2, 39 images in T1D1, and 67 images
in T1D2 were manually annotated.

2.4. Training the U-Net Cell Segmentation
Model

2.4.1. Image Preprocessing

The multiplexed IMC images were first merged into two channels
by averaging the per-pixel values from the selected membrane
and nuclear channels. After merging channels, the input IMC
images were then preprocessed by hot pixel removal, dynamic
range conversion, normalization, and image cropping/padding
into fix-sized patches. First, we applied a 5 x 5 low-pass filter
on the image to remove hot pixels. If the difference between an
image pixel value and the corresponding filtered value was larger
than a preset threshold (50 in our experiments), the pixel would
be regarded as a hot pixel and its value would be replaced by
the filtered value. As the dynamic range of pixels values differs
among IMC images of different batches and different channels,
we further min-max normalized all images to [0,255] to remove
such batch effect as:

/ Xij — Xomin

X = X * 255, (1)

max — Xmin

where x;; denotes the pixel value in one channel, and X, and
Xnin denote the maximum and minimum values in the channel.
Of note, as the pixel values in IMC images have a high dynamic
range, transforming the pixel values from its dynamic range to
[0, 255] would suffer from detail suppression by one or few
extremely large values. Therefore, we thresholded the image pixel
values at 99.7% percentile for each image before normalization.
Finally, we merged all the nuclear channels into one
consolidated nuclear channel, and membrane/cytoplasmic
channels into one cell channel, by averaging on all channel
images with pre-selected sets of protein markers, respectively.
We converted the merged two-channel images into patches of
512 x 512 pixels. Image boundary patches that are smaller than
the target patch size are padded to target size. For the padded

pixels, we set the pixel values of both channels to 0 and the pixel
type as background.

2.4.2. Data Augmentation

Data augmentation is an effective strategy to reduce overfitting
and enhance the robustness of the trained models, especially
when training data are insufficient. We applied the following data
augmentation methods on the input images before feeding to our
U-Net-based pixel classification network.

First, photometric transformations including contrast
stretching and intensity adjustments were used. For contrast
stretching, we changed the level of contrast by multiplication with
a factor randomly drawn from the range of [0.5, 1.5]. Similarly,
for intensity adjustments we changed the level of intensities by
multiplication with a factor randomly drawn from the range of
[0.5, 1.5]. Geometric transformations including image flipping
and rotation were used. For flipping, we implemented random
horizontal or vertical flipping. For rotation, the rotating angle
is randomly distributed in the range of [—180, 180]. Note that
geometric transformations were applied to pairs of input and
output images of the network. We also injected random Gaussian
noise to the two input channels of the input images. Examples of
data augmentation are shown in Supplementary Figures 1, 2.

2.4.3. Constructing a Pixel Classification Model

The U-Net pixel classification network is an end-to-end fully
convolutional network and contains two paths. The contracting
path (or the encoder) uses a typical CNN architecture. Each
block in the contracting path consists of two successive 3 x 3
convolution layers followed by a Rectified Linear Unit (ReLU)
activation and a 2 x 2 max-pooling layer. This block is repeated
four times. In the symmetric expansive path (or the decoder),
at each stage the feature map is upsampled using 2 x 2 up-
convolution. To enable precise localization, the feature map from
the corresponding layer in the contracting path is cropped and
concatenated onto the upsampled feature map, followed by two
successive 3 x 3 convolutions and ReLU activation. At the final
stage, an additional 1 x 1 convolution is applied to reduce the
feature map to the required number of output channels. Three
output channels are used in our case for nuclei, membrane,
and background, respectively. As we output the probability map,
the values are converted into the range of [0, 1] using the
Sigmoid function.

2.4.4. Loss Function
We take the binary cross-entropy (BCE) as the loss function,
which is defined as:

1
loss(y,3) = — > Kowixlog@) + (1 —yi) log(1 — ), (2)

where N represents the total number of pixels in an image, y;
denotes the ground truth pixel probability, and y; denotes the
predicted pixel probability. The cross-entropy loss compares the
predicted probabilities with the ground truth values. The loss is
minimized during the training process.
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2.5. Model Evaluation

In a binary cell mask, “1” represents cell boundary and “0”
denotes cell interior or exterior. For every pixel in an image, true
positive (TP) and true negative (TN) mean that the predicted
pixel classification is the same as its label in the labeled (i.e., the
ground truth) mask, while false positive (FP) and false negative
(FN) mean that a pixel is misclassified. To evaluate pixel-level
accuracy, we calculated the number of TP pixels and FP pixels
based on the predicted and labeled binary masks.

We further evaluated model performance at the cell level.
We calculated the intersection over union (IOU) on cells from
predicted and labeled cell masks to determine if they are the same
cell, and then counted the TP and FP cells. First, we filtered out
all cells with IOU below 0.1 from the predicted cells. These cells
are identified as FPs. The other cells from the predicted cell mask
could be either TP or FP. If a predicted cell only overlaps with one
true cell (i.e., a cell from the labeled cell mask), we assume that
the cell is segmented accurately (TP). If a true cell cannot find a
predicted cell, the “missing” cell is denoted as FN. When multiple
predicted cells are assigned to the same true cell, we consider this
as a split error. If multiple true cells are matched to the same
predicted cell, we consider those predicted cells as merge errors.
For simplicity, split errors and merge errors are counted as FPs.
Four standard indices are measured as follows:

TP
Recall = ———, (3)
TP + FN
iy TP
Precision = —————, (4)
TP + FP
2 % Precision * Recall
Flscore = — , (5)
Precision + Recall
TP
Jaccard = ——————. (6)
TP + FP + FN

To investigate the effect of different segmentation methods
on downstream analysis, an unsupervised clustering method
(Phenograph Levine et al., 2015, Python package, v1.5.7) was
applied to the high-dimensional single cell expression data
processed from each different method under comparison, and
the labeled ground truth cell mask, separately. Prior to clustering,
single cell protein expressions were quantified by the mean pixel
values, and then these values were censored at 99th percentile
and transformed with arcsinh function. Scaled high-dimensional
single cells were clustered into several groups based on selected
markers as from the original publication of each individual
dataset. Based on the expressions of cell-specific markers, the cell
types of the clusters were identified among T cells (CD3), CD4
T cell (CD4), CD8 T cell (CD8a), B cell (CD20), macrophage
(CD68), endothelial cell (CD31), and so on. By comparing the cell
annotation from different segmentation methods (predicted cell
mask) and the labeled cell mask, the cell annotation accuracy was
calculated as ns4me/Nyorqr- Here, nggme is the number of correctly
predicted cells, which are cells that correctly overlapped with
the corresponding cells in the labeled mask (i.e., TP cells), and
annotated to the same cell types, Ny, is the total number of cells
from the predicted mask.

3. RESULTS

3.1. Dice-XMBD Enables Automatic Cell

Segmentation

We trained our U-Net cell segmentation model using the BRCA1
dataset with 348 images as the training set and 100 images as
the validation set. A complete held out test set with 100 images
was used to test model performance within one dataset. We
further applied the trained model directly on the other three
IMC image datasets to evaluate the cross-dataset performance of
the model. For performance evaluation, we computed standard
indices (Recall, Precision, F1-score, and Jaccard index) for both
pixel-level and cell-level accuracies (see section 2).

We compared Dice-XMBD with a generic whole-cell
segmentation method across six imaging platforms, Mesmer
(Greenwald et al., 2021), which used a deep learning-based
algorithm trained on a large, annotated image dataset to segment
single cells and nuclei separately. A trained Mesmer model was
tested with combined nuclear and cell channels, which is the
same as the input to Dice-XMBD. Meanwhile, we compared
with three commonly used segmentation methods implemented
in CellProfiler with default parameters: distance, watershed,
and propagation. These methods first locate nuclei as primary
objects, and then the membrane proteins are added together
into an image as input to recognize cells. The distance method
does not use any membrane proteins information and simply
defines cell membrane by expanding several pixels around
nuclei. The watershed method computes intensity gradients on
the Sobel transformed image to identify boundaries between
cells (Vincent and Soille, 1991), while the propagation method
defines cell boundaries by combining the distance of the nearest
primary object and the intensity gradients of cell membrane
image (Jones et al., 2005). Hereafter, we refer to these three
CellProfile-based methods as CP_distance, CP_watershed, and
CP_propagation, respectively.

Results show that Dice-XMBD outperformed all other
benchmarked methods with highest accuracy on pixel level
(F1 score = 0.92, Jaccard index = 0.85) (Figure 2A). We also
observed that CP_distance obtained the highest recall (Recall =
0.95) but lowest precision (Precision = 0.66), which means that it
can identify almost every pixel correctly in the labeled mask but
only 66% of predicted pixels were accurate.

In terms of cell-level performance, we first counted cells per
image from predicted and labeled cell masks. The prediction
result from Dice-XMBD showed highest correlation with the
ground truth (Pearson correlation = 0.998) among all methods
tested. Mesmer (Pearson correlation = 0.955) and CellProfiler
(Pearson correlation = 0.981) also achieved high correlation with
the ground truth. However, Mesmer tended to predict less cells
while CellProfiler was more likely to over-split cells, as shown in
Figures 2B,C. Moreover, Figure 2C shows that Dice-XMBD had
the best prediction performance (F1-score = 0.867) considering
precision (Precision = 0.856, percent of cells that were correctly
predicted) and recall (Recall = 0.880, percent of true cells that are
predicted) than Mesmer (F1-score = 0.557) and CellProfiler (F1-
score = 0.567, 0.563, and 0.561 for CP_distance, CP_watershed,
and CP_propagation, respectively). We further checked the IOU
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FIGURE 2 | Dice-XMBD enables automatic single cell segmentation. (A) Pixel prediction performance comparison of Dice-XMBD, Mesmer, and CellProfiler
(CP_distance, CP_watershed, CP_propagation). All data in bar plots are presented as mean +SD. (B) Pearson correlations between the number of predicted cells
and labeled cells per image. Note that the number of cells predicted from three CellProfiler methods are the same (here denoted as CellProfiler). (C) Cell prediction
performance comparison. %QOversplit and %Merge denote the percentage of oversplits and merge errors in predictions. (D) Density plots showing the distribution of
mean I0U values of matched cells per image. Note that the plots for CP_watershed and CP_propagation overlapped. (E) An example of labeled and predicted single
cell masks from benchmarked methods. The title of each subfigure shows the method and the mean 10U value of all matched cell pairs in the predicted mask with
regard to the labeled cell mask. Match value represents the IOU value for one-to-one cell pairs identified in the labeled and predicted cell masks. Note that computed
IOU values are in the range of [0,1]. To better visualize FP cells, we use —0.4 and -0.8 to represent merged cells (multiple true cells matched to one predicted cell) and
split cells (multiple predicted cells matched to one true cell), and —1 to represent all other FP cells in the predicted mask.
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distribution of all one-to-one cell pairs (predicted and true cells),
Figure 2D demonstrates that most matched cell pairs predicted
from Dice-XMBD were highly overlapping (mean = 0.815,
median = 0.821), followed by Mesmer where most matched pairs
are only half area of overlap (mean = 0.579, median = 0.595).
An example of BRCA1 shown in Figure 2E demonstrates that
Dice-XMBD prediction was far superior to other benchmarked
methods since it contained most cells with high matched values.

3.2. Dice-XMBD Enables Generic IMC

Image Segmentation

The key idea of this study was to generate an IMC-specific
single cell segmentation model across different datasets with
multiple proteins. We selected three independent IMC datasets
generated from different labs to test the generalization ability of
Dice-XMBD. Apart from the benchmarked methods mentioned
above, we also included the Ilastik model trained from BRCA1
annotations in our comparison. Figure 3A shows that Dice-
XMBD outperformed all the other methods, followed by Ilastik.
Moreover, the performance of cells prediction from Dice-XMBD
was the best and the most stable for all three datasets, while
Ilastik and Mesmer tended to under-predict cells. CellProfiler
predicted less cells in BRCA2 and over-predicted cells in two T1D
datasets, as shown in Figures 3B,C. Furthermore, Dice-XMBD
predictions contained most of the cells with IOU value higher
than 0.8 (Figure 3D and Supplementary Figure 3).

3.3. Dice-XMBD Enables Accurate

Downstream Biological Analysis

To investigate the influence of segmentation accuracy on
downstream analysis, we clustered single cells resulting from
different segmentation methods separately using Phenograph
and compared the clustering results. Taking the result from single
cells obtained from Dice-XMBD segmentation on BRCA1 dataset
as an example, these cells can be clustered into 26 distinct clusters
[Figure 4A, t-distributed stochastic neighbor embedding (t-SNE)
visualization in Figure 4B]. Based on the scaled mean expression
for each cluster, we were able to annotate Cluster 3 as T cells,
Cluster 18 as B cells, Cluster 16 as macrophage, and the remaining
clusters to other cell types which may include tumor cells, stromal
cells, or endothelial cells (Figure 4C). We performed the same
clustering and annotation process on single cells obtained from
other segmentation methods and the ground truth segmentation
on all three datasets separately as well. For two T1D datasets
[T1D1 (Damond etal, 2019) and T1D2 (Wang et al., 2019)], CD4
T cells, CD8 T cells, and CD31+ endothelial cells were identified
based on their selected markers.

We compared the concordance of cell fractions based on
annotations from different segmentation methods (prediction)
versus those from ground truth segmentation (ground truth)
(Figure 4D and Supplementary Figures 4A-7A). On BRCA1l
dataset, Dice-XMBD performed better compared with all other
segmentation methods on overall results and results of certain
cell types (Figure4D). Significantly, two CellProfiler-based
methods (CP_watershed, R> = 0.85 and CP_propagation,
R?> = 0.85) showed inferior performance in reproducing cell

fraction results in macrophage while Dice-XMBD still achieved
an R? = 0.99 in this cell types. CP_distance delivered reasonable
performance in macrophage, but was still inferior to Dice-XMBD
on T cell. Similar results can be observed on other datasets
as well. For example, for the T1D1 dataset, CD4 T cells were
poorly predicted by Ilastik (R> = 0.043) and CP_distance
(R* = 0.055) (Supplementary Figure 6A). For the T1D2 dataset,
endothelial cells were poorly predicted by Ilastik (R* = 0.58) and
macrophage cells were poorly predicted by Mesmer (R? = 0.033).
On the other hand, Dice-XMBD delivered highly consistent
prediction results across all cell types in all datasets except for T
cell in BRCA2 dataset, where all methods did not perform well.

In addition to cell fraction, we also evaluated the annotation
accuracy of individual cells for each method (Figure4E and
Supplementary Figures 4B-7B), which is important for spatially
related analysis of single cell data such as neighborhood analysis.
Dice-XMBD achieved the highest cell annotation accuracies
among all segmentation methods on overall results (Figure 4E),
and performed as well as or better than other methods on all
individual cell types in all datasets (Supplementary Figures 4B—
7B).

3.4. Generalization Ability of Dice-XMBD

To investigate the impact of the training data on the
segmentation performance of Dice-XMBD, we trained Dice-
XMBD using different training datasets, and evaluated the
performance of the resulting models on other IMC datasets used
in this study. Results show that segmentation performance in
terms of pixel-level accuracy were in fact very similar among
these models (Supplementary Tables 1-4). We further asked if
the performance of Dice-XMBD could be improved by training
on multiple datasets. Interestingly, the model did not consistently
perform better when more than one datasets were combined
as the training set (Supplementary Tables 1-4). All together,
these results suggest that by using location specific channels,
Dice-XMBD were highly robust to different training datasets,
and a Dice-XMBD model trained on one dataset can be well
generalized to segmentation tasks on other IMC datasets.

Of note, in our approach, the channels of same locations
were simply averaged without applying any weighting scheme
to produce the location specific channels. We tried to min-
max-normalize the selected channels before averaging so that
all selected channels contributed equally to the combined
channels. However, the pixel-level accuracy dropped on all
datasets, albeit at different levels of degradation on different
datasets (Supplementary Tables 1-4). As different channels may
contain different levels of information to the final segmentation
results, combining them with equal weights may not be the
optimal approach. However, how to find the optimal weighting
combination of different channels remains an open question that
deserves further exploration.

4. DISCUSSION

Highly multiplexed single cell imaging technologies such as
IMC are becoming increasingly important tools for both basic
biomedical and clinical research. These tools can unveil complex
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FIGURE 3 | Dice-XMBD enables generic imaging mass cytometry (IMC) image segmentation. Left: BCRA2, middle: T1D1, right: T1D2. (A) Pixel prediction
performance comparison of Dice-XMBD, llastik, Mesmer, and CellProfiler (CP_distance, CP_watershed, CP_propagation). All data in bar plots are presented as mean
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single-cell phenotypes and their spatial context at unprecedented
details, providing a solid base for further exploration in
cancer, diabetes, and other complex diseases. Nevertheless, cell
segmentation has become a major bottleneck in analyzing
multiplexed images. Conventional approaches rely on intensities
of protein markers to identify different cellular structures such as
nuclei, cytoplasm, and membrane. Unfortunately, the intensity
values of these markers are strongly cell type-specific and may
vary from cells to cells. In addition, the staining also shows
variability across images or datasets. As a result, the accuracy
and robustness of the segmentation results are far from optimal.

On the other hand, high-order visual features including spatial
distribution of markers, textures, and gradients are relevant to
visually identify subcellular structures by human. However, these
features are not considered in conventional methods to improve
the cell segmentation results.

The DNN-based image segmentation approaches provide an
opportunity to leverage high-order visual features at cellular level
for better segmentation results. Unfortunately, they require a
significant amount of annotation data that are in general difficult
to acquire. In addition, the highly variable channel configurations
of multiplexed images impose another important obstacle to
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Phenograph cluster. (B) tSNE map representing high-dimensional single cells colored by Phenograph clusters (left) and cell types (right). (C) tSNE map representing
single cells colored by cell-type-specific markers expression (CD68 for macrophage, CD45 and CD3 for T cells, CD45 and CD20 for B cells). Single cells on (A-C)
were from BRCA1 dataset and segmented by Dice-XMBD. (D) Scatter plots of cell fraction obtained from ground truth (x-axis) and five segmentation methods (y-axis),
colored by different cell types identified from BRCA1 dataset. (E) Cell annotation accuracy from Dice-XMBD and other benchmarked methods in four datasets.
Pairwise comparisons of Dice-XMBD and other methods: “P < 0.05; ***P < 0.0001; n.s., not significant (Student’s t-test).

the usability of these methods as most of them lack the ability
to adapt to different channel configurations after models are
trained. In this study, we develop Dice-XMBD, a generic solution
for IMC image segmentation based on U-Net. Dice-XMBD
overcomes the limitation of training data scarcity and achieves
human-level accuracy by distilling expert knowledge from Ilastik

with manual input of human as a teacher model. Moreover,
by consolidating multiple channels of different proteins into
two cellular structure-aware channels, Dice-XMBD provides an
effective off-the-shelf solution for cell segmentation tasks across
different studies without retraining that can lead to significant
delay in analysis. Importantly, our evaluation results further
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demonstrate Dice-XMBD’s good generalization ability to predict
single cells for different IMC image datasets with minimum
impact to downstream analysis, suggesting its values as an generic
tool for hassle-free large-scale IMC data analysis. Finally, to
facilitate the analysis of large amount of IMC data currently
being generated around the world, we made Dice-XMBD publicly
available as an open-source software on GitHub (https://github.
com/xmuyulab/Dice-XMBD).
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